

Deep Learning (1470)

Randall Balestriero

Class 3

What can we do?

Featurization

What can we do?

Featurization

- Add all sort of nonlinear transforms of the data prior to your linear model

What can we do?

Featurization

- Add all sort of nonlinear transforms of the data prior to your linear model
- $\mathbf{x}_n \leftarrow (\mathbf{x}_n, \mathbf{x}_n^2, \log(\mathbf{x}_n), \dots) \in \mathbb{R}^{D'}$

What can we do?

Featurization

- Add all sort of nonlinear transforms of the data prior to your linear model
- $\mathbf{x}_n \leftarrow (\mathbf{x}_n, \mathbf{x}_n^2, \log(\mathbf{x}_n), \dots) \in \mathbb{R}^{D'}$
- If $\text{rank}([\mathbf{x}_1, \dots, \mathbf{x}_N]) \geq N$ then the training loss is 0!

What can we do?

Featurization

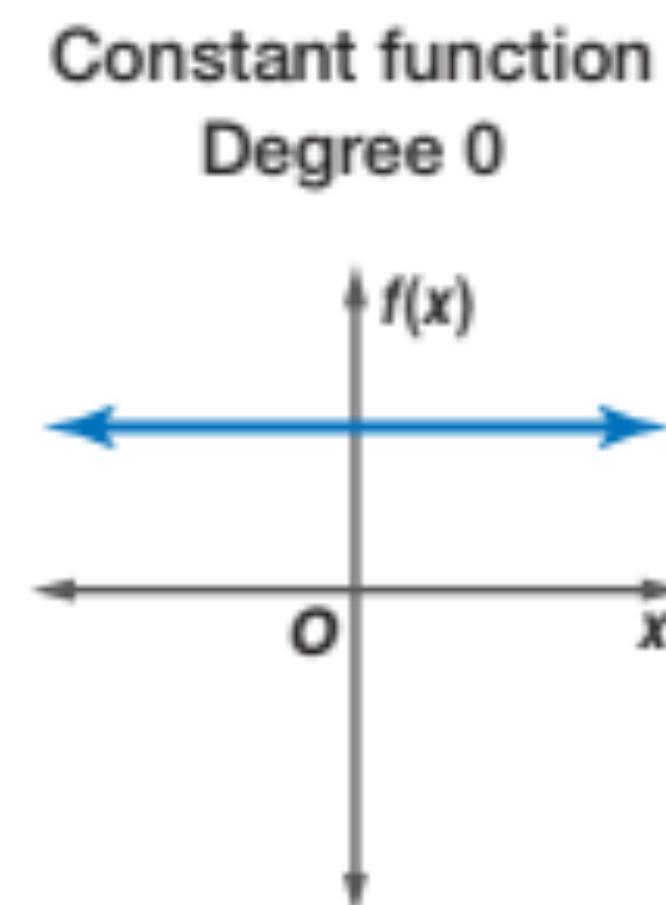
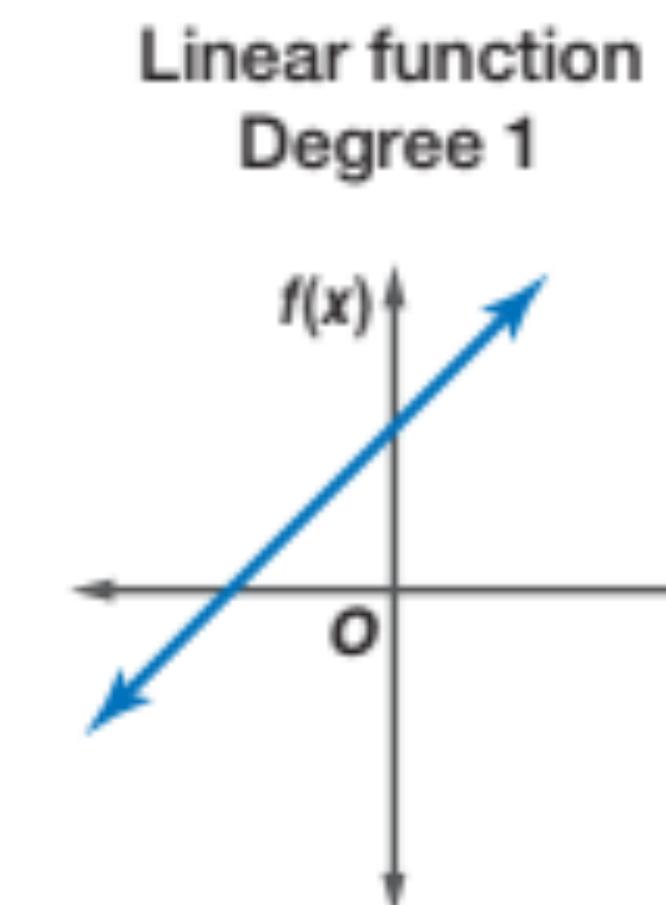
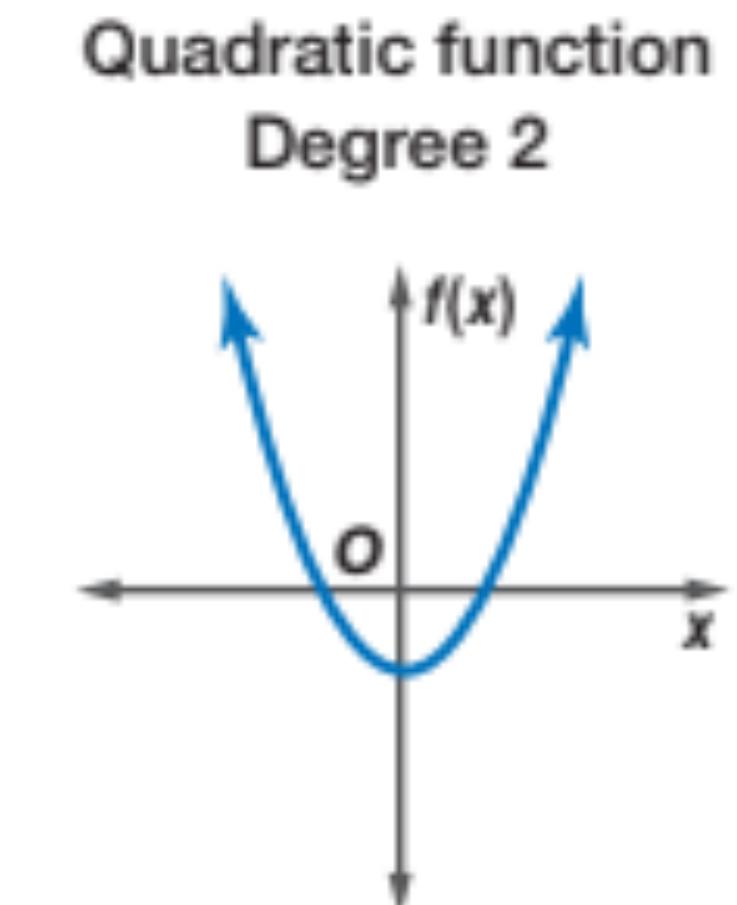
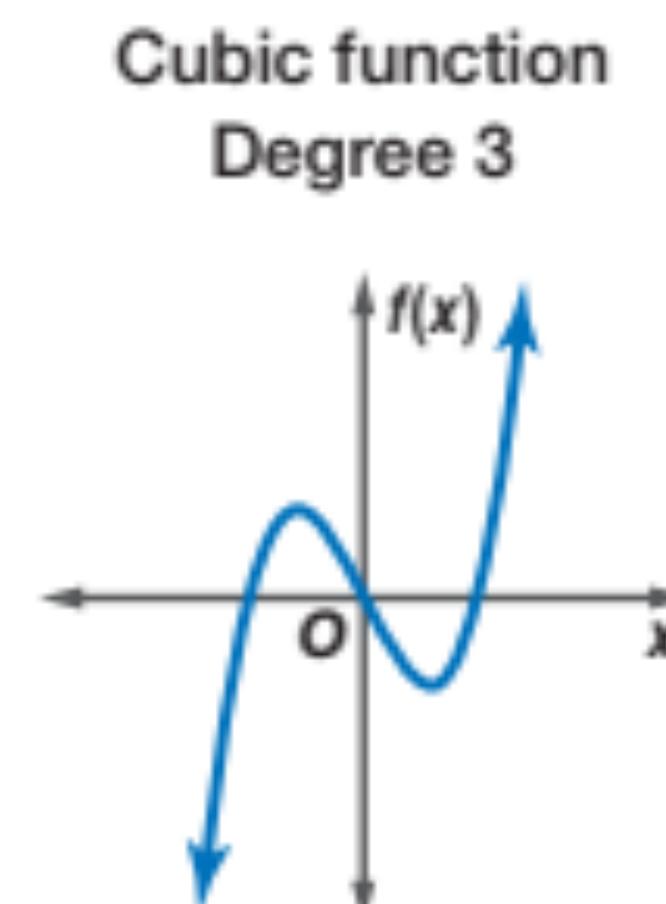
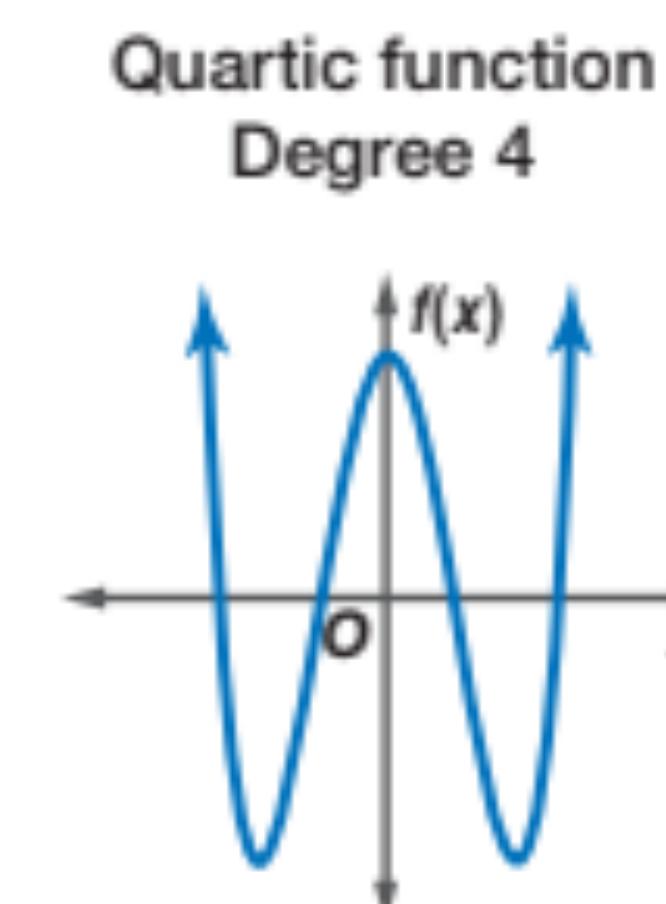
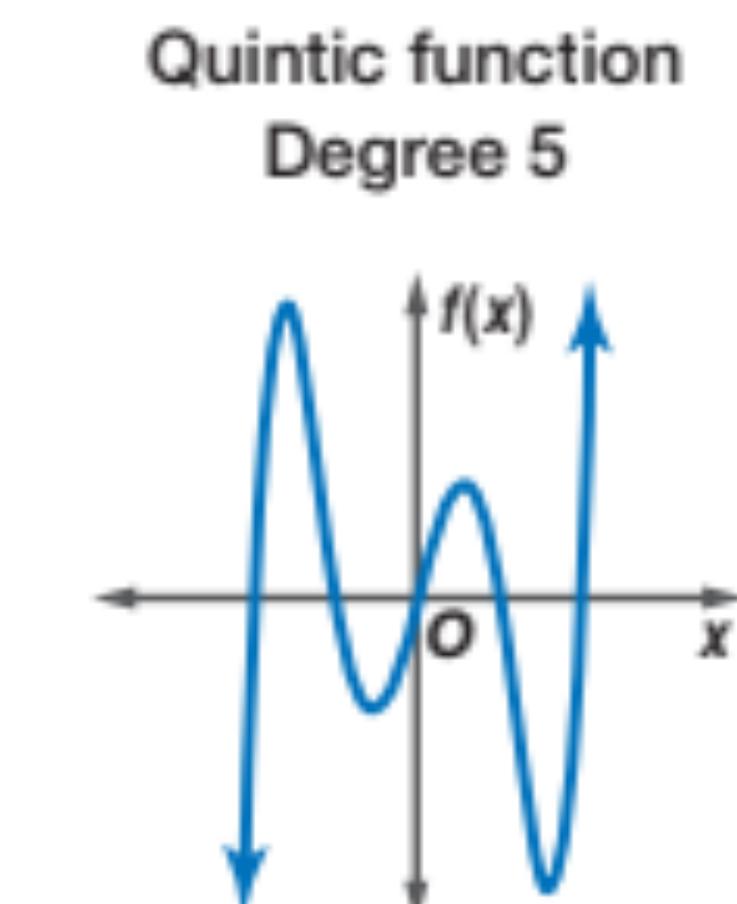
- Add all sort of nonlinear transforms of the data prior to your linear model
- $\mathbf{x}_n \leftarrow (\mathbf{x}_n, \mathbf{x}_n^2, \log(\mathbf{x}_n), \dots) \in \mathbb{R}^{D'}$
- If $\text{rank}([\mathbf{x}_1, \dots, \mathbf{x}_N]) \geq N$ then the training loss is 0!

