Deep Learning (1470)

Randall Balestriero

Class 10: Resnets, batch-normalization and Dropout
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Student Driven Recap!

» Difference between convolution and cross-correlation

* Qutput shape for image (5,5) and filter (3,3), padding=0, stride=1
* Qutput shape for image (5,5) and filter (3,3), padding=1, stride=1
* Qutput shape for image (5,5) and filter (1,1), padding=0, stride=1
* Difference between MLP and LeNet57?



Vanishing gradients
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Multiplying by terms <1 makes
things smaller...
Gradients earlier in the network
tend to “Vanish”
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terms with gradient <1




More Complicated Networks

ResNet:

Lots of layers, tons of learnable parameters

Avoids Vanishing Gradient problem

but how?
Revolution of Depth
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ImageNet Classification top-5 error (%)

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. ‘
arXiv preprint arXiv:1512.03385, 2015. < 0oo



More Complicated Networks

ResNet:

Lots of layers, tons of learnable parameters
Avoids Vanishing Gradient problem
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K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385, 2015.



Derive the chalin rule for a simple residual
model and explain why it helps

Home EXxercise



Visualizing the effect of residual connections

Visualizing the Loss Landscape of Neural Nets

Hao Li', Zheng Xu', Gavin Taylor?, Christoph Studer’, Tom Goldstein’
''University of Maryland, College Park “United States Naval Academy °Cornell University
{haoli,xuzh,tomg}@cs.umd.edu, taylor@usna.edu, studer@cornell.edu

Abstract

Neural network training relies on our ability to find “good” minimizers of highly
non-convex loss functions. It is well-known that certain network architecture

designs (e.g., skip connections) produce loss functions that train easier, and well-
chosen training parameters (batch size, learning rate, optimizer) produce minimiz-
ers that generalize better. However, the reasons for these differences, and their
effects on the underlying loss landscape, are not well understood. In this paper, we
explore the structure of neural loss functions, and the effect of loss landscapes on
generalization, using a range of visualization methods. First, we introduce a simple
“filter normalization” method that helps us visualize loss function curvature and
make meaningful side-by-side comparisons between loss functions. Then, using
a variety of visualizations, we explore how network architecture affects the loss

landscape, and how training parameters affect the shape of minimizers.



Visualizing the effect of residual connections

(a) without skip connections (b) with skip connections



Batch Normalization: Implementation

Normalize by subtracting feature x’s batch mean, then divide by batch
standard deviation.

, X — Upatch
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Feature x now has mean 0 and variance 1 along the batch
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Batch Normalization Helps in Many Ways

BATCH NORMALIZATION EXPLAINED
How Does Batch Normalization Help Optimization?

Randall Balestriero Richard G. Baraniuk
Meta Al, FAIR ECE Department, Rice University
New York, USA Texas, USA
rbalestriero@fb.com richb@rice.edu
Shibani Santurkar” Dimitris Tsipras® Andrew Ilyas” Aleksander Madry
MIT MIT MIT MIT ABSTRACT

shibani®@mit.edu tsipras@mit.edu ailyas@mit.edu madry@mit.edu

A critically important, ubiquitous, and yet poorly understood ingredient in modern
deep networks (DNs) is batch normalization (BN), which centers and normalizes
the feature maps. To date, only limited progress has been made understanding
Abstract why BN boosts DN learning and inference performance; work has focused ex-
clusively on showing that BN smooths a DN’s loss landscape. In this paper, we
study BN theoretically from the perspective of function approximation; we exploit
the fact that most of today’s state-of-the-art DNs are continuous piecewise affine
(CPA) splines that fit a predictor to the training data via affine mappings defined
over a partition of the input space (the so-called “linear regions™). We demon-

Batch Normalization (BatchNorm) is a widely adopted technique that enables
faster and more stable training of deep neural networks (DNNs). Despite its

pervasiveness, the exact reasons for BatchNorm’s effectiveness are still poorly strate that BN is an unsupervised learning technique that — independent of the
understood. The popular belief is that this effectiveness stems from controlling DN's weights or gradient-based learning — adapts the geometry of a DN's spline
the change of the layers’ input distributions during training to reduce the so-called partition to match the data. BN provides a “smart initialization™ that boosts the
gas ‘ - ift”. In thi k we d trate that h distributi 1 performance of DN learning, b'ocausc it adapts even a DN initialized with random

111tqrpal CO\’&I‘Iﬂt? shift”. ) £ YROLR _e CRISGLSIRAES: SELaL BIRGE SNISIEISNIEOI weights to align its spline partition with the data. We also show that the variation
stability of layer inputs has little to do with the success of BatchNorm. Instead, of BN statistics between mini-batches introduces a dropout-like random perturba-
we uncover a more fundamental impact of BatchNorm on the training process: it tion to the partition boundaries and hence the decision boundary for classification
makes the optimization landscape significantly smoother. This smoothness induces problems. This per mini-batch perturbation reduces overfitting and improves gen-

eralization by increasing the margin between the training samples and the decision

a more predictive and stable behavior of the gradients, allowing for faster training. boundary



Dropout - what?

Typical NN: the output of
every node in every layer
is used in the next layer of
the network
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Dropout - what?

Dropout: in a single
training pass, the output
of randomly selected
nodes from each layer will
“drop out”, i.e. be setto O
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Dropout - what?

Not just limited to the
input layer: can do this to
any layer of the network
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Dropout for ResNets

DROPOUT DROP PATH / Stochastic Depth
(drops neurons within layers) (drops entire residual blocks)
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Dropout as Weight Decay

Surprising properties of dropout in deep networks

Dropout Training as Adaptive Regularization David P Helstbald DPH@SOR.UCSC.EDU
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Stanford University, Stanford, CA-94305
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Google
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Abstract

Dropout and other feature noising schemes control overfitting by artificially cor- Abstract
rupting the training data. For generalized linear models, dropout performs a form
of adaptive regularization. Using this viewpoint, we show that the dropout regular-
izer 1s first-order equivalent to an Lo regularizer applied after scaling the features

We analyze dropoul in deep networks with rectified linear units and the quadratic loss. Our resulls
expose surprising differences between the behavior of dropout and more traditional regularizers like
weight decay. For example, on some simple data sets dropout training produces negative weights

by an estimate of the inverse diagonal Fisher information matrix. We also establish even though the output is the sum of the inputs. This provides a counterpoint to the suggestion that
a connection to AdaGrad, an online learning algorithm, and find that a close rel- dropout discourages co-adaptation of weights. We also show that the dropout penalty can grow
ative of AdaGrad operates by repeatedly solving linear dropout-regularized prob- exponentially in the depth of the network while the weight-decay penally remains essentially linear,
lems. By casting dropout as regularization, we develop a natural semi-supervised and that dropout is insensitive Lo various re-scalings of the inpul features, outputs, and network
algorithm that uses unlabeled data to create a better adaptive regularizer. We ap- weights. This last insensitivity implies that there are no isolated local minima of the dropout training
ply this 1dea to document classification tasks, and show that it consistently boosts criterion. Qur work uncovers new properties of dropout, extends our understanding of why dropout
the performance of dropout training, improving on state-of-the-art results on the succeeds, and lays the foundation for further progress.

IMDB reviews dataset. Keywords: Dropout, deep neural networks, regularization, learning theory.
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