Deep Learning (1470)

Randall Balestriero

Class 11: Sequential Data and Language Modeling

Word Tokenizer

T hey went t o t he groecery s t or e and b ought breaid

Split on spaces — 9 tokens

“They" "went" “to" “the" “grocery" “store" “and" “bought™ "bread"

vocab size
= 50,000

Vocabulary:

Character Tokenizer

e n t . T 0 .1
Split on each character = 47 tokens
0 r S "t u 7] y
6 7 8 9 10 11 12
1 1
1
(| R S | 1 1 | 1
1
1 1

13

14

15

16

17

(size = 16)

dim =
16

Average Sequence Length vs Vocabulary Size
for Different Tokenizers

90 -

~ Q0
o o
]]

(@)
o
]

S
o
]

Average Sequence Length (tokens)
w un
o o

N
o
]

10 A

r—,—--r———-r-r————0

—@— Character

-— BPE

+ WordPiece T
50 100 200 500 1000 2000 5000

Vocabulary Size

Unigram (N=1): Predict next token from 1 previous token

predicts

- — >
to the grocery store and bought bread
- - -
=0 =1 =2 t=3 t=4 t=5 t=6 t=7 t=8
- Context (input) - Target (to predict)
Full History: Predict next token from ALL previous tokens
all context predicts next token
— — —
to the grocery store and bought bread
- - -
=0 =1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

- Context (all previous)

- Target (to predict)

Context size: 1

Unigram (N=1): Predict next token from 1 previous token

predicts

- — >
to the grocery store and bought bread
- - -
=0 =1 =2 t=3 t=4 t=5 t=6 t=7 t=8
- Context (input) - Target (to predict)
Full History: Predict next token from ALL previous tokens
all context predicts next token
— — —
to the grocery store and bought bread
- - -
=0 =1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

- Context (all previous)

- Target (to predict)

Context size: 1

Vanilla RNN Layer

hy = tanh(Wgp, - ; + Why - hi—1 + bp)
Y= Why ; ht <+ by

. Input Vector (x) . Hidden State (h)

. Output Vector (y)

Vanilla RNN Layer

(

) Input Vector ()

f

.

Lt4+1

1

Y,

e, What are those?

hy = tanh(Wyp, - 1 + Whp, - hi—1 + by)
Y= Why ; ht < b'y

O Hidden State (h) (] Output Vector (y)

Vanilla RNN Layer

\ | i ht = tanh(Wmh =Tt Whh . ht—l o bh)
ht_l . | ht | \ ht+1 | Yt = Why - bt + by

o LA

r,-:r_

f) Input Vector (x) f Hidden State (h) Output Vector (y)

N\

Gradient Norm (log scale)

Real Tanh RNN: Gradient Flow Through 500 Timesteps Gradient Reaching First Timestep

(Single layer RNN with tanh activation) vs Spectral Radius
1047 1
— 0 = 0.46 p=168 I EXPLODIN
1028 - — p=0.76 p=1.98 : Regj
P=1.07 = p=228 1024 - ,
P=137 s p=305 |
3 =152 '
10 P 101- L
|
-22 o ’4'57 :
10 oo 107221 |
. + I
Gradients reachh 8 I
10747 + early-timesteps a5 _ I
EE 1 VANISHING
- = Region '
10772 A radients vanish o Q 10-68 -
beforereaching c9 |
early time LG |
10797 + ©9 -91 |
oL |
|
107122 + 10-114 - [
|
|
107147 - 10-137 - :
!
|
! I | | | ! ! ! I I
0 100 200 300 400 500 0.5 1.0 1.5 2.0 2.5 3.0

Distance from Output (timesteps back) Spectral Radius p(Whnn)