Doesn't mean that the model will generalize to new samples!!!

What can we do?

Featurization

- $\mathbf{x}_n \leftarrow (1, x_n, x_n^2, x_n^3, \dots, x_n^p) \in \mathbb{R}^{p+1}$
- Our $f(\mathbf{x}_n)$ is a polynomial of degree p
- We can perfectly fit $p+1$ points!



What can we do?

Deep Learnization

- Make f a nonlinear transformation of the input
- Wait, what?
- This time we don't prescribe the featurization process, it will be learned!

Doesn't mean that the model will generalize to new samples!!!

What can we do?

Featurization

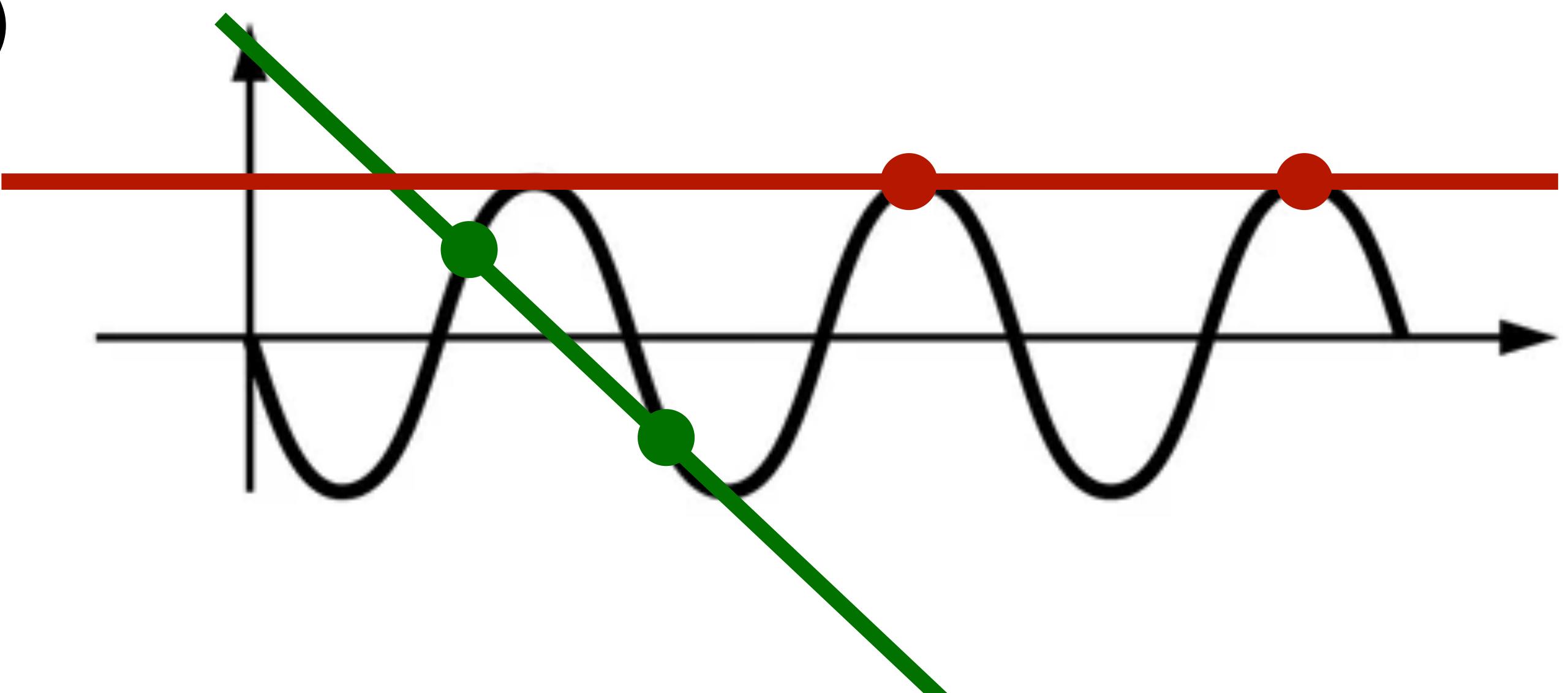
- Even a simple linear model....
- If you are in dimension $D = N$
- And points are not colinear
- Then training loss is 0 (perfect fit)

