

Deep Learning (1470)

Randall Balestriero

Class 11: Sequential Data and Language Modeling

Recap!

Word Tokenizer

The y | w e n t | t o | t h e | g r o c e r y | s t o r e | a n d | b o u g h t | b r e a d

Split on spaces → 9 tokens

"They"	"went"	"to"	"the"	"grocery"	"store"	"and"	"bought"	"bread"
0	0	1	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	1	0	0
0	1	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0
:	:	:	:	:	:	:	1	:

*vocab size
≈ 50,000*

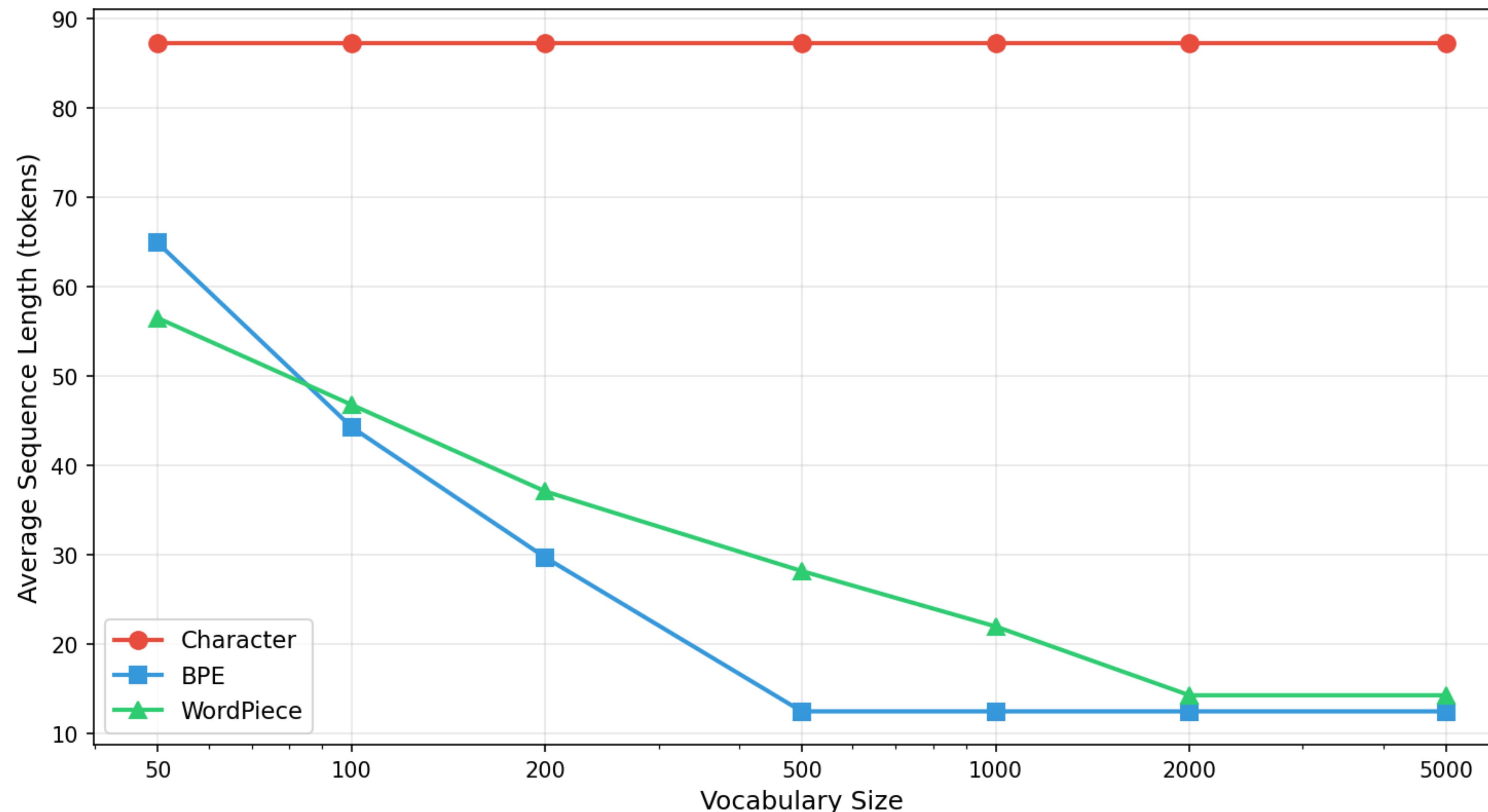
Character Tokenizer

T h e y u w e n t u t o t h e u g r o ...

