

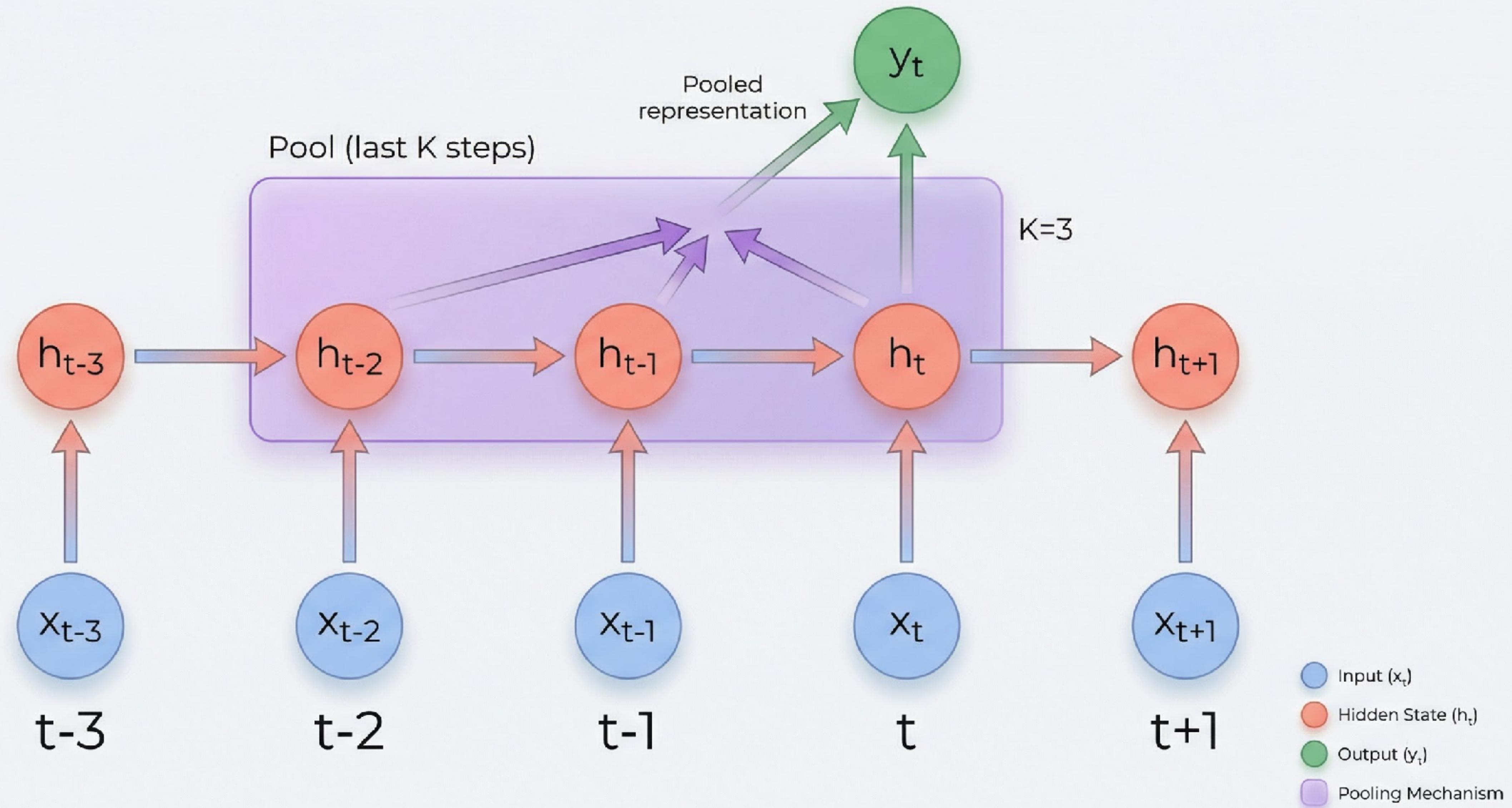
Deep Learning (1470)

Randall Balestriero

Class 13: Transformers

Recap!

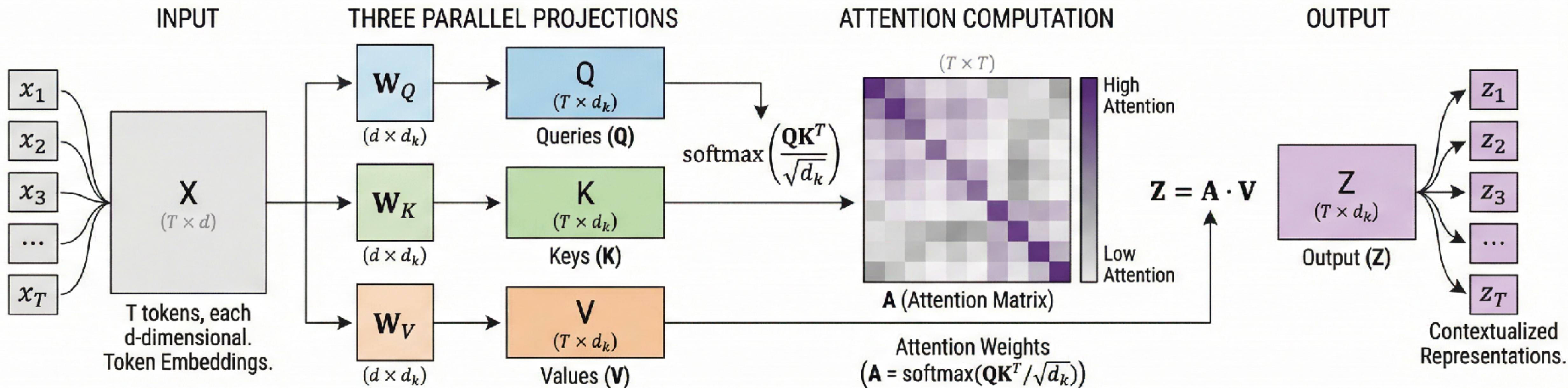
Recurrent Neural Network with Pooling Architecture



Transformers anyone?

