Deep Learning (1470)

Randall Balestriero

Class 6: Optimization and Hyper-parameters



The Full (real) Story

for x_batch, y_batch in loader:
optimizer.zero_grad()
# Forward pass: raw logits (no softmax)
logits = model(x_batch)
# Functional cross entropy:
# takes logits and class indices directly
loss = F.cross_entropy(logits, y_batch)
loss.backward()
optimizer.step()
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Autodift!

* All deep learning frameworks implement automatic differentiation
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* You still need to know about chain-rule and gradients!

* The efficient implementation is called “backprop” with vjp (or jvp)



The Elephant in the Room

e Which framework to use?
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The Elephant in the Room

e Which framework to use?
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Use the one you are good at!
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What are our hyper-parameters so far?

* Preprocessing of the data

 Number of layers (L), width of each layer
* |nitialization of the parameters

* Optimizer, learning rate (+ momentum, ...)
* Mini-batch size

* [raining steps
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\What would be a good/bad initialization?|
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Initialization Brainstorming
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Initialization Brainstorming

Optimizer
¥ sop
SGD + Momentum

SGD + Nesterov

Adam
AdamW
RMSprop

Adagrad

=

time

Update idea (per step)
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Look ahead before
gradient step
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Pﬂe-f-pAa‘rame‘ter‘ adébti\)e r
using 1st & 2nd moment
estimates

Adam + decoupled weight
decay

Scales Ir by running avg of
squared grads

Accumulates squared
grads, shrinking Ir over

s e

_Strengths

generalization
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Simple, stable; often good
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Faster convergence;
smooths noisy gradients

Often converges faster
than vanilla momentum

Sk = - . < Nk

UsUaIIy works‘"-duf of the

box"; good for sparse
grads

Better weight decay
behavior; often preferred
default

Good for non-stationary
problems; common in
RNNs

Good for sparse features;
no manual Ir schedule
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Can generalize worse than 3

training

Weaknesses [ Notes

Requires tuning Lr ; can
be slow without

Extra hyperparameter
(momentum W)

Slightly more complex;
similar tuning issues
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SGD; more i’
hyperparameters ]
Slightly more to configure §
(weight_decay) ]

¥
Can be sensitive to

hyperparameters

Learning rate can become 3
too small over long T
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lalization Brainstorming

Effect of Input Scale on Training Speed (LR=0.1, Same Init)
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We can’t cross-validate
everything...
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Initialization Brainstorming

WEReLU(W®ReLUWWx + bV + b)) 4 b

Assume Var(X) = 1, find o so that with W(l) ~ N (0,0) we
have Var (ReLU(W(l)X)) = 1
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Initialization Brainstorming
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What are our hyper-parameters so far?
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General Tips

o Start with some random exploration
 Once you have a “okay” solution:
 Change one thing at a time
* Think carefully about ranges of hparams and inter-play (normalization, Ir)

 Keep in mind that many hparams don’t transfer



eneral Tips

Loss
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Announcement
https://world-model-mila.github.io/

World Modeling Workshop

Date: 4-6 February 2026
Location: Agora, Mila - Quebec Al Institute, 6666 Rue Saint-Urbain, Montréal, Canada

Online: Public streaming (freely available to all) (link TBA)
K

Yoshua Bengio
LawZero, Mila, UdeM

@

Shirley Ho
Polymathic, Flatiron, NYU

Free stream on YouTlube and X!

Yann LeCun
AMI Labs, NYU

Jurgen Schmidhuber
The Swiss Al Lab, KAUST

Sherry Yang
GDM, NYU

=Y

Amir Zadeh
Lambda




Questions?



