Deep Learning (1470)

Randall Balestriero

Class 7: Convolutions



Multilayer Perceptrons

And why we need better
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Multilayer Perceptrons

And why we need better

3-Layer MLP with RelLU Activations

RelLU{z) = max(0, z)
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The Main Building Block: Convolution

* A convolution is a linear operator

 Convolution is an operation that takes two inputs

(1) An image (2D - B/W) (2) A Filter (also called a kernel)

2D array of numbers; could be any values



What Convolution Does (Visually)

image filter/kernel
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(We use this symbol for convolution)
(The verb form is “convolve”)



What Convolution Does (Visually)

Filter/kernel output
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What Convolution Does (Visually)

image image




What Convolution Does (Visually)

image output
Ox1 + 1x1 + 3x1 + Ox0 + 1x0

- o " - .
// ~

o[l
ponn




Example

INPUT (8x8)

CONVOLUTION: Slide, Multiply, Sum

KERNEL (3x3)
Edge Detector

Position [0,0] =

OUTPUT (6x6)

B




Example

INPUT (8x8)

CONVOLUTION: Slide, Multiply, Sum

KERNEL (3x3)
Edge Detector

Position [0,0] =

OUTPUT (6x6)

B




This was all a lie!

« All those example are actually cross-correlation”, not convolution”
 |tis what is implemented in all those frameworks and called convolution”

* Jrue convolution is almost that, but you need to flip the filter before applying



This was all a lie!

« All those example are actually cross-correlation”, not convolution”
 |tis what is implemented in all those frameworks and called convolution”

* Jrue convolution is almost that, but you need to flip the filter before applying

Exercise: think why when starting from random Init, it doesn’t matter!
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[Notice: Outputs are NEGATIVES of each other (edges swap polarity)}
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Your First Convolutional Network

SAME STATISTICS, DIFFERENT OUTPUTS
Conv - RelU - Average
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(p=0.25 0=0.43]
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Your First Convolutional Network
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Multiple Filters

Filter/kernel output
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Channels

(also called
feature maps or
feature planes)
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The output is now a multi-channel image




Multiple Multi-Channel Filters

Input
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Output




Multiple Multi-Channel Filters
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Output




Multiple Multi-Channel Filters

Input image Output of filter 1 Output of filter 2



More Filter Examples

Operation Filter Convolved
Image
0 0 0O F 0 -1 0
Identity 0 1 0
0 -1 0
1 0 -1
10 1 - 11
X Dwur ~11 1 1
(normalized)
1 1 1
0 1 0 -
Edge detection 1 -4 1
0 1 0 1 2 1]
Gaussian blur 1
——— Tl S
-1 -1 - approx
S o=h = - 1 2 1




Deep Convolutional Networks




Deep Convolutional Networks

LeNet Architecture

C3: f. maps
C1: feature maps 16@10x10 S4: f. maps

6@28x28 16@5x5

S2: f. maps C5: layer ...

LB

Gaussian Connections

Full Connection

Convolutions Subsampling Convolutions Subsampling Full Connection




LeNet Architecture

C3: f. maps
C1: feature maps 16@10x10 S4: f. mj
INPUT 6@28x28 16@5x
32X32 S2: f. maps
6@14x14

Convolutions Subsampling Convolutions

Deep Convolutional Networks

oG

VGG-16 CNN Architecture

FC-6 FC-7 FC-8
JE — 1. |
1 x1x4096 1 x1 x1000

14 x 14 x 512

56 x 56 x 256

1Y% 112 x 128

224 x 224 x 64

Tx7Tx512

ﬂ convolution+RelLU

max pooling
fully connected+RelLU




Other Convolution Parameters
Stride and padding!

https://github.com/vdumoulin/conv_arithmetic



Other Convolution Parameters
Stride and padding!

https://github.com/vdumoulin/conv_arithmetic



Provable Benefit of Convolution

* You will encounter the same “patterns” at different translations (position)
 Holds for 1d (audio, music), 2d (images), 3d (videos)

e This is what the brain does!



Provable Benefit of Convolution

* You will encounter the same “patterns” at different translations (position)
 Holds for 1d (audio, music), 2d (images), 3d (videos)

e This is what the brain does!

Exercise: can you think of inputs for which we DO NOT want convolutions??