$$\sum_{n=1}^N (y_n - \langle \mathbf{w}, \mathbf{x}_n \rangle)^2 = \sum_{n=1}^N (y_n - \mathbf{x}_n^\top (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y})^2 = \|\mathbf{y} - \mathbf{X}(\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}\|_F^2$$

What can we do?

Featurization

- Even a simple linear model....
- If you are in dimension $D = N$ (or $D = N + 1$ with bias)
- And points are not colinear
- Then training loss is 0 (perfect fit)



How to evaluate f

X

$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \dots$

\mathbf{x}_N

Y

$y_1 y_2 y_3 \dots$

y_N

Training set

Optimize w and b

Valid set

CV p

Test set

How to evaluate f

How to evaluate f

- Typically one will use a 70/20/10 ratio

How to evaluate f

- Typically one will use a 70/20/10 ratio
- Can do many re-splits (K-fold cross-validation)

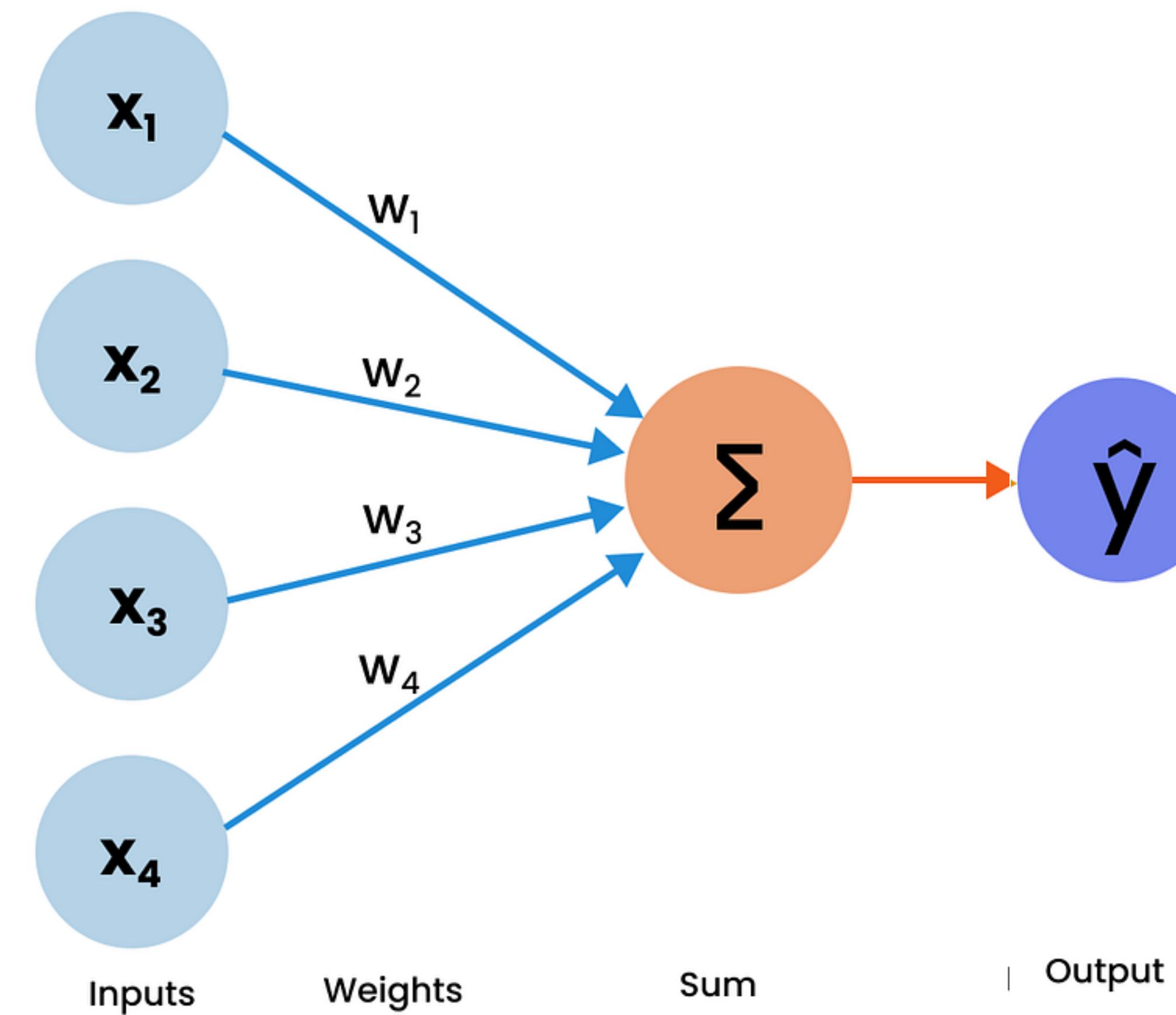
How to evaluate f

- Typically one will use a 70/20/10 ratio
- Can do many re-splits (K-fold cross-validation)
- The test set does inform about “in-distribution” generalization

