Deep Learning (1470)

Randall Balestriero

Class 5: Optimization and Hyper-parameters
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* How many lines of codes to implement the MNIST model and reach 99.5%7
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3-Layer MLP with ReLU Activations

ReLU(z) = max(0, z)
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3-Layer MLP with ReLU Activations

ReLU(z) = max(0, z)
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The Softmax

 Think of it as taking any real vector and turning it into a probability vector

Softmax(z(3))c =

>>> def softmax(z): >>> softmax([-1,2,1.5])

return np-expiz)/np-exp(z).sunt) § o oy ( [0.03005889, 0.6037489 , 0.36619222])

>>> softmax([-1,2,1000.5])
<stdin>:2: RuntimeWarning: overflow encountered in exp

<stdin>:2: RuntimeWarning: invalid value encountered in divide
array([ 0., 0., nan])
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The Softmax

 Think of it as taking any real vector and turning it into a probability vector
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The Softmax Gradient

. Remember: training involves W « W — ) VwoZ, VI
N c
L = Z — z(3)(xn)yn + log( Z e )(Xn)c)
n=1 c=1

e Thereis no W herelll

e Jake the gradient of the loss w.r.t. Z(3), then multiply by the gradient of 7
w.rt. W) and so on!
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The Softmax Gradient

« Denote by v, the gradient of the loss w.r.t. A
WEReLU(W®ReLUWWx + bV + b)) 4 b
. What is the gradient of z& w.rtz?? WY

 What is the gradient of 7% w.rt. W7 D!~

. What is the gradient of the loss w.rt. W2  (viWOD)Tz((x )



The Full Story



The Full Story

» Compute the loss from your samples {(X,,y,),n = 1,..., N}



The Full Story

» Compute the loss from your samples {(X,,y,),n = 1,..., N}

 Compute the gradients via chain rule



The Full Story

» Compute the loss from your samples {(X,,y,),n = 1,..., N}

 Compute the gradients via chain rule

 Update your parameters



The Full Story

» Compute the loss from your samples {(X,,y,),n = 1,..., N}

 Compute the gradients via chain rule
 Update your parameters

 Repeat



The Full Story

» Compute the loss from your samples {(X,,y,),n = 1,..., N}

 Compute the gradients via chain rule
 Update your parameters

 Repeat




The Full Story



The Full Story

» Sample a mini-batch {(X,,y.),1 € B} with B C {1,..., N} arandom subset



The Full Story

» Sample a mini-batch {(X,,y.),1 € B} with B C {1,..., N} arandom subset

» Compute the loss from your mini-batch {(X;,y.),i € A}



The Full Story

» Sample a mini-batch {(X,,y.),1 € B} with B C {1,..., N} arandom subset

» Compute the loss from your mini-batch {(X;,y.),i € A}

 Compute the gradients via chain rule



The Full Story

» Sample a mini-batch {(X,,y.),1 € B} with B C {1,..., N} arandom subset

» Compute the loss from your mini-batch {(X;,y.),i € A}

 Compute the gradients via chain rule

 Update your parameters



The Full Story

» Sample a mini-batch {(X,,y.),1 € B} with B C {1,..., N} arandom subset

» Compute the loss from your mini-batch {(X;,y.),i € A}

 Compute the gradients via chain rule
 Update your parameters

 Repeat



The Full Story

» Sample a mini-batch {(X,,y.),1 € B} with B C {1,..., N} arandom subset

» Compute the loss from your mini-batch {(X;,y.),i € A}

 Compute the gradients via chain rule
 Update your parameters

 Repeat




Beyond Gradient Descent

Optimizer

SGD

SGD + Momentum

SGD + Nesterov

Adam

AdamW

RMSprop

Adagrad

Update idea (per step)

0 « 08 - 1r xg

Ve U + g, 0 « 0 -
lr % v

Look ahead before
gradient step

Per-parameter adaptive Ir
using 1st & 2nd moment
estimates

Adam + decoupled weight
decay

Scales Ir by running avg of
squared grads

Accumulates squared
grads, shrinking Ir over
time

Strengths

Simple, stable; often good
generalization

Faster convergence;
smooths noisy gradients

Often converges faster
than vanilla momentum

Usually works “out of the
box": good for sparse
grads

Better weight decay
behavior; often preferred
default

Good for non-stationary
problems; common in
RNNs

Good for sparse features;
no manual Ir schedule

Weaknesses [ Notes

Requires tuning Llr ; can
be slow without
momentum

Extra hyperparameter
(momentum M)

Slightly more complex;
similar tuning issues

Can generalize worse than
SGD; more

hyperparameters

Slightly maore to configure
(weight_decay)

Can be sensitive to
hyperparameters

Learning rate can become
too small over long
training
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loss.backward()
optimizer.step()
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Autodift!

* All deep learning frameworks implement automatic differentiation
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* You still need to know about chain-rule and gradients!

* The efficient implementation is called “backdrop” with vjp (or jvp)
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e Which framework to use?
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What are our hyper-parameters so far?

* Preprocessing of the data

 Number of layers (L), width of each layer
* |nitialization of the parameters

* Optimizer, learning rate (+ momentum, ...)
* Mini-batch size

* [raining steps
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Initialization Brainstorming

WEReLU(W®ReLUWWx + bV + b)) 4 b

\What would be a good/bad initialization?|