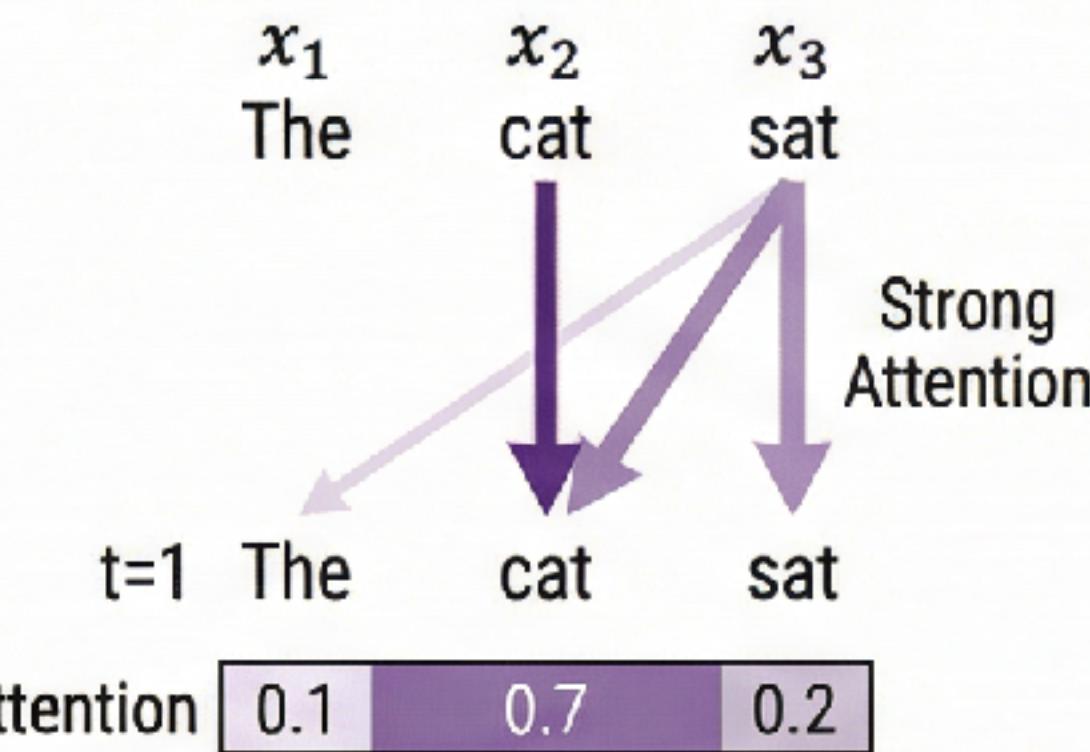
Transformers anyone?