How to evaluate f

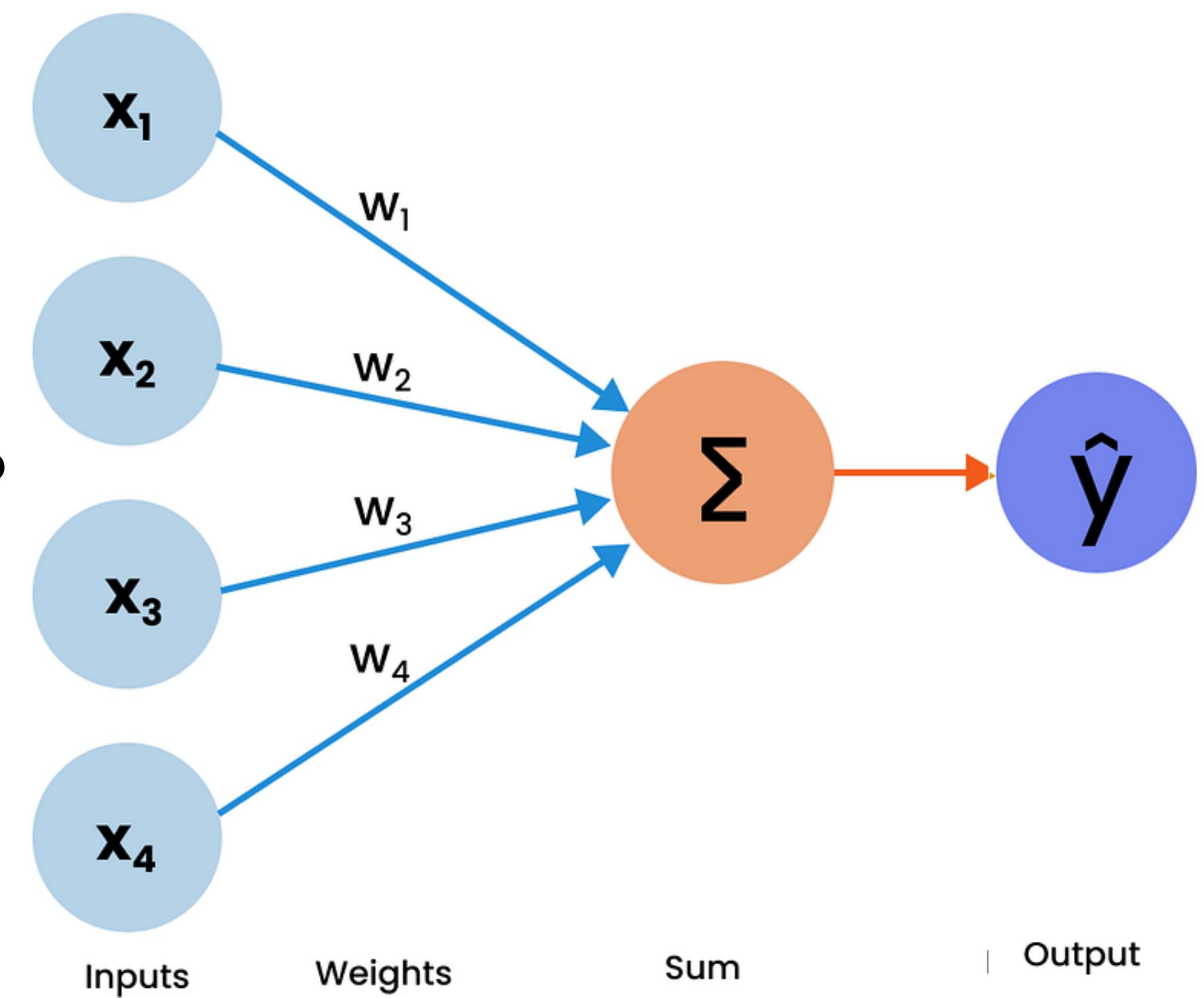
- Typically one will use a 70/20/10 ratio
- Can do many re-splits (K-fold cross-validation)
- The test set does inform about “in-distribution” generalization
- Deep Networks can have much more parameters than training samples without hurting generalization (main diff with other ML methods)

How to present f

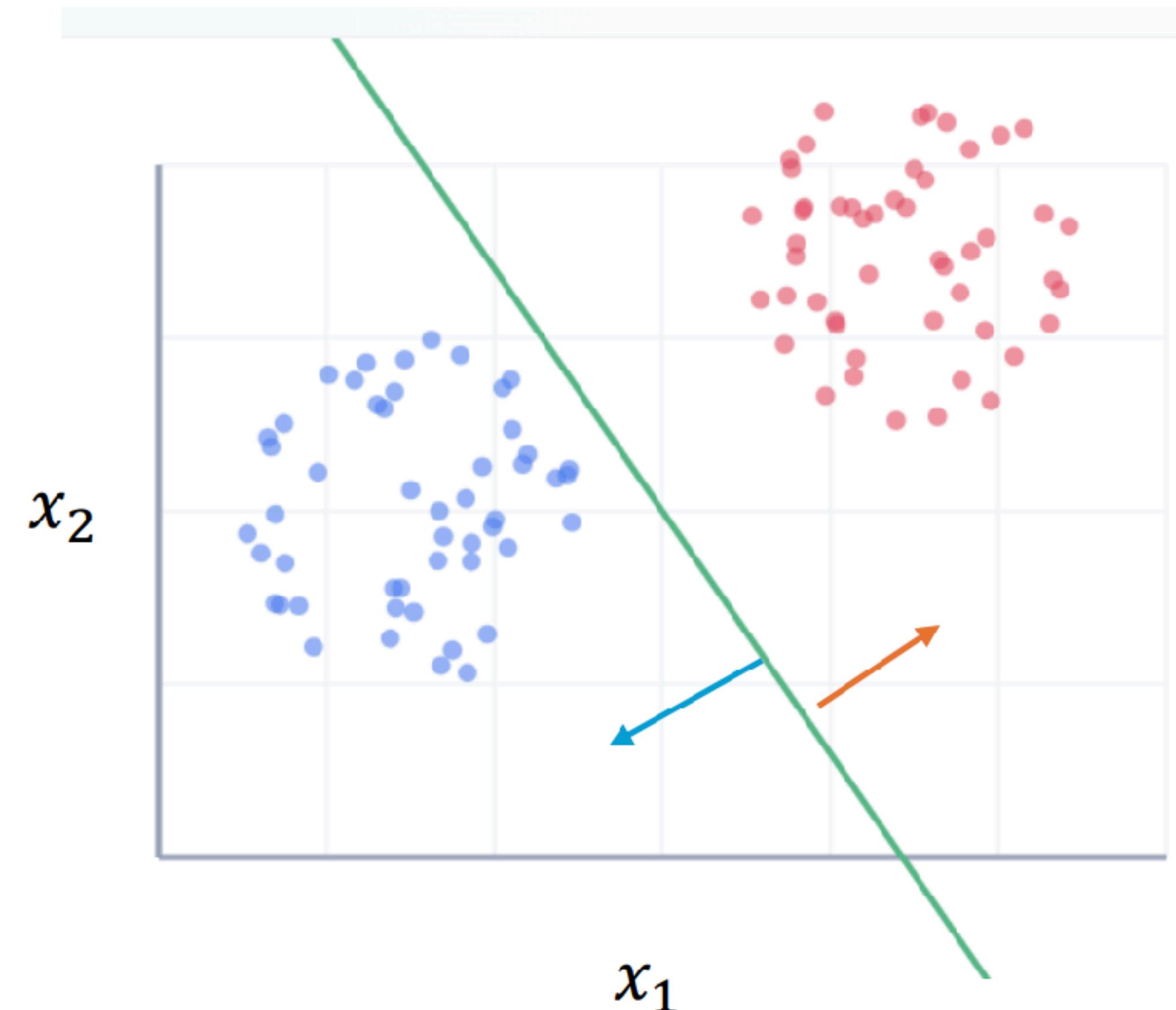


How to “interpret” f

- What if a weight is 0?
- What if a weight is much larger than others?