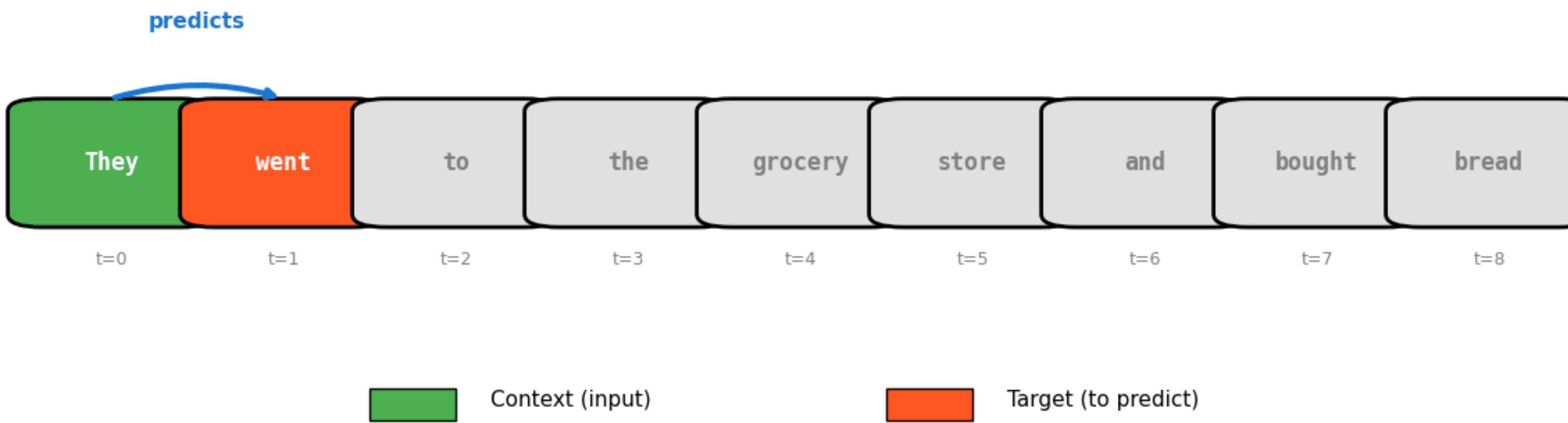
Split on each character → 47 tokens

Vocabulary: 'a' 'b' 'c' 'd' 'e' 'g' 'h' 'n' 'o' 'r' 's' 't' 'u' 'w' 'y' (size=16)