SINGLE HEAD SELF-ATTENTION MECHANISM



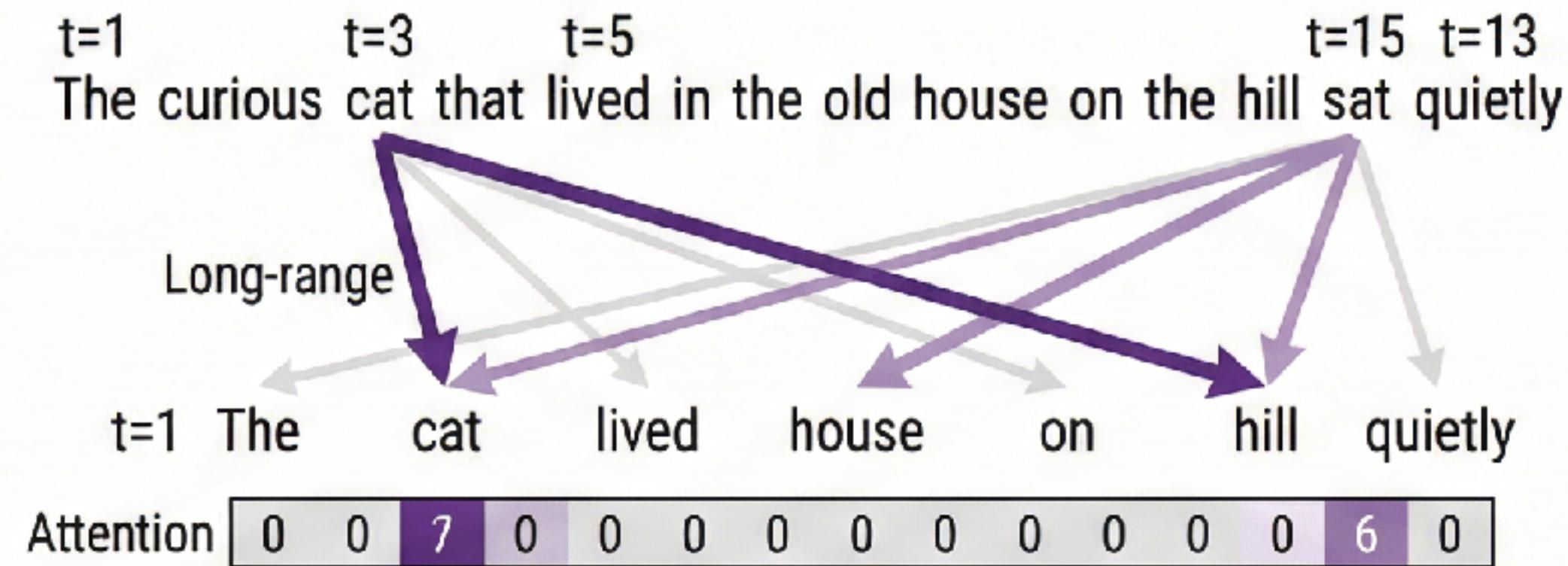
CONCRETE EXAMPLES OF ATTENTION PATTERNS FOR LANGUAGE MODELING

EXAMPLE 1 (t=3): Short Sentence



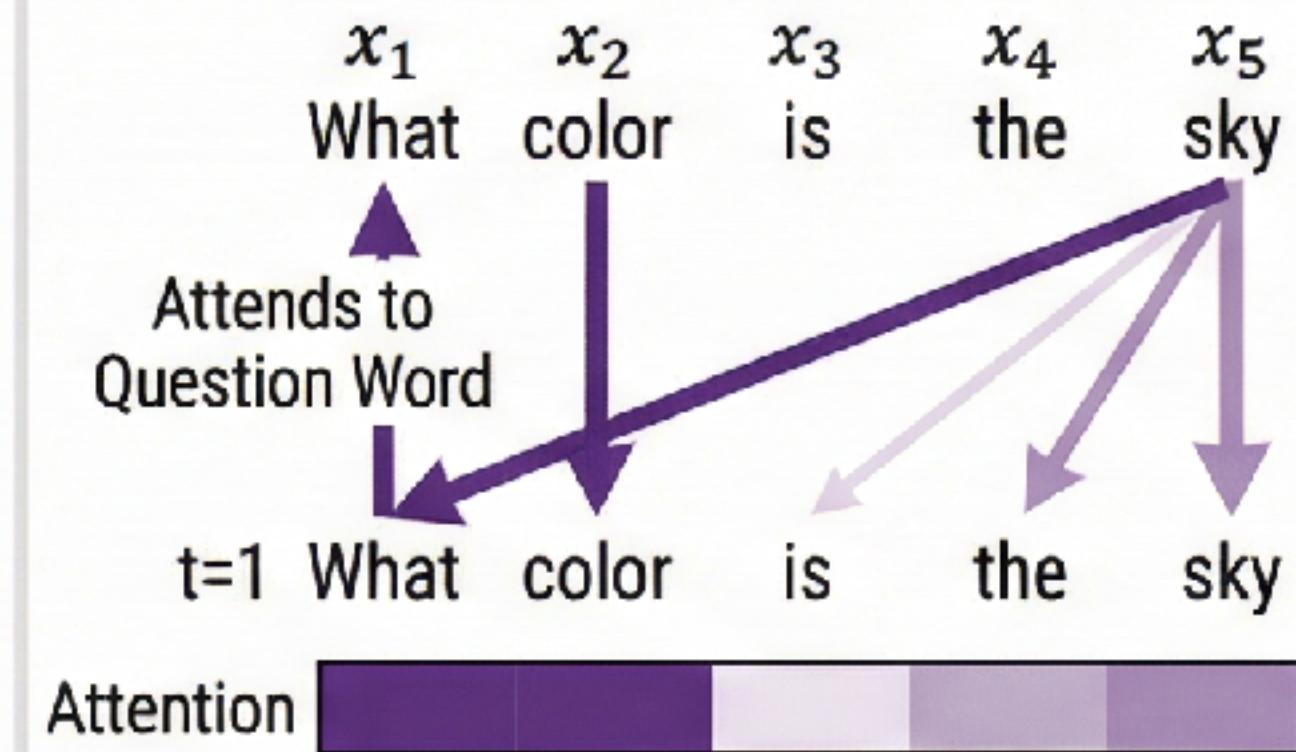
Position t=3 ("sat") attends strongly to "cat" (the subject).

EXAMPLE 2 (t=15): Long-range Dependency



Sparse attention; Position t=15 ("sat") attends to "cat" despite distance.