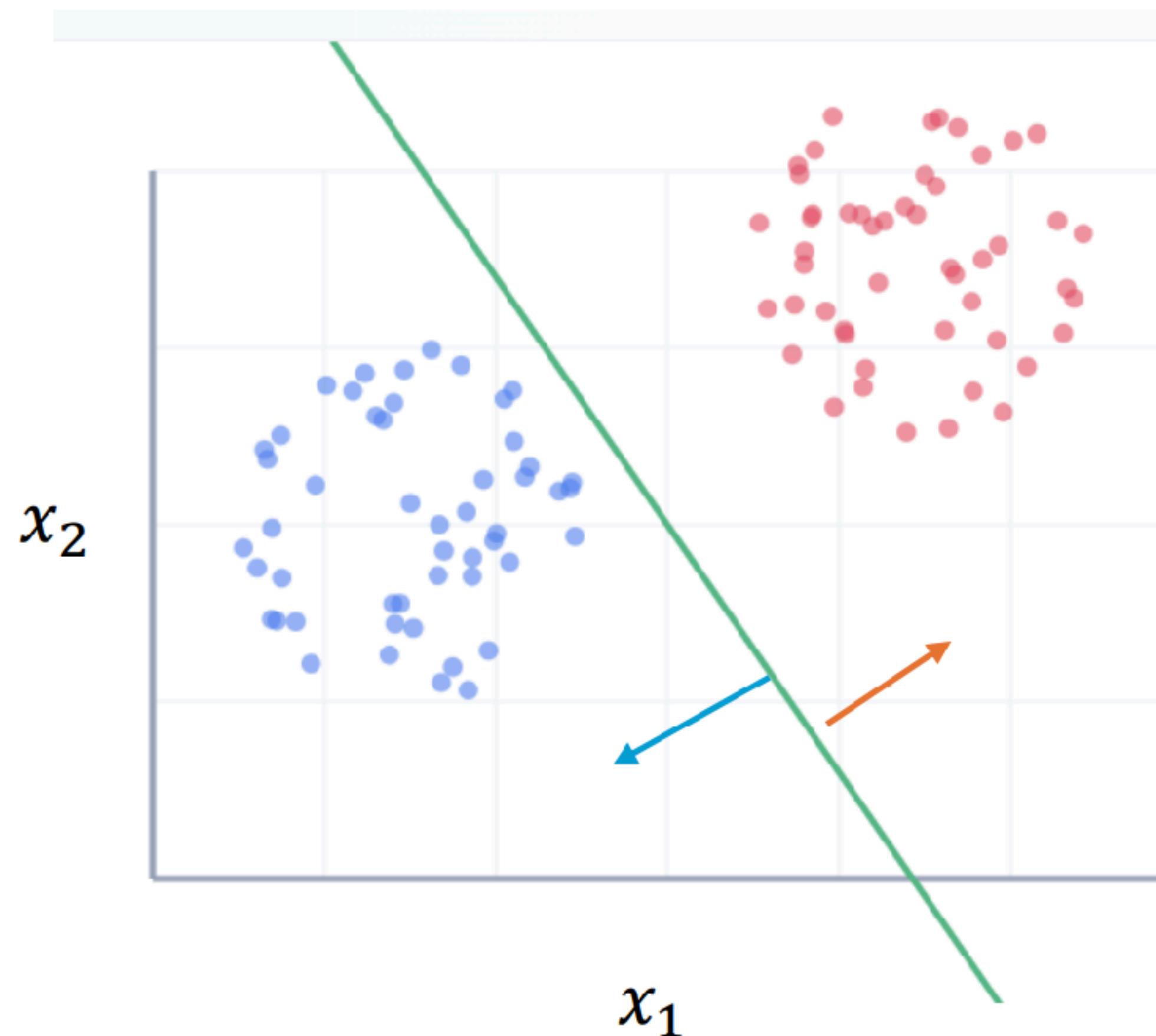
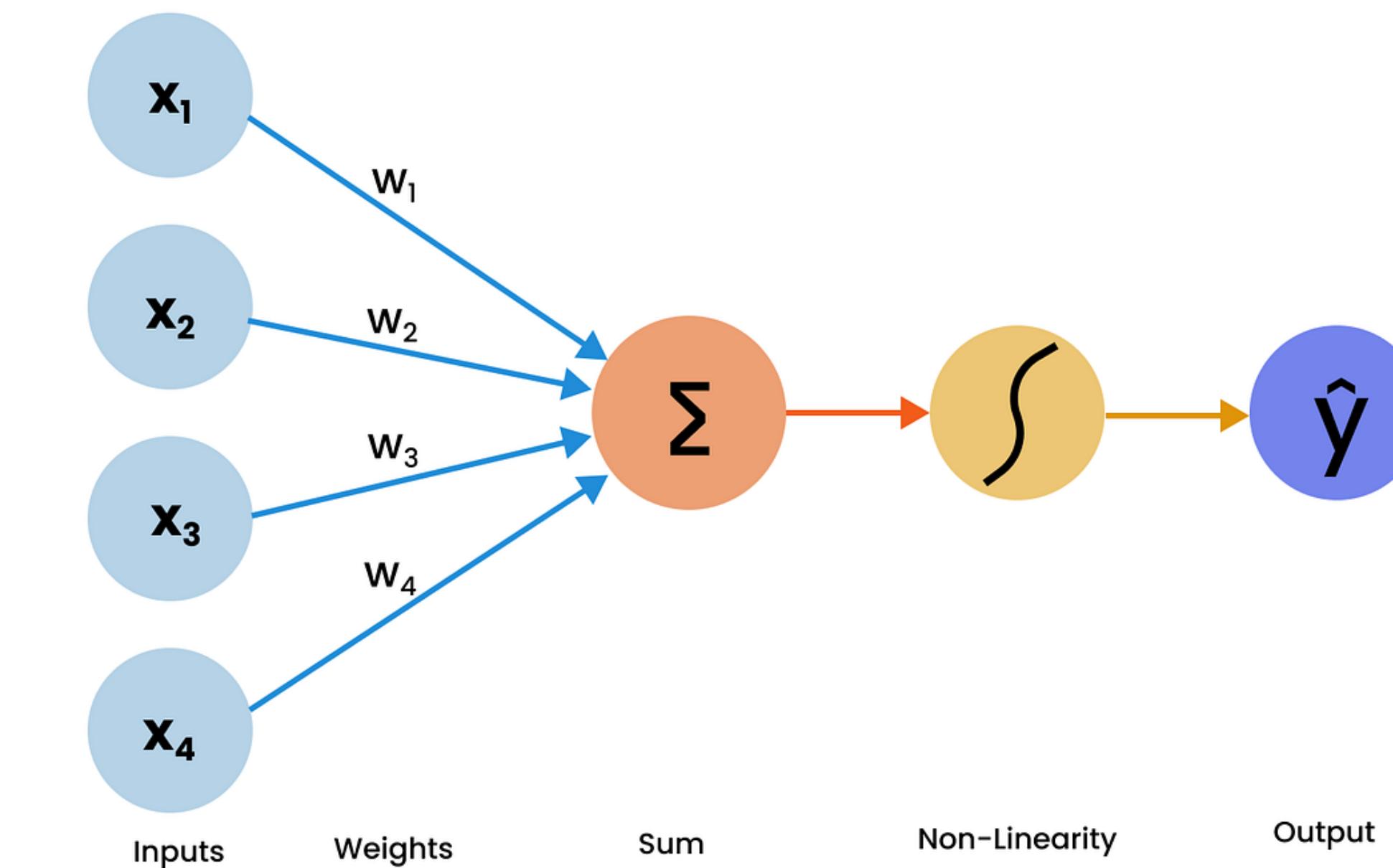
What about binary classification?



