Deep Learning (1470)

Randall Balestriero

Class 13: Transformers

Recurrent Neural Network with Pooling Architecture

Pooled
representation

Pool (last K steps)

e WY e R N T
ok : N b o =g 5= T R) S e e
e N R AR A
L] s - ol : LA N 13
¥ ' - e E
s A [i
a1

{ %= 2ol
e
157

@ ot ()

. Hidden State (h,)

© output (v,
@ Pocling Mechanism

Transformers anyone?

Transformers anyone?

THEIR LULAR. OUR

|
TR ||)
N i N N
e I“ BLAUE b sbranclonmer e L
' MRARb e --n.-n:" 1w rsiim o

SINGLE HEAD SELF-ATTENTION MECHANISM

INPUT THREE PARALLEL PROJECTIONS ATTENTION COMPUTATION OUTPUT
Slw Q (x.T)
e High
X1 Q (T x dy) ¢ Attgention &l
X7 (d x dy) Queries @ . (QKT> Z;
X3 X > (EEA. . K vk 5 Z=A-V Z Z3
(T x d) i« (T x d;) A (T x dy)
dxd Keys (K Low
- (d x dy) ys (K) | il Output (Z) -
0§ T tokens, each . V A (Attention Matrix) 2 tT e
d-dimensional. (T x dy) Attention Weights ontextualize
Token Embeddings. 4 T Representations.
(d x dy) Values (V) (A = softmax(QK” /y/dy))
CONCRETE EXAMPLES OF ATTENTION PATTERNS FOR LANGUAGE MODELING
EXAMPLE 1 (t=3): Short Sentence EXAMPLE 2 (1=15): Long-range Dependency EXAMPLE 3 (Question): Question Answering
X1 X2 X3 t=1 t=3 t=5 t=15 t=13 X1 X2 X3 X4 Xs
The cat sat The curious cat that lived in the old house on the hill sat quietly What color is the sky
,i—;'é;';ffffﬁf A
/| Strong — o~ Attends to
/| Attention Long-range r Question Word
: v f"f'f" g m f”/ Y
t=1 The cat sat t=1 The cat lived house on hill quietly t=1 What color is the sky
Attention m Attention| 0 O ORI, 0% 000" J0p0 0% 0 l: 0 Attention _ S
Position t=3 ("sat’) attends strongly Sparse attention; Position t=15 ("sat") attends to "cat” despite distance. Position t=5 ("sky") attends back to "What"
to "cat” (the subject). and “color" to form the answer.

COLOR LEGEND: Light Blue = Queries (Q), Light Grein = Keys (K) = Values (V) = Output (Z) & Attention Weights = Low Attention = High Attention

Input
Sequence

——

X1 X

X2

XT

Input
Sequence

MultiHead(X) = Concat(headq, head,, ..., heady) - Wo where head;, = Attention(XW((lh),

Why Multiple
Heads?

Head 1 (dXxd

J |

w
(d X dk
|

)

Head 2 \(dXxdk

J

wi?
(d xd)

J

w2
(d X dk

J\

| L(softmax((lzKT/\/d_k)-\ﬁ |

/
(3)
Wo

Head 3 [(d X di

) &
) (d X dy)

) |

\TAS
(d X dk

)

| L(softmax(QKT/\/ﬁ) -V) |

@ @
Wo

Head 4 L(d X dj

)

(d X dy
|

o) 2%
)

[dXdk
1

).

| L(softmax(Ql(T/\/nsi_k) -V] |

Head 2: Semantic

Head 1: Syntactic1

TxT

i T

TxT

l1

7(1)

Headq(-j"tjtput
(T X dk)

7(2)

Head Output
(T X dk)

7(3)

Head OUtput
(T X dk)

7(4)

Head 'tput
(T X dk)

Head 3: Local

1%

Y

1N

1

|

Multi-Head Self-Attention

)
) (d ><l dy)

| I—{soﬂmax(QKT/\/ﬁ)-V] |

-

Multi-Head Output
j(r?.o[\rcajtf : (T x d)
Z Z1
Z2
Z
T
W e J (’) ZT
(T X Hdk)
= (11 X 4dk)
= dk =d/H

- Example: d=512, H=8 — d;=64
- Each head: different attention pattern

e
2. xw)

Head 4: Long-rang1e
i)

—
X
o

.

"

I x]

Light Blue: Query (Q)
Light Green: Key (K)
Light Orange: Value (V)
Light Purple: Attention
Gray Text: Shapes

Break: Remember batch-norm?

:4)

Samples in batch (B

Batch Normalization vs Layer Normalization

Why transformers use LayerNorm

BATCH NORMALIZATION

(Batch/Tokens x Features)

LAYER NORMALIZATION

(Batch/Tokens x Features)

wn
QD
Q.
"'é ;gg ;n bpaL'i::id * % 4, 6 computed across features
| ()]
| ~
BatchNorm LayerNorm €
-
O
Batch Normalization Layer Normalization
A x W x .
xoi— H’B o —= nd
OB
Per feature, across batch Per token, across features
Batch Norm Layer Norm
Normalizes Across batch (1) Across features (=)

Statistics Per feature Per token

Batch size 1 X Fails v Works

Train=Inference X Different v Same

Transformers X Not used v’ Standard

LayerNorm: each token normalized independently — perfect for variable-length sequences & autoregressive generation

LayerNorm(x) = + -

residual

———
——————————
” ~N
-~ -
-~

Multi-Head
Attention

H heads, d; = d/H

Input

(T X d)

Self-Attention Sublayer:

Transformer Layer

Stacked Nx times

X + MHA(X)

(1 %d)

LayerNorm

X' = LayerNorm(X + MultiHeadAttention (X))

Feed-Forward Sublayer:
X" = LayerNorm(X’ + FFN(X"))

FFN(X) — W2 x ReLU(W]_X -+ bl) i bz

--
—
-~
)

residual

Feed-Forward

Network

Linear(d—4d) — RelLU
— Linear(4d—d)

{2
LayerNorm

Output
(to next layer)

(T X d)

(T xd)

' d = model dim (512, 768)
d;; = 4d (2048, 3072)
H = heads (8, 12)

_/

_ight Blue: Attention Components
_ight Green: LayerNorm
_ight Orange: Feed-Forward Network

—

Vision Transformers!