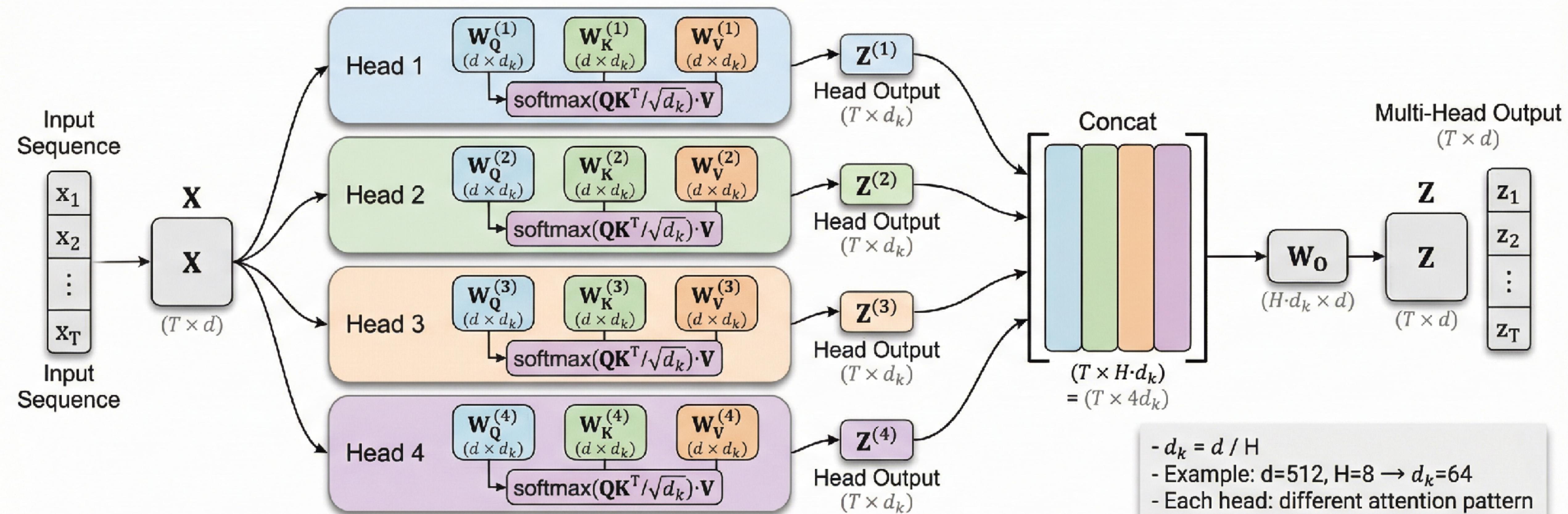
EXAMPLE 3 (Question): Question Answering



Position t=5 ("sky") attends back to "What" and "color" to form the answer.

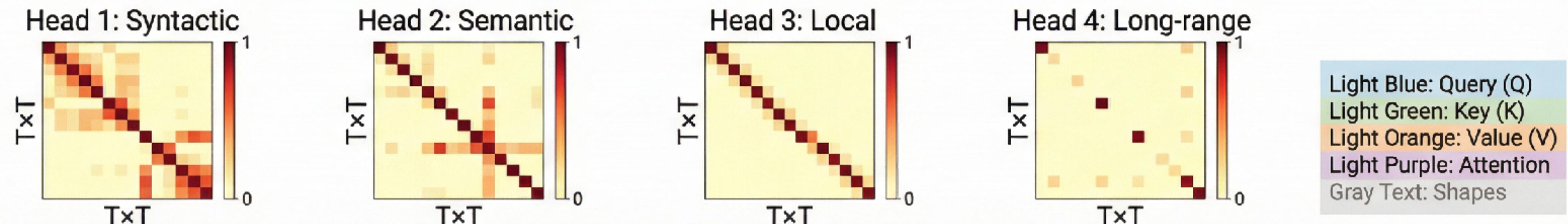
COLOR LEGEND: Light Blue = Queries (Q), Light Green = Keys (K) = Values (V) = Output (Z) & Attention Weights = Low Attention = High Attention

Multi-Head Self-Attention



$$\text{MultiHead}(X) = \text{Concat}(\text{head}_1, \text{head}_2, \dots, \text{head}_H) \cdot W_O \quad \text{where } \text{head}_h = \text{Attention}(XW_Q^{(h)}, XW_K^{(h)}, XW_V^{(h)})$$

Why Multiple Heads?



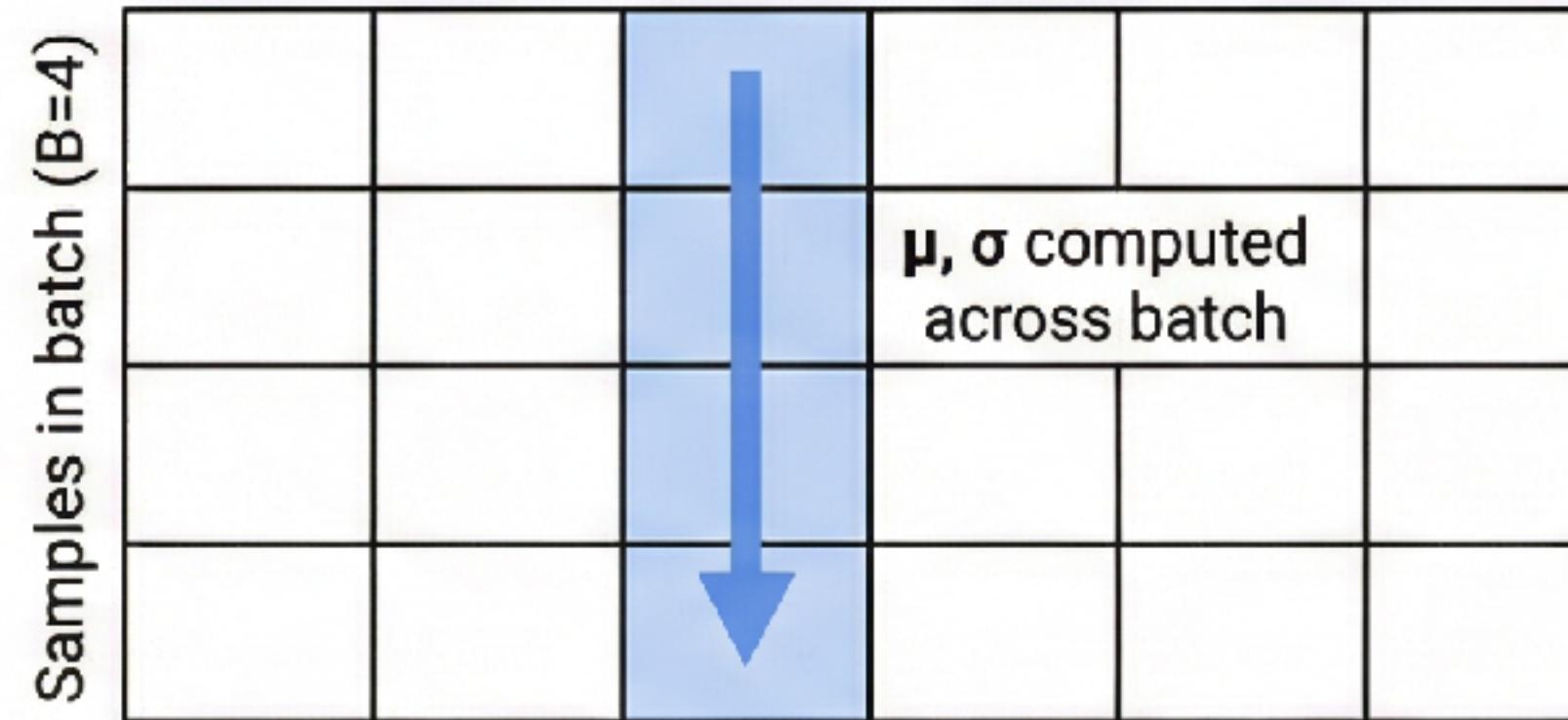
Break: Remember batch-norm?