Average Sequence Length vs Vocabulary Size
for Different Tokenizers



Unigram (N=1): Predict next token from 1 previous token

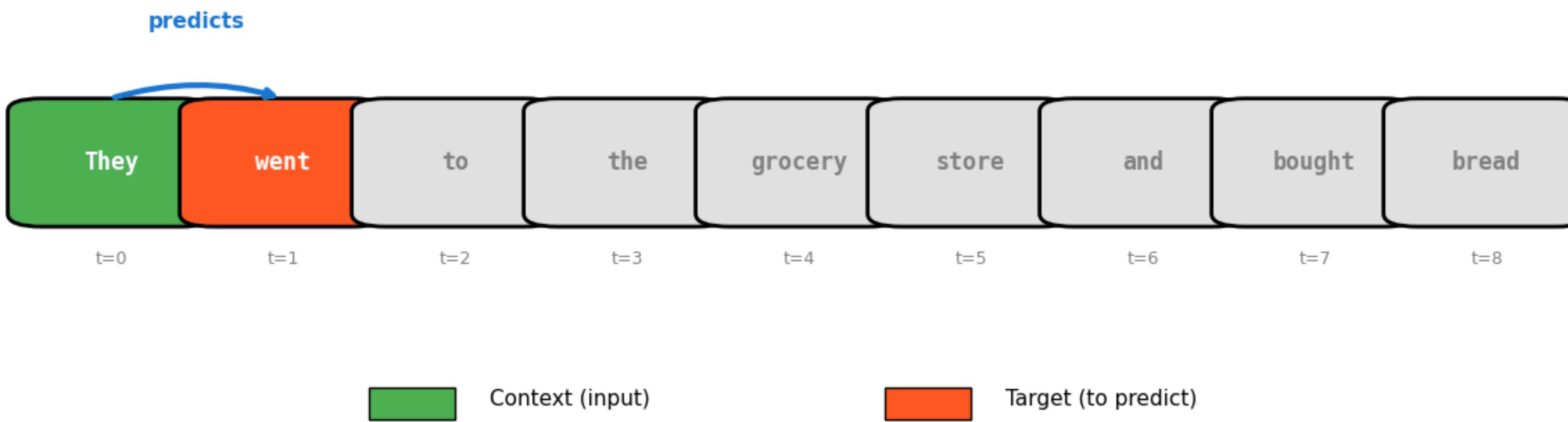


Full History: Predict next token from ALL previous tokens

all context predicts next token

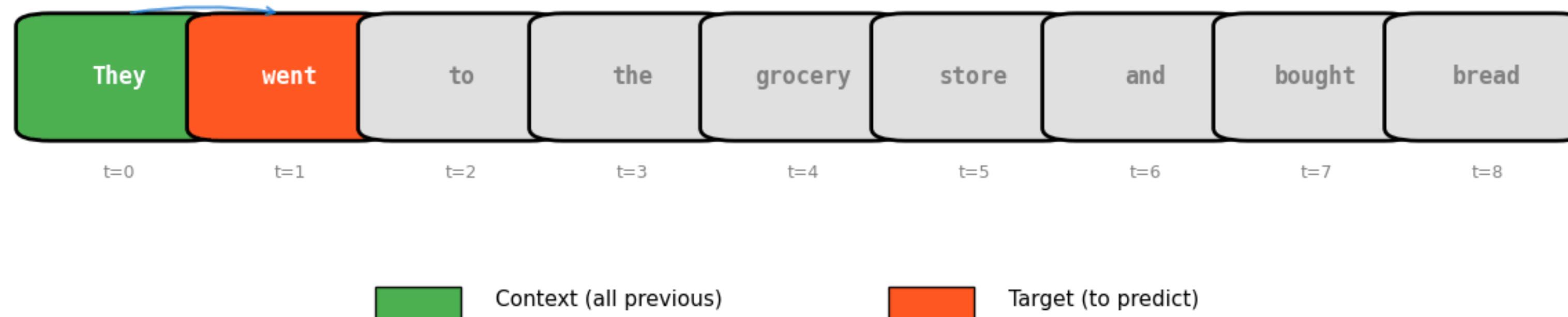
Context size: 1

