Deep Learning (1470)

Randall Balestriero

Class 12: seq2seq
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Exponential Memory Loss: Example
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Exponential Memory Loss: Example

What about now?
wW=UzV'

WP =Uzrv'

Can you come up with a condition
to prevent explosion/collapse?
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* |nstead of fixing the computation at time-step... we can?

orthogonal like representation. We fix a pool size k, and
then the update equations for this model are:

ht — O'(UCCt +b) + Vh,t_l

(6)
yr = Wrhy + Wp Py (hy)

where if h is the kd dimensional vector h = [hq, ..., hrq|?,
then P(h) is the d dimensional vector defined by

k1
Recurrent Orthogonal Networks and Long-Memory Tasks
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Recurrent Neural Network with Pooling Architecture
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Recurrent Neural Network with Pooling Architecture
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Back to Language Modeling
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Back to Language Modeling

Yt

Vi = X¢t1

p(xt+1 ‘Xta I xl) ~ fé’(-xta ht—l)

How do you “generate” language now??



Back to Language Modeling
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Sampling Strategies from Next-Token Distribution
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Original Distribution

Sampling Strategies from Next-Token Distribution
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What about translation?
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* | like this Deep Learning class <-> J’aime ce cours d’apprentissage profond

How can we do Neural Machine Translation?



What about translation?
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Why Any-to-Any Fails for Translation

® Length Mismatch

0
l l l X 4 - 3 tokens

@

@ Word Order Differs

‘ T— Alignments cross!

- Must see ALL source tokens before generating ANY target



Seq2Seq Translation with Autoregressive Decoding
Strict left-to-right generation: cannot peek at future tokens
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Autoregressive: output: = inputs+1
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Process ALL source first THEN generate target sequentially
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Seq2Seq Translation with Autoregressive Decoding
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Seq2Seq Translation with Autoregressive Decoding
Strict left-to-right generation: cannot peek at future tokens

DECODER
ENCODER

Autoregressive: output: = input:+1
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The Sequence Modeling Zoo

Many-to-One Many-to-Many Many-to-Many
(e.g., sequence (e.g., sequential (e.g., seq2seq)
classification) prediction)

One-to-Many
(e.g., 1mage
to text)



Recurrent Neural Network with Pooling Architecture
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See you Friday!