Batch Normalization vs Layer Normalization

Why transformers use LayerNorm

BATCH NORMALIZATION

(Batch/Tokens x Features)



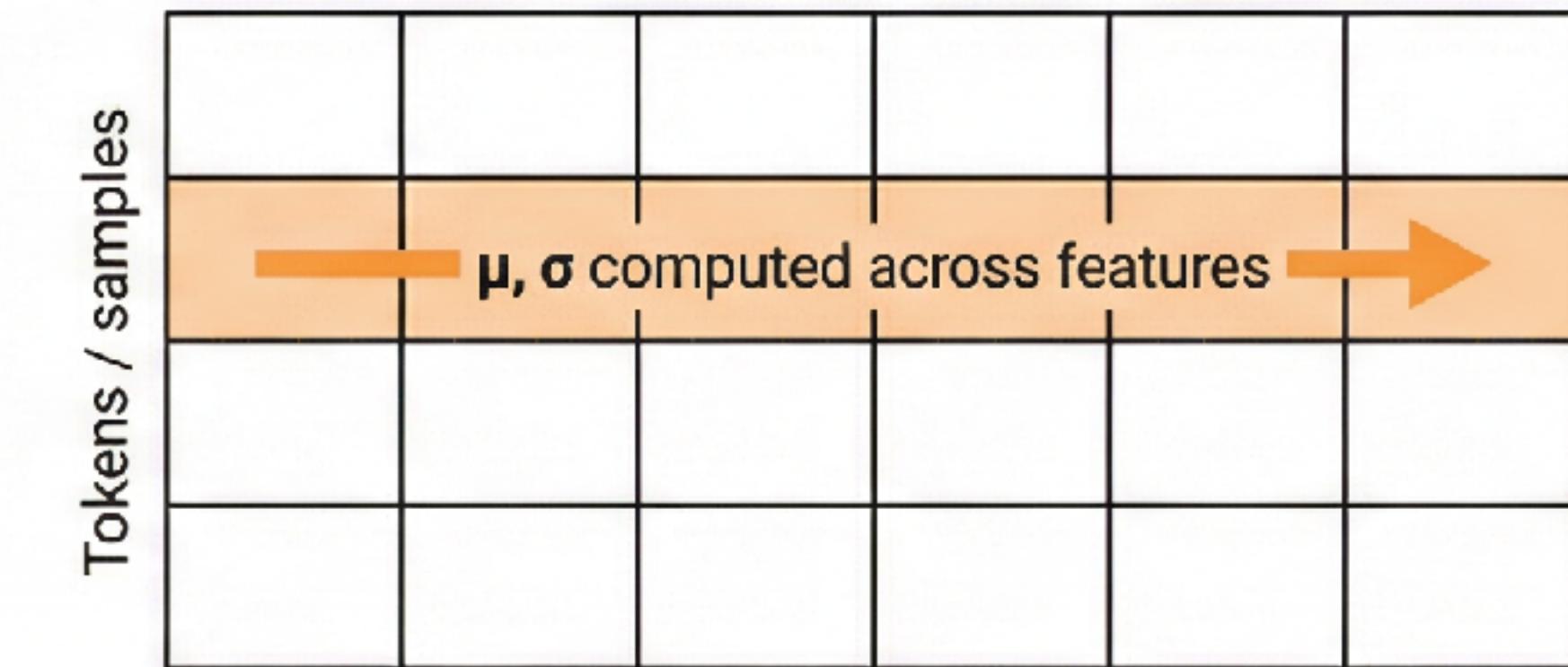
Batch Normalization

$$\hat{x} = \frac{x - \mu_B}{\sigma_B}$$

Per feature, across batch

LAYER NORMALIZATION

(Batch/Tokens x Features)