Unigram (N=1): Predict next token from 1 previous token



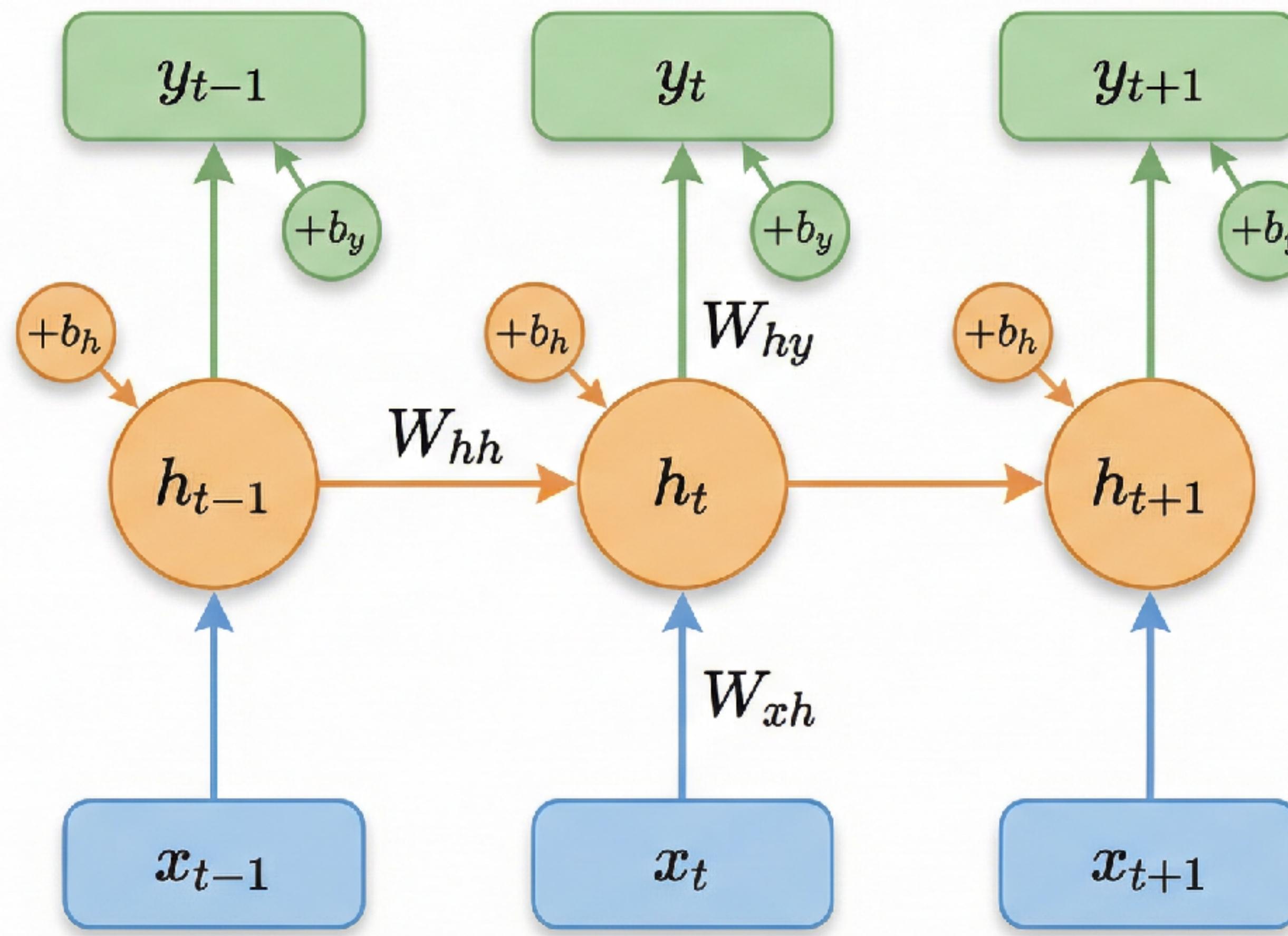
Full History: Predict next token from ALL previous tokens

all context predicts next token



Context size: 1

Vanilla RNN Layer



$$h_t = \tanh(W_{xh} \cdot x_t + W_{hh} \cdot h_{t-1} + b_h)$$
$$y_t = W_{hy} \cdot h_t + b_y$$