**y is now
interpreted as a
probability**

$$\hat{y} = w_1 \cdot x_1 + w_2 \cdot x_2 + b$$

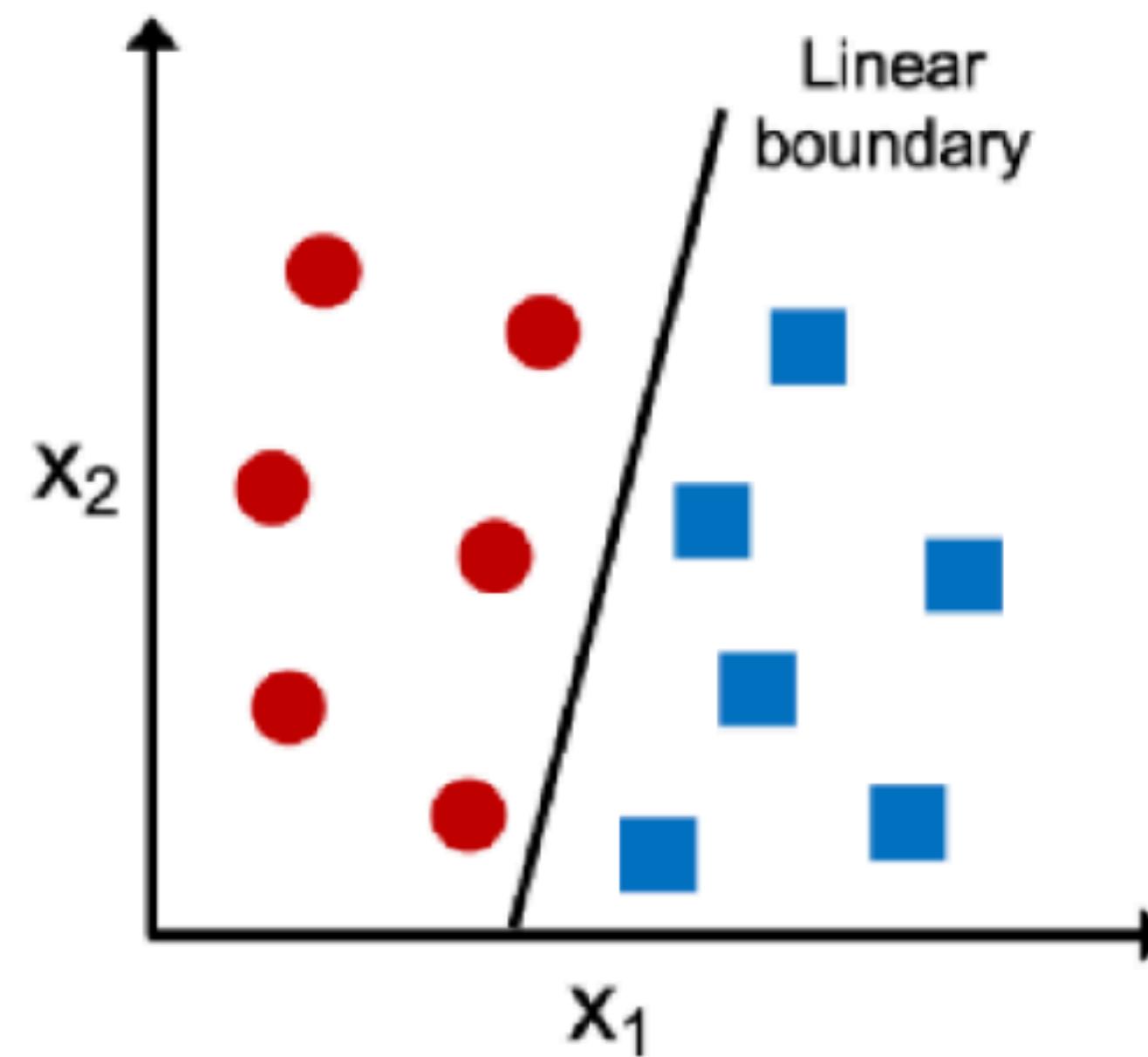
What about binary classification?



What about binary classification?

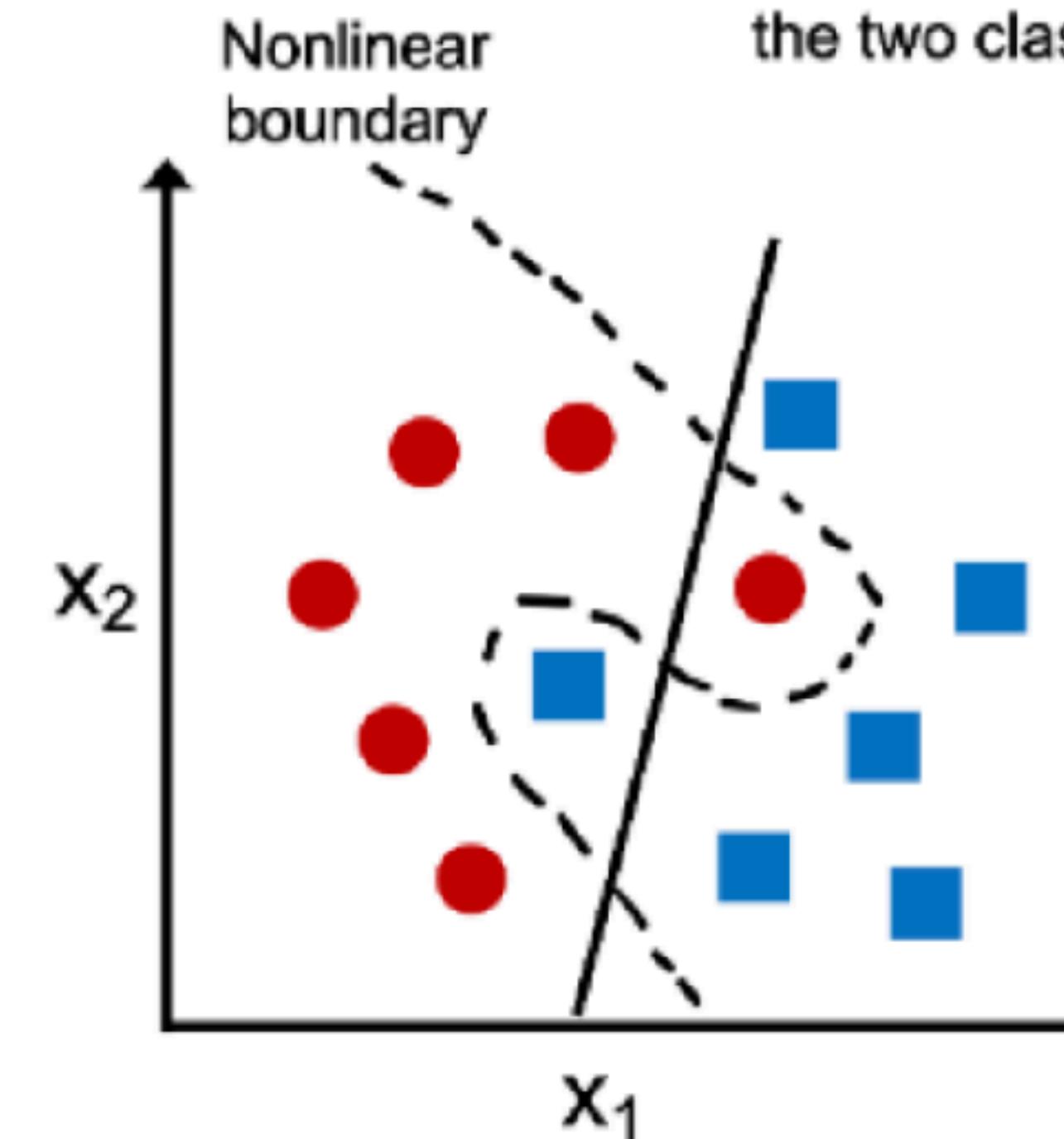
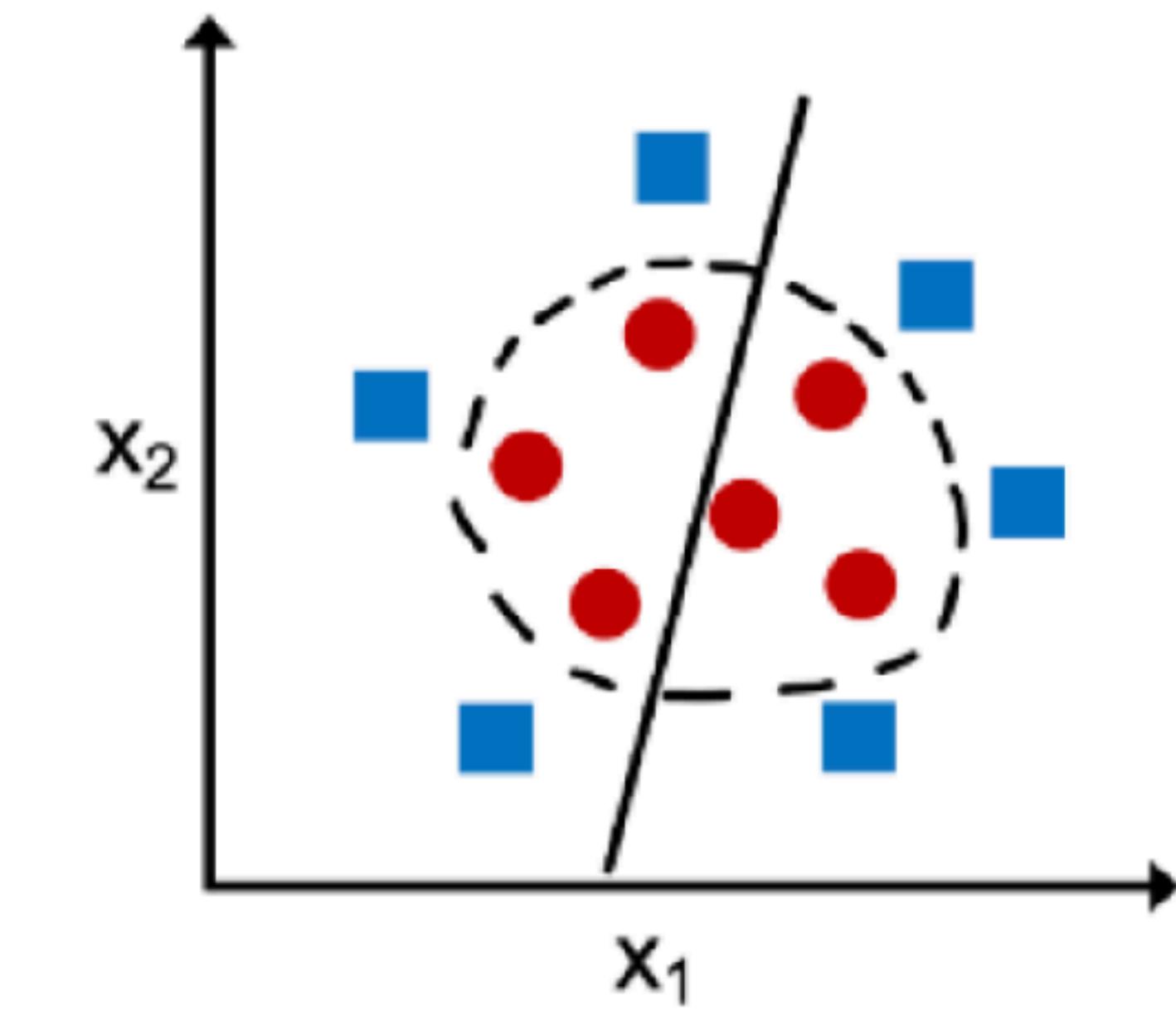
Linearly separable