Transformer Encoder

Vision Transformer (ViT)

Transformer Encoder

- 0 0 5 08 6 08 6

* Extra kearnable . . .
[class] embedding Linear Projection of Flattened Patches

NHE
-
WEm 2511 Bl 1Y Ls-

Multi-Head
Attention

Break: efficient implementation
for sequence modeling?

Causal Self-Attention

Masked attention for autoregressive models (GPT, LLaMA, etc.)

Each row sums to 1

THE PROBLEM FULL ATTENTION MATRIX THE CAUSAL MASK MASKED SCORES AFTER SOFTMAX
QKT] =0 (keep) QK +M Upper triangle is exactly
T/he Cfat STa t O{] ths % N X W e [[] = - (block future) 0 (e*(=) = 0)
The cat sat on the X11S11 S92 S13 S14 Sis X1 0 - =00 -0 = X1 1S11 ¢l 1.0 U () (s)
| X5 Sp1 Spp Sp3 Spu Spg X9 0 0 0 =t —p X5 321 Sgo EEEON —(0 S 03fwa O 0 0
(Left-to-right generation Xs [Scmsiies, Soulliie |0 o o B8 —°°| m:sdfto X3 1891 Sz0 533 IR 2IE o0 ol
When predicting token t, we can X4 [S41 Sa2 Sa3 Sa4 Sss X4/ 0 0 0 0O =-oo| scores X4 |Sq1 Sap Saz Sqq —® X, |0.1 0.2 [EENOE 0
HDEPReE IS, S] X5 |S51 Ss52 Ss53 Ssg Sss X5 [ROSSDENGES0SN0 X5 |S51 Ss2 S53 S54 Sss X510.1 0.1 0.3 0.2 0.3] |
Token 5 cannot see Raw scores: Q-KT / /d, Causal Mask M Masked Scores Attention weights
future tokens 6, 7, ... A = softmax(masked scores)
(TxT)
Royv t only has non-zero
KEY INSIGHT - PARALLELISM cibdiodn e
Sequential Generation (Inference) Parallel Training
Step 1: X, 2. ,
. : : All T positions computed simultaneously
Step 2: x, — predict x, ——> predict X; —> Xq,%,,X; —> predict X e : : Mt . .
1 or S, xf e x1:3X2 VARRE. e x1,x;.x3 — Single matrix multiplication with mask
Step 3: Xg (attend to x, only) (attend to X;,X;) (attend 10 X;,X5,X3) Same result as sequential, but parallel!
¥ 1 Y - | | — ; J
T sequential steps Masking enables parallel training 1 parallel step (same result!)

while maintaining causal property
QK'+M
Vdy

Causal Attention: A= softmax() Z=A-V whereM;;=0ifj<i,else -c

Break: How to encode position?

Positional Encodings

Injecting position information into the transformer

SECTION 1: WHERE TO ADD

Tokens “The” “cat’ “sat” “on” ‘mat”
: ¥ v v & +
Token Embeddings i €1 €7 e3 V] [€5]
(T x d) 4 + ¥ + +
Position Encodings [P1 | P2 P3 | P4) Ps]
(T xd) v , v v v
Combined Input| eq#p;] [extps . egtps | eqtps) [estps |
(T xd) ¥
i [Transformer Layers]]

Pasition encoding added to token embeddings BEFORE transformer layers
SECTION 2: TYPES OF POSITIONAL ENCODINGS

Sinusoidal (Original Transformer)] [

Learned (BERT, GPT-2)

J {

Relative (Transformer-XL, T5)

]| RoPE/Rotary (LLaMA, GPT-NeoX)

PE(pos, 2i) = sin (10011]0;2‘/‘1)

PE(pos, 2i+1) = cos (=12)

positions
(1toT)
|

dimensions (1 to d)

* Fixed (not learned)
* Deterministic
» Can extrapolate to longer sequences

P €]RTmax xd
“Lookup table of learnab

P1

P2

P

Pr

(Tmax X d)

* Learned during training

* More flexible

« Limited to max sequence length Ty, 05

e vectors”

“Encode relative distance (i — j)
not absolute position”

a;; depends on (i — j)

-2
1
0
+1
+2

-2

X

0

+1

+2

2 -1 0 +1 +2

« Captures relative distance
« Better for long sequences

« Added in attention computation

“Rotate Q and K vectors based on

position”
A
Qr =Ry Qpn
K, =R, K,

Qn

Qm
e

>

'« Applied to Q, K in attention
- * Relative position via rotation
_ * Extrapolates well

SECTION 3: VISUAL COMPARISON EQUATIONS BOX
Method Where Added Learned? Extrapolation " Input to transformer:
Sinusoidal Input No v Good X = TokenEmbed(tokens) + PositionEncode(positions)
Relative Attention Yes v Good oy e t . ai t
o =L = Ty - PE(t,20) =sin (fooommz) PE(t 2i+1) = cos (oo)

See you Monday!