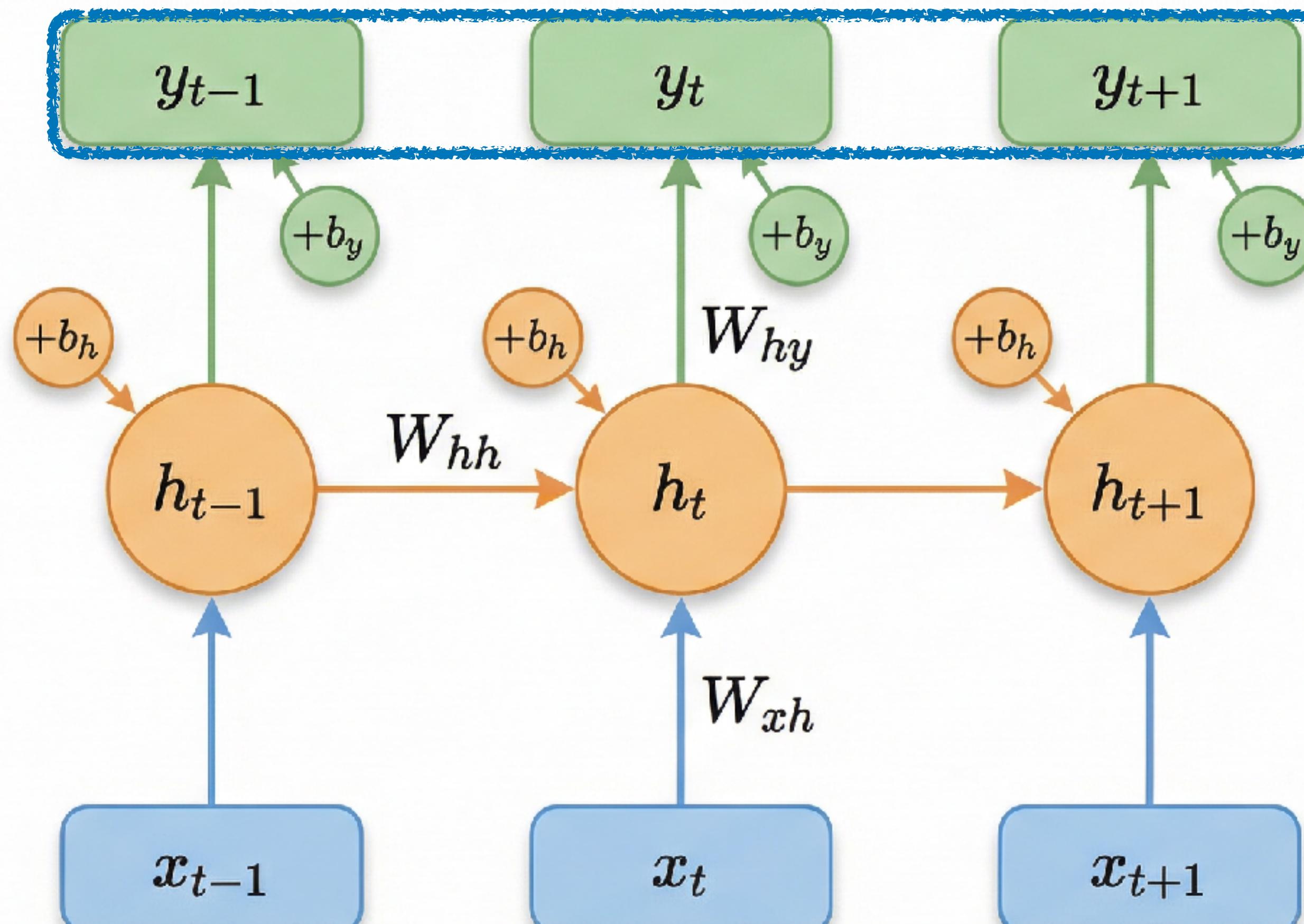
Input Vector (x)

Hidden State (h)

Output Vector (y)

Vanilla RNN Layer

What are those?