A linear decision boundary that separates the two classes exists



Not linearly separable

No linear decision boundary that separates the two classes perfectly exists



MNIST

The most famous dataset in Deep Learning

Modified **N**ational **I**nstitute of **S**tandards and **T**echnology **d**atabase

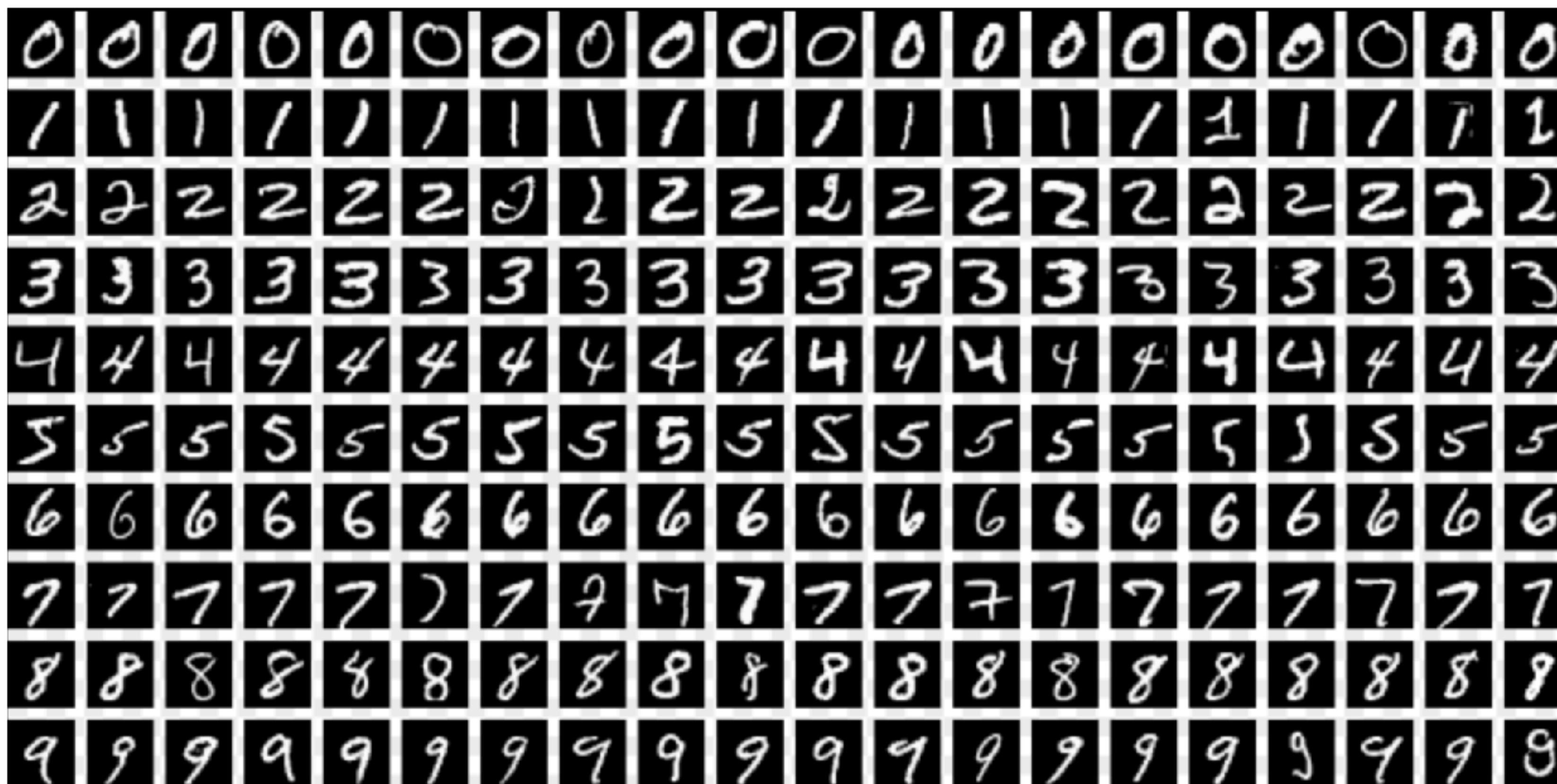
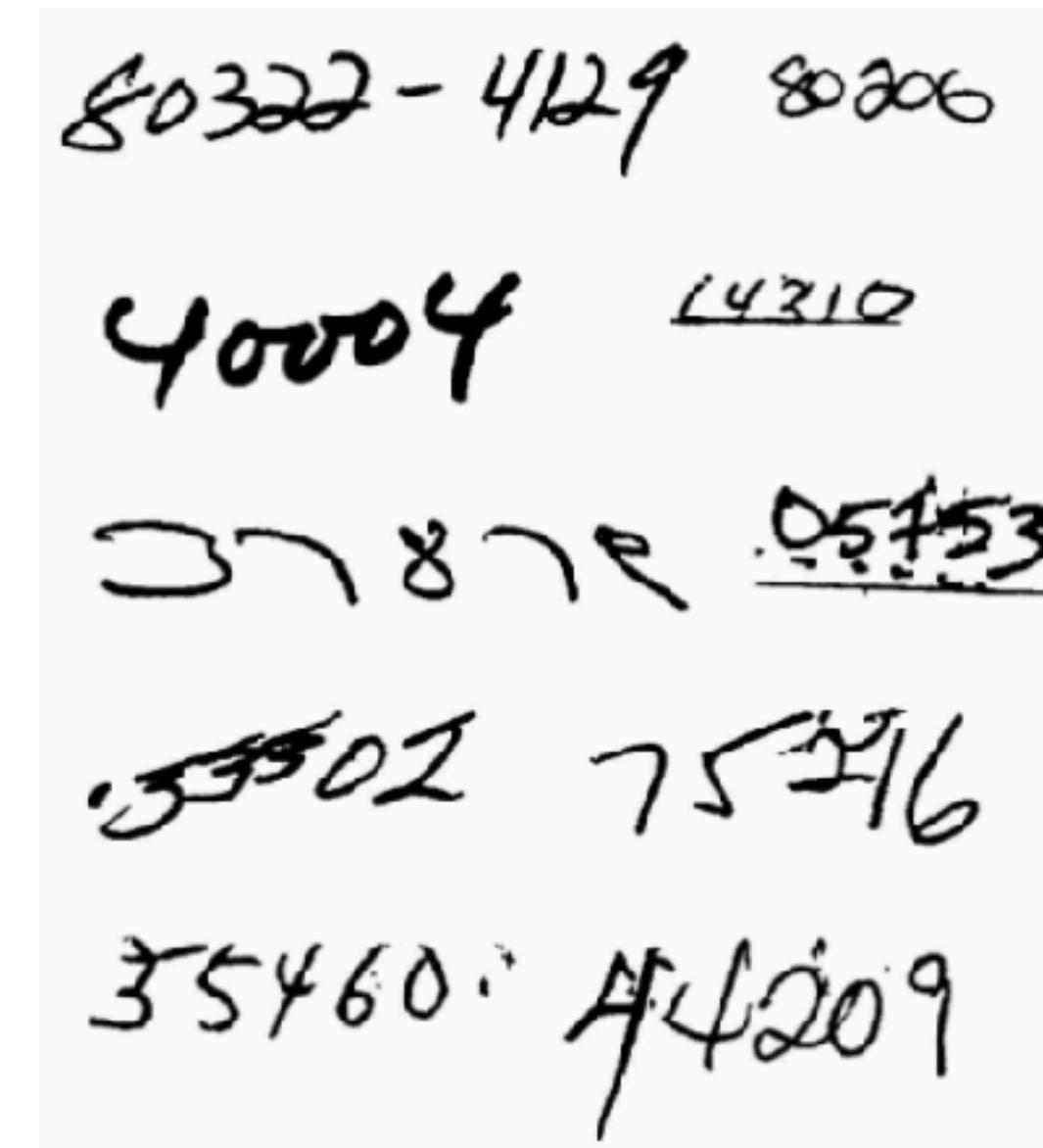