Layer Normalization

$$\hat{x} = \frac{x - \mu_d}{\sigma_d}$$

Per token, across features

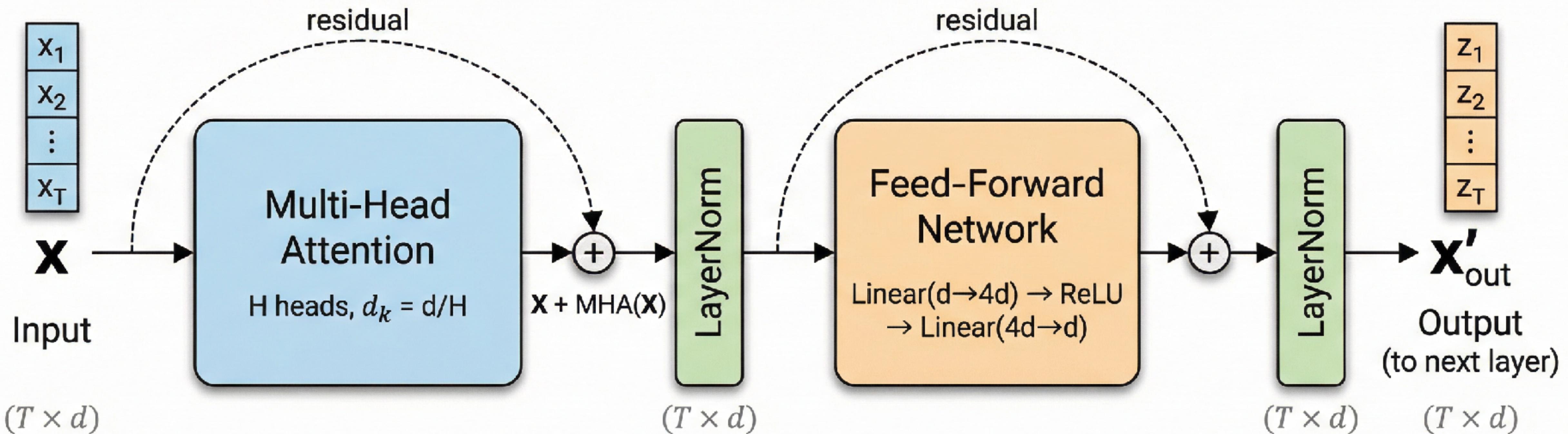
	Batch Norm	Layer Norm
Normalizes	Across batch (↓)	Across features (→)
Statistics	Per feature	Per token
Batch size 1	✗ Fails	✓ Works
Train=Inference	✗ Different	✓ Same
Transformers	✗ Not used	✓ Standard

LayerNorm: each token normalized independently → perfect for variable-length sequences & autoregressive generation

$$\text{LayerNorm}(x) = \gamma \cdot \frac{(x - \mu)}{\sqrt{\sigma^2 + \epsilon}} + \beta$$

Transformer Layer

Stacked Nx times



Self-Attention Sublayer:

$$\mathbf{X}' = \text{LayerNorm}(\mathbf{X} + \text{MultiHeadAttention}(\mathbf{X}))$$

Feed-Forward Sublayer:

$$\mathbf{X}'' = \text{LayerNorm}(\mathbf{X}' + \text{FFN}(\mathbf{X}'))$$

$$\text{FFN}(\mathbf{x}) = \mathbf{W}_2 \cdot \text{ReLU}(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2$$

d = model dim (512, 768)

$d_{ff} = 4d$ (2048, 3072)

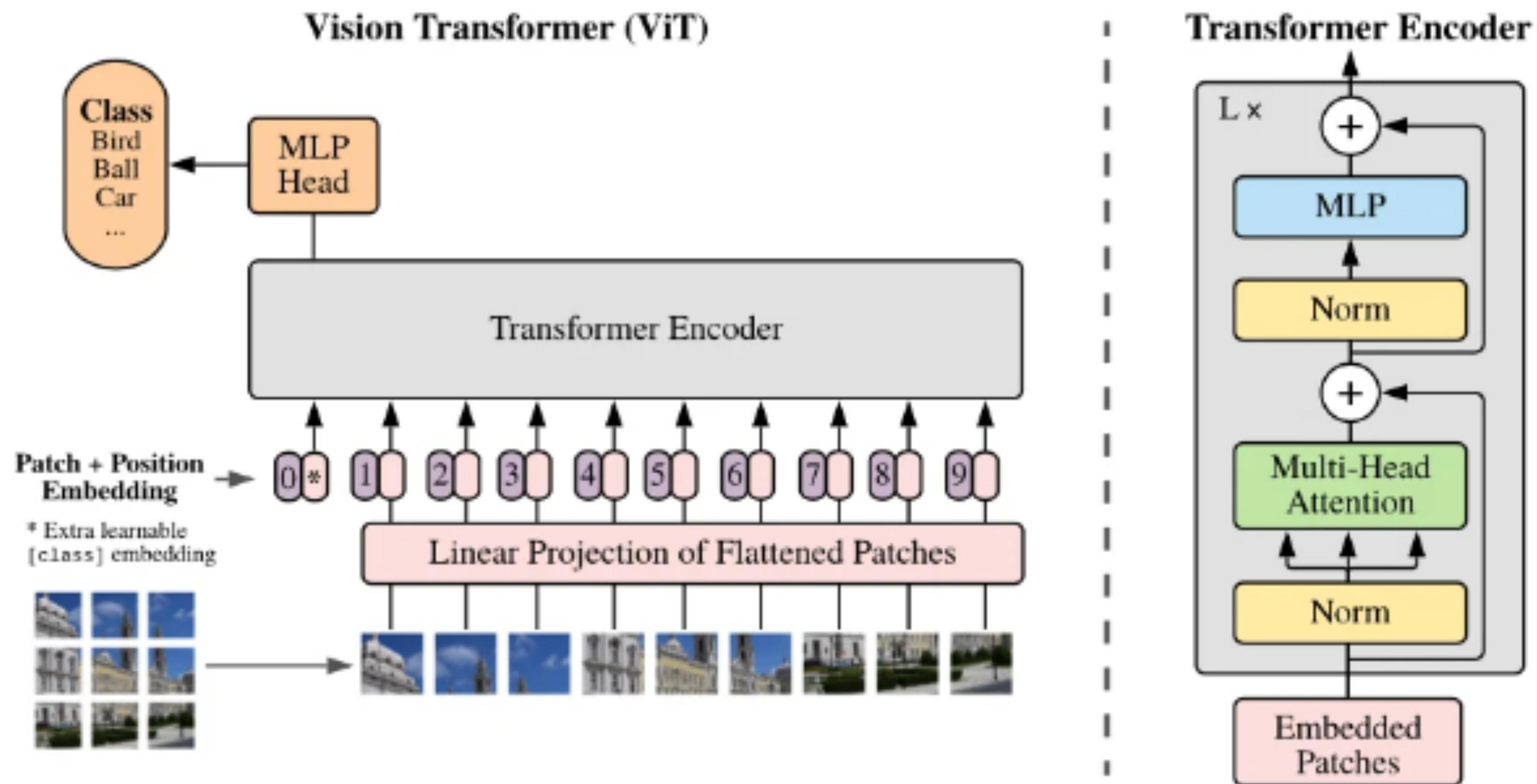
H = heads (8, 12)

