Deep Learning (1470)

Randall Balestriero

Class 8: Convolutional Neural Networks



Multilayer Perceptrons

And why we need better
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And why we need better

3-Layer MLP with RelLU Activations

RelU{z) = max(0, z)
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Multilayer Perceptrons

And why we need better

3-Layer MLP with RelLU Activations

RelLU{z) = max(0, z)
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Not only local features... but
tranSIatiOn invariant featureS! Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

(764 units) (RelkU) (RelLU) (10 units)
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How to Diagram
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Deep Convolutional Networks




Deep Convolutional Networks

LeNet Architecture

C3: f. maps
C1: feature maps 16@10x10 S4: f. maps
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S2: f. maps C5: layer ...
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LeNet Architecture

C3: f. maps
C1: feature maps 16@10x10 S4: f. mj
INPUT 6@28x28 16@5x
32X32 S2: f. maps
6@14x14

Convolutions Subsampling Convolutions

Deep Convolutional Networks
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VGG-16 CNN Architecture
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max pooling
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Deep Convolutional Networks

LeNet Architecture Can you guess how
many parameters it has?
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Deep Convolutional Networks

LeNet Architecture Can you guess how
many parameters it has?

C3: f. maps
C1: feat maps 16@10 10 S4: f. ma pPs

: feature ma
carm 1605 ~60K!

S2: f. maps

C5: layer
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Deep Convolutional Networks

3-Layer MLP with RelLU Activations

Rl a0 Can you guess how
many parameters it has?
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Deep Convolutional Networks

3-Layer MLP with RelLU Activations

el(2) = mex(, = Can you guess how
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Output Size of a Convolution Layer

Suppose we know the number of filters, their size, the stride, and
padding (n,f,s,p).

Then for a convolution layer with input dimension w x h x d, the output
dimensions w’ x h’ x d’ are:
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Output Size for “VALID” Padding

WI:W_f+2p+1 Letw =4
S
4 -3+42-0
num Filters n = 1 w = —+4+1
Filter size f =3 1
strides =1

paddingp =0 =14+1=2



Output Size for “VALID” Padding

w' =
S

num filters n =
Filter size f =
stride s =
padding p =

w—f+2
f+2p

O = W —




Output Size for “SAME” Padding

W — —
L f+2p_|_1 Letw = 4
S
4 -3+4+2-1
num Filtersn =1 W = f"‘l
Filter size f =3
strides =1
paddingp = 1* =3+1=4

*Padding size needs to be determined*




Output Size for “SAME” Padding

w—f+2
/ #4_

w = 1
S

num filtersn = 1

Filter size f =3

strides =1
paddingp = 1*

*Padding size needs to be determined*
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A Brief History of Al with Deep Learning

First E First E Second E Second E E Third
Golden Age ! Dark Age ' Golden Age ! Dark Age ; ; Golden Age

Birth AlexNet
|
of Al Backpropagation SVMs D4

Artificial Turing A Problem  Neocognitron cBM

Neuron Test Perceptron 1969 1980 UAT s B ki ) |

1943 1950 1957 1989 bl 2006 2014

| - |

2010 2020

McCulloch-Pitts Rosenblatt Widrow-Hoff Minsky-Papert Rumelhart, Hintonetal. LeCun Hinton-Ruslan Krizhevsky et al. Vaswani

X1 Inputs  Weights Net input Activation OR XOR g i
- function function - T, L0, 53 1 Mg .
e —— ' \ . r w b T 1 / I %2 € sume bl ' . N \\-_’ = - o -
X2 1 ’ ‘ 1 ’ & W D S X o — ) o - o, N \ o B | NI \?.\2 \ l:‘ \
X3 e [« o w,., . VN "M . x "..‘ 8| ‘: 753 | ;: I' at— o A
’ — o " N ¥ -~ ‘."\‘ \ L. 'T.. '-\.. N 4 f \ |
v 7 \ wr )\ 5, I 9 T AL e T < o, 3 o4 M ER NS \/J \ l
Xn ( %, f-\ Lo ol 2 NS SO SA — \;. ey N \“_ , LN
P o - U o 2 - o4 - ? V] A\ - - :l\ - -\.\ ‘- \ 11 |
7 'w: %, e '. 4 A ¥ < y R £ . A Ud L '._ S -'y.\- :. \< ~\_.' le
S ;2 . ‘ : » - S =\ - | o
. z . aarepd N a4 s N

SRS ‘“; Al

b -

W, \Zr;;\\vi,*w

SR UAL

P
L
/ ‘,-/

s

'

e



The AlexNet moment
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The AlexNet moment
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The AlexNet moment
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The AlexNet moment
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