Image courtesy of Wikipedia

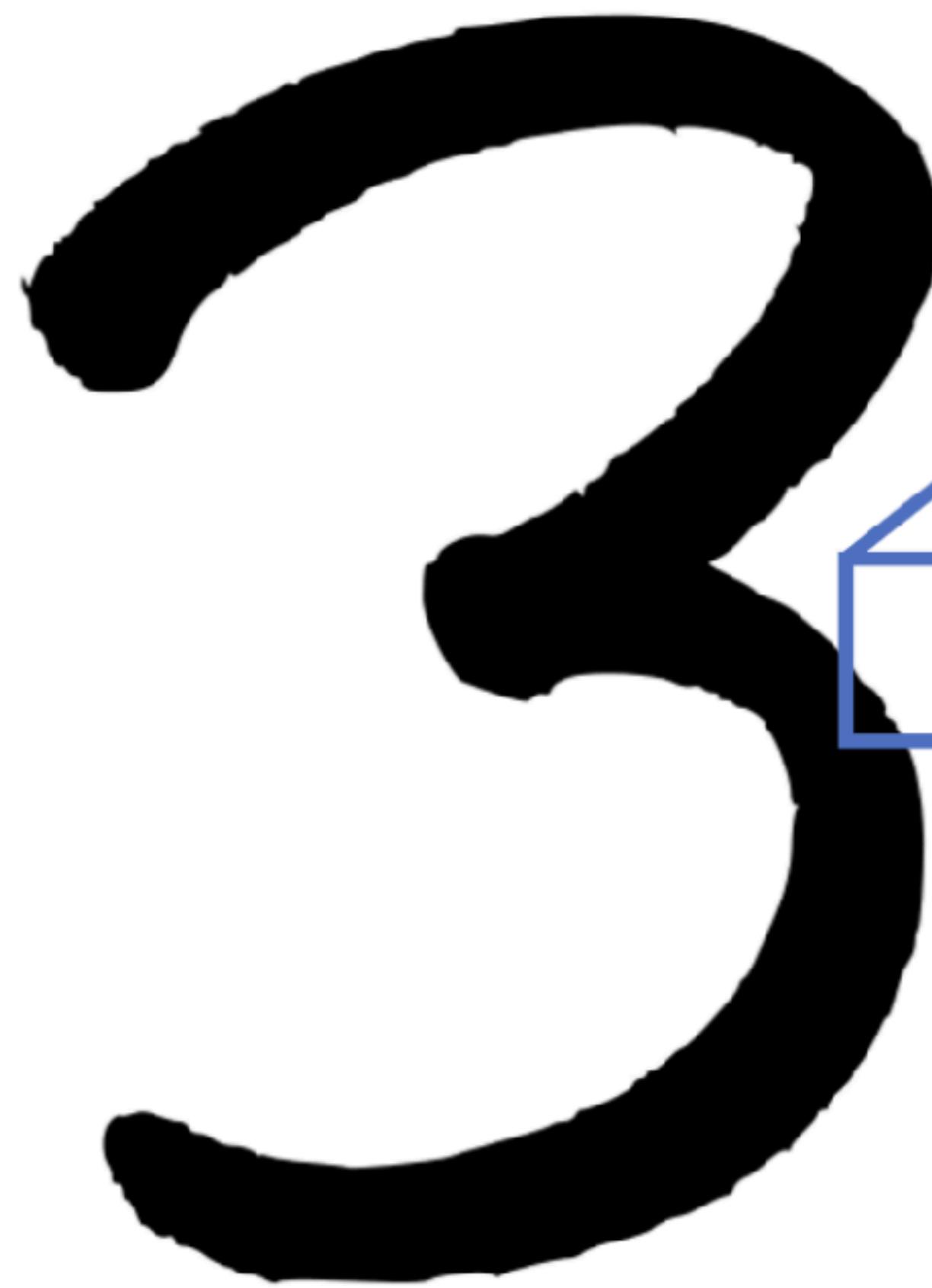
MNIST

- In 1990s, great increase in documents on paper (mail, checks, books, etc.)
- Motivation for a ZIP code recognizer on real U.S. mail for the postal service!



80322-4129 80206
40004 14310
37872 05153
5502 75216
35460 44209

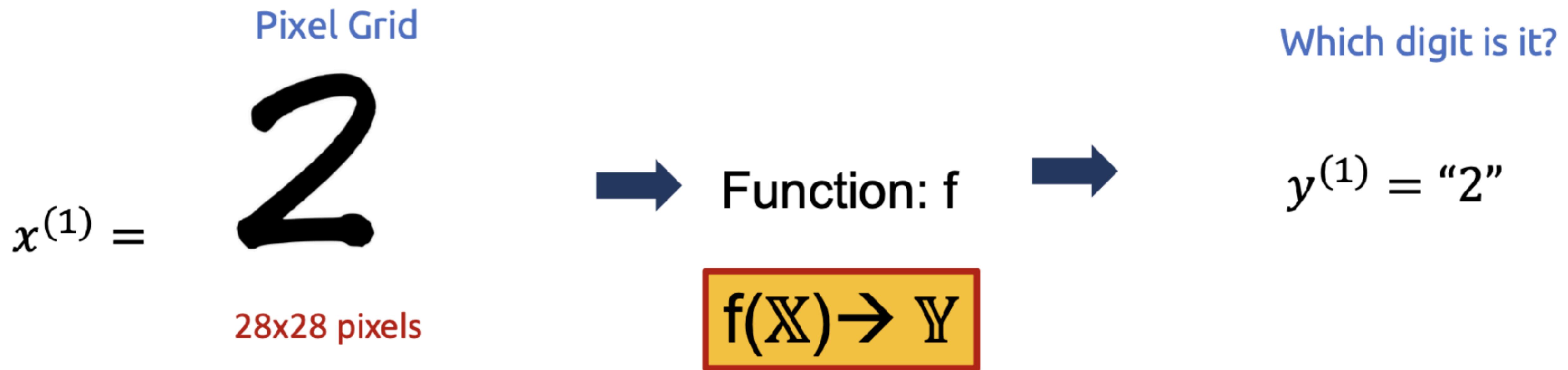
MNIST



0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0
120	0	0	0	0	0	0	0	0	0	0	0
240	40	0	0	0	0	0	0	0	0	0	0
242	128	0	0	0	0	0	0	0	0	0	0
255	240	10	0	0	0	0	0	0	0	0	0
254	244	120	0	0	0	0	0	0	0	0	0
255	255	121	8	0	0	0	0	0	0	0	0

what the
computer sees

MNIST



Questions?