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Gradient: Intuition

Linear Classifier Decision Boundary
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MNIST

The most famous dataset in Deep Learning

Modified National Institute of Standards and Technology database
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Image courtesy of Wikipedia



MNIST



MNIST

 What is D (dimension) of the samples?



MNIST

 What is D (dimension) of the samples?

« How many classes do we have?



MNIST

 What is D (dimension) of the samples?
« How many classes do we have?

* Do you think the classes are linearly separable”



MNIST

 What is D (dimension) of the samples?
« How many classes do we have?

* Do you think the classes are linearly separable”

1A linear model reaches 94% accuracy!
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Your First Deep Network!

 Why do we want to use a Deep Network”?

* Could you think of “features” to extract by-hand that would improve linear
model accuracy?

 Which accuracy do you think we can reach?

{A Deep Network reaches 99.5% accuracy!]
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Input Layer
(764 units)

3-Layer MLP with RelLU Activations

Hidden Layer 1
(ReLU)

ReLU(z) = max(0, 2)
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Your First Deep Network: Why?

3-Layer MLP with RelLU Activations

RelLU(z) = max(0, 2)
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Your First Deep Network: Why?

3-Layer MLP with RelLU Activations

RelLU(z) = max(0, 2)
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Your First Deep Network: Why?

3-Layer MLP with RelLU Activations

RelLU(z) = max(0, 2)
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Your First Deep Network: Why?

Common Activation Functions in Neural Networks

Sigmoid-like RelLU Family Smooth Modern
(Bounded Output) (Piecewise Linear) (Differentiable Everywhere)
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Your First Deep Network: Why?

Common Activation Functions in Neural Networks

Sigmoid-like RelLU Family Smooth Modern
(Bounded Output) (Piecewise Linear) (Differentiable Everywhere)
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3-Layer MLP with RelLU Activations

RelLU(z) = max(0, 2)
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Your First Deep Network!

3-Layer MLP with RelLU Activations

RelLU(z) = max(0, 2)
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Your First Deep Network!

3-Layer MLP with RelLU Activations

RelLU(z) = max(0, 2)
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Your First Deep Network: Training

3-Layer MLP with RelLU Activations

RelLU(z) = max(0, 2)
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Your First Deep Network: Training

3-Layer MLP with RelLU Activations

RelLU(z) = max(0, 2)
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Your First Deep Network: Training

3-Layer MLP with RelLU Activations

RelLU(z) = max(0, 2)

tHow to train the parameters wih W) Wwied

Same old gradient descent!
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At home: try to derive the gradient
for those 3 matrices
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Your First Deep Network: Action!

MLP Decision Boundary (Nonlinear)

Class 0
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Loss (BCE)

Training Progress

Loss: 0.7449
Accuracy: 50.0%
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Open Discussion

 Can a Deep Network solve anything?
 How to search for the right “architecture”?

* How many lines of codes to implement the MNIST model and reach 99.5%7



Questions?