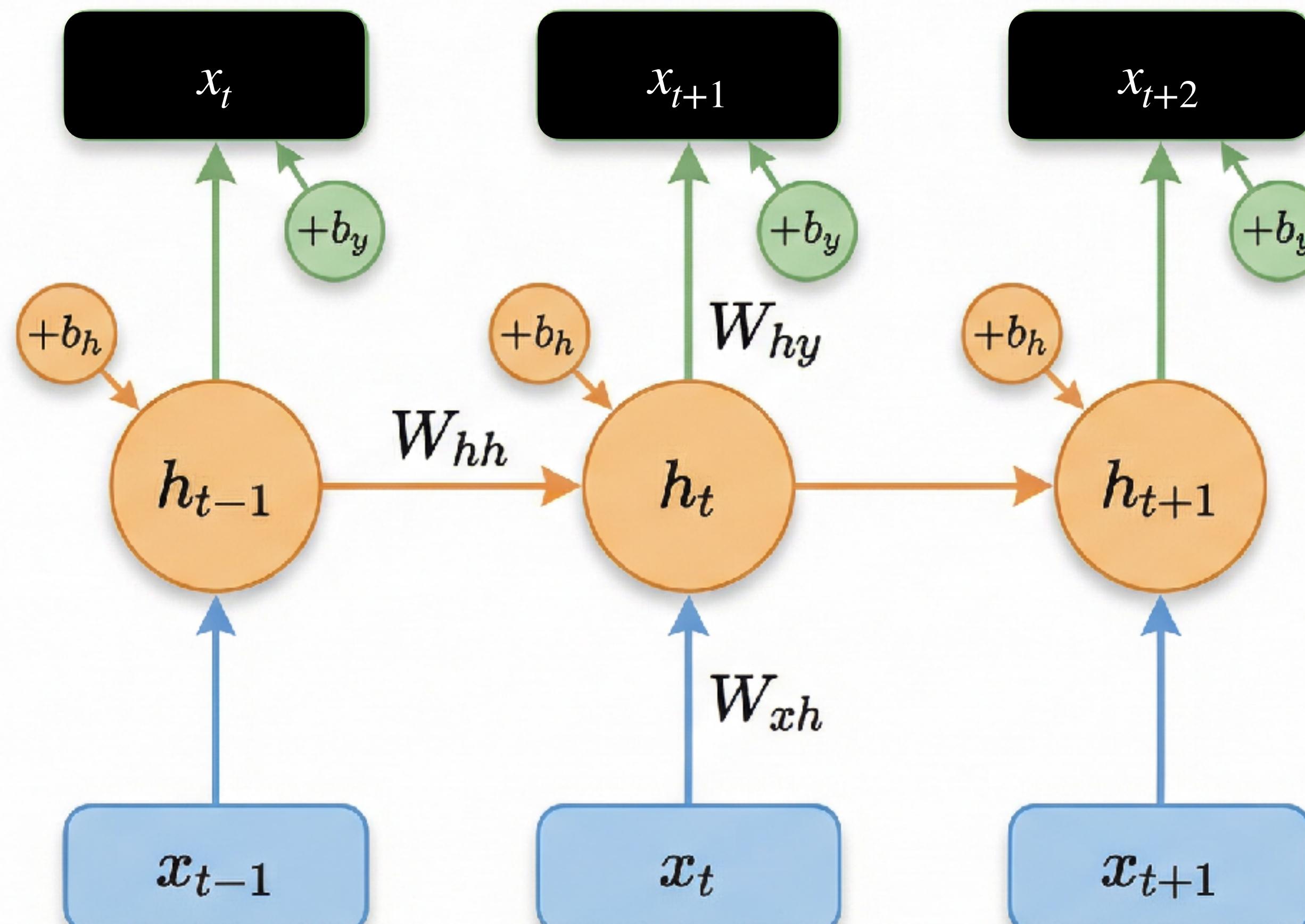
$$h_t = \tanh(W_{xh} \cdot x_t + W_{hh} \cdot h_{t-1} + b_h)$$
$$y_t = W_{hy} \cdot h_t + b_y$$

Input Vector (x)

Hidden State (h)

Output Vector (y)