Bl S e e B B e T L

Training Instability: One Gradient Step Destroys Careful Initialization

Gradient Reaching First Timestep

Gradient Flow: Before vs After ONE Gradient Update After ONE Update
10?2 1 === Before training (stable) 1050 -
- = After 1 step (Ir=1e-03)
1019 - After 1 step (Ir=1e-02) ¥ 1092 -
- After 1 step (Ir=5e-02) 5
O
1016- 3 1034_ EXPLODING
e
wn
1013 7 o 1026 -
A
1019 - o 1018-
!
107 T 1010 -
)
o
4. o 2 -
10 T 1029
G
10! ~ - 107° 1
*-_;f ~% ”vnd"r-a,‘/‘\,—ﬁ e p AN T e O Tty
0 100 200 300 400 500 Qo) $ Q"‘ Qu D > 3V v 3
Timesteps from Qutput X x4 N x4 & & N4 & &

Learning Rate

Mitigating Long Context Issues in RNNs

Any suggestions?

Mitigating Long Context Issues in RNNs

Any suggestions?

Adam EMA will be too slow
Any update can lead to collapse/explosion

Constrain the parameters singular values!

Mitigating Long Context Issues in RNNs

Efficient Orthogonal Parametrisation of Recurrent Neural Networks
Using Householder Reflections

Zakaria Mhammedi'? Andrew Hellicar? Ashfaqur Rahman® James Bailey '

Unitary Evolution Recurrent Neural Networks

Martin Arjovsky '
Amar Shah *
Yoshua Bengio

Universidad de Buenos Aires, University of Cambridge,

MARJOVSKY@DC.UBA.AR

Université de Montréal. Yoshua Bengio is a CIFAR Senior Fellow.

ASTO3I@CAM. AC.TUK

projUNN: efficient method for training deep networks
with unitary matrices

Bobak T. Kiani Randall Balestriero Yann LeCun
MIT Mela Al, FAIR NYU & Meta Al FAIR
Pkianilmit.edu rpalestrieroldfb.con vann@fib.com
Seth Lloyd

MIT & Turing Tnc.
slloyd@mit . ado

Mitigating Long Context Issues in RNNs

Any idea on how to enforce orthogonal/unitary W?

FORGET
GATE (f)

O

CANDIDATE
STATE (&,)

tanh

LSTM Cell

OUTPUT
GATE (Ot)

o

Ct

Equations

fi = o(Wj - [ht—1,] + by)

it = (Wi - [he—1,] + b;)

¢; = tanh(W, - [ht—la xt] + be)
Ct =ft®ct_1 +it®fz’t

o = a(W, [h,t_l,:rt] + b,)

hi = o © tanh(c;)

Legend

Decides what to discard

FORGET GATE (f;) |ripyss

Decides what new info
to store

INPUT GATE (4,)

LD IS PSRN Proposes new values

SRR IR Decides what to output

o / C¢ (Cell State) Memory Highway

O tanh O, —+

Sigmoid Hyperbolic Element-wise Addition
Tangent Multiplication

GRU Cell

LEGEND:
- Reset gate: controls how much past to use for candidate - Update gate: controls interpolation between old and new
"GRU: 2 gates, no separate cell state”

EQUATIONS:
ze = o(W; - [he-1,%¢] + by)

re = (W - [he-1, %] + b;)

hy = tanh(W - [, © hy_1, X¢] + b)
hy=(1—-2)Qhi_1+2,0h,

Try it!

RNN #

class torch.nn.RNN(input size, hidden size, num_layers=1, nonlinearity='tanh',
bias=True, batch_first=False, dropout=0.0, bidirectional=False, device=None,

dtype=None) [sourcel

LSTM

class torch.nn.LSTM(input size, hidden size, num_layers=1, bias=True, batch first=False,

dropout=0.0, bidirectional=False, proj_size=0, device=None, dtype=None) # Isource]

GRU

class torch.nn.GRU(input size, hidden size, num_layers=1, bias=True, batch_first=False,

dropout=0.0, bidirectional=False, device=None, dtype=None) [source]

Questions?