Light Blue: Attention Components

Light Green: LayerNorm

Light Orange: Feed-Forward Network

Vision Transformers!



**Break: efficient implementation
for sequence modeling?**

Causal Self-Attention

Masked attention for autoregressive models (GPT, LLaMA, etc.)

THE PROBLEM

The **cat sat on the**

↑
The cat sat on the
Left-to-right generation

When predicting token t , we can
ONLY see tokens $1, 2, \dots, t-1$

Token 5 cannot see
future tokens 6, 7, ...

FULL ATTENTION MATRIX

$Q \cdot K^T$				
x_1	x_2	x_3	x_4	x_5
s_{11}	s_{12}	s_{13}	s_{14}	s_{15}
s_{21}	s_{22}	s_{23}	s_{24}	s_{25}
s_{31}	s_{32}	s_{33}	s_{34}	s_{35}
s_{41}	s_{42}	s_{43}	s_{44}	s_{45}
s_{51}	s_{52}	s_{53}	s_{54}	s_{55}

Raw scores: $Q \cdot K^T / \sqrt{d_k}$
($T \times T$)

THE CAUSAL MASK

■	■	■	■	■
0	$-\infty$	$-\infty$	$-\infty$	$-\infty$
0	0	$-\infty$	$-\infty$	$-\infty$
0	0	0	$-\infty$	$-\infty$
0	0	0	0	$-\infty$
0	0	0	0	0

Causal Mask M

MASKED SCORES

x_1	x_2	x_3	x_4	x_5
s_{11}	$-\infty$	$-\infty$	$-\infty$	$-\infty$
s_{21}	s_{22}	$-\infty$	$-\infty$	$-\infty$
s_{31}	s_{32}	s_{33}	$-\infty$	$-\infty$
s_{41}	s_{42}	s_{43}	s_{44}	$-\infty$
s_{51}	s_{52}	s_{53}	s_{54}	s_{55}

Masked Scores

AFTER SOFTMAX

Upper triangle is exactly 0 ($e^{-\infty} = 0$)				
1.0	0	0	0	0
0.3	0.7	0	0	0
0.1	0.6	0.3	0	0
0.1	0.2	0.4	0.3	0
0.1	0.1	0.3	0.2	0.3

Each row sums to 1

Attention weights
 $A = \text{softmax}(\text{masked scores})$

Row t only has non-zero
weights for positions $\leq t$

KEY INSIGHT - PARALLELISM

Sequential Generation (Inference)

Step 1: x_1
Step 2: $x_1 \rightarrow$ predict $x_2 \rightarrow$ predict $x_3 \rightarrow x_1, x_2, x_3 \rightarrow$ predict x_4
Step 3: x_5 (attend to x_1 only) (attend to x_1, x_2) (attend to x_1, x_2, x_3)
...

T sequential steps

Masking enables parallel training
while maintaining causal property

Parallel Training

All T positions computed simultaneously
Single matrix multiplication with mask
Same result as sequential, but parallel!

1 parallel step (same result!)

Causal Attention:
$$\mathbf{A} = \text{softmax}\left(\frac{\mathbf{Q} \cdot \mathbf{K}^T + \mathbf{M}}{\sqrt{d_k}}\right)$$

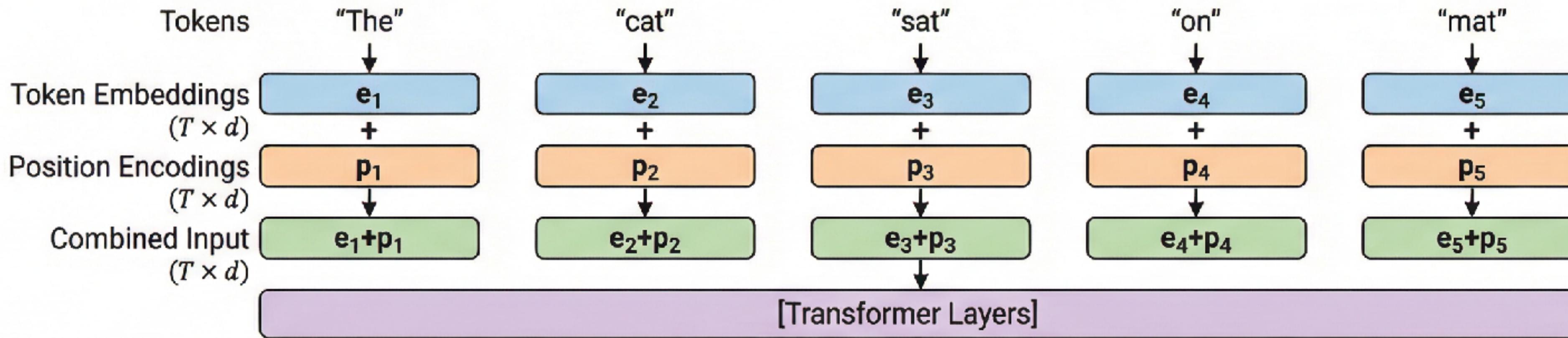
$$\mathbf{Z} = \mathbf{A} \cdot \mathbf{V}$$
 where $M_{ij} = 0$ if $j \leq i$, else $-\infty$

Break: How to encode position?

Positional Encodings

Injecting position information into the transformer

SECTION 1: WHERE TO ADD



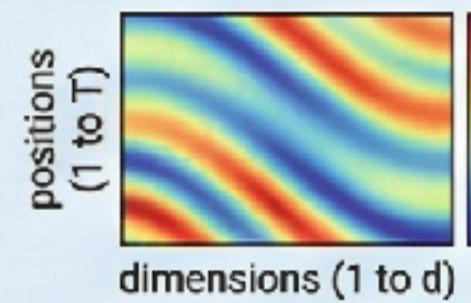
Position encoding added to token embeddings **BEFORE** transformer layers

SECTION 2: TYPES OF POSITIONAL ENCODINGS

Sinusoidal (Original Transformer)

$$\text{PE}(pos, 2i) = \sin\left(\frac{pos}{10000^{2i/d}}\right)$$

$$\text{PE}(pos, 2i+1) = \cos\left(\frac{pos}{10000^{2i/d}}\right)$$



- Fixed (not learned)
- Deterministic
- Can extrapolate to longer sequences

Learned (BERT, GPT-2)

$$\mathbf{P} \in \mathbb{R}^{T_{\max} \times d}$$

"Lookup table of learnable vectors"

$$\begin{matrix} \mathbf{P}_1 \\ \mathbf{P}_2 \\ \vdots \\ \mathbf{P}_T \end{matrix} \quad (T_{\max} \times d)$$

- Learned during training
- More flexible
- Limited to max sequence length T_{\max}

Relative (Transformer-XL, T5)

"Encode relative distance $(i - j)$ not absolute position"
 a_{ij} depends on $(i - j)$

$$\begin{matrix} -2 & -2 & & & \\ -1 & -1 & -2 & & \\ 0 & 0 & -1 & -2 & \\ +1 & +1 & 0 & -1 & \\ +2 & +2 & +2 & 0 & \end{matrix}$$

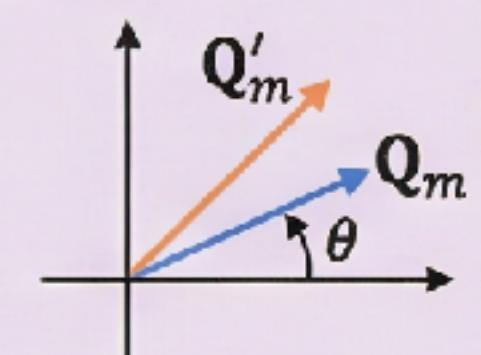
- Captures relative distance
- Better for long sequences
- Added in attention computation

RoPE / Rotary (LLaMA, GPT-NeoX)

"Rotate \mathbf{Q} and \mathbf{K} vectors based on position"

$$\mathbf{Q}'_m = \mathbf{R}_m \cdot \mathbf{Q}_m$$

$$\mathbf{K}'_n = \mathbf{R}_n \cdot \mathbf{K}_n$$



- Applied to \mathbf{Q}, \mathbf{K} in attention
- Relative position via rotation
- Extrapolates well

SECTION 3: VISUAL COMPARISON

Method	Where Added	Learned?	Extrapolation
Sinusoidal	Input	No	✓ Good
Learned	Input	Yes	✗ Limited
Relative	Attention	Yes	✓ Good
RoPE	\mathbf{Q}, \mathbf{K}	No	✓ Good

Input to transformer:

$$\mathbf{X} = \text{TokenEmbed(tokens)} + \text{PositionEncode(positions)}$$

For sinusoidal:

$$\text{PE}(t, 2i) = \sin\left(\frac{t}{10000^{2i/d}}\right) \quad \text{PE}(t, 2i+1) = \cos\left(\frac{t}{10000^{2i/d}}\right)$$

EQUATIONS BOX

See you Monday!