Vanilla RNN Layer



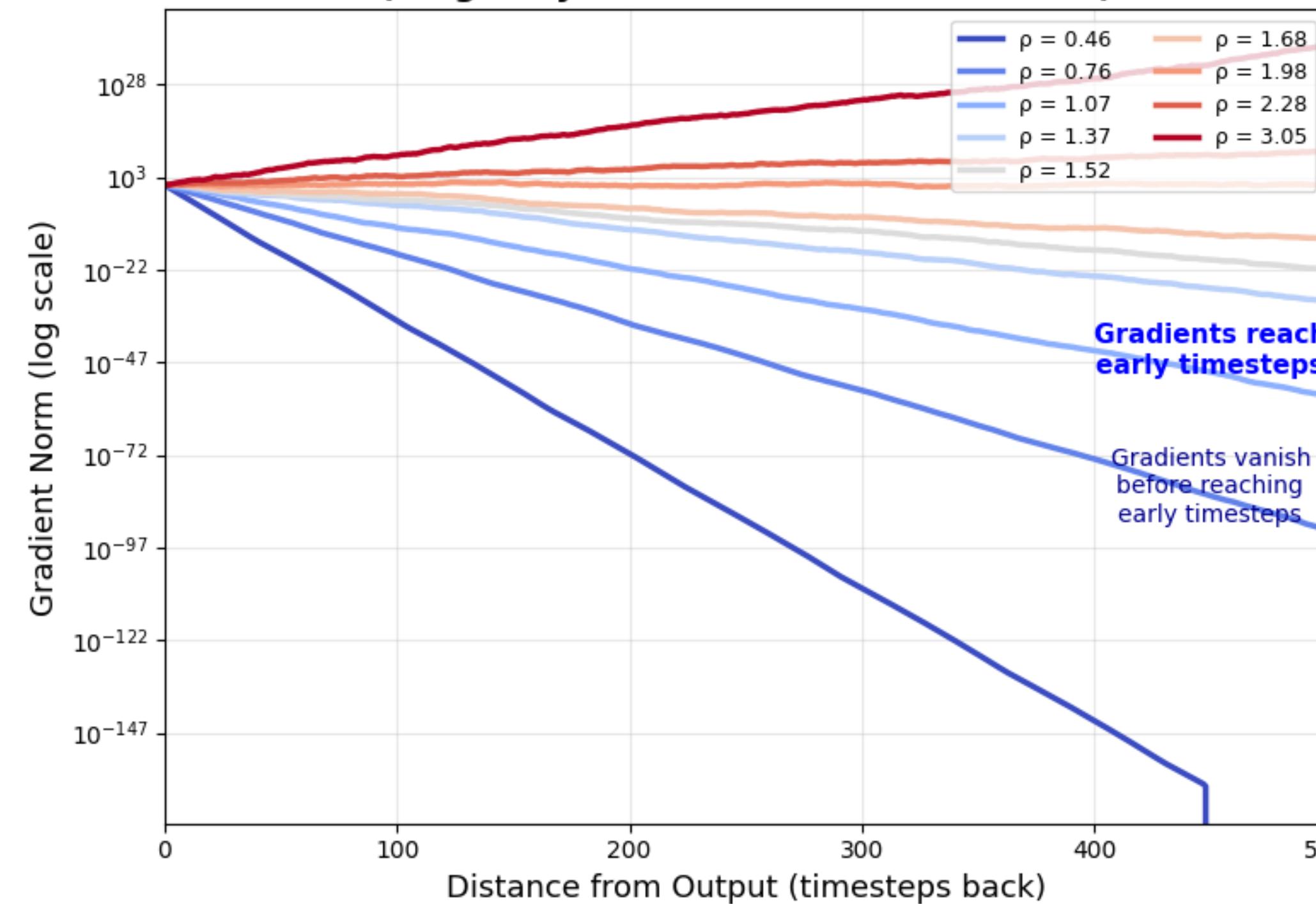
$$h_t = \tanh(W_{xh} \cdot x_t + W_{hh} \cdot h_{t-1} + b_h)$$
$$y_t = W_{hy} \cdot h_t + b_y$$

Input Vector (x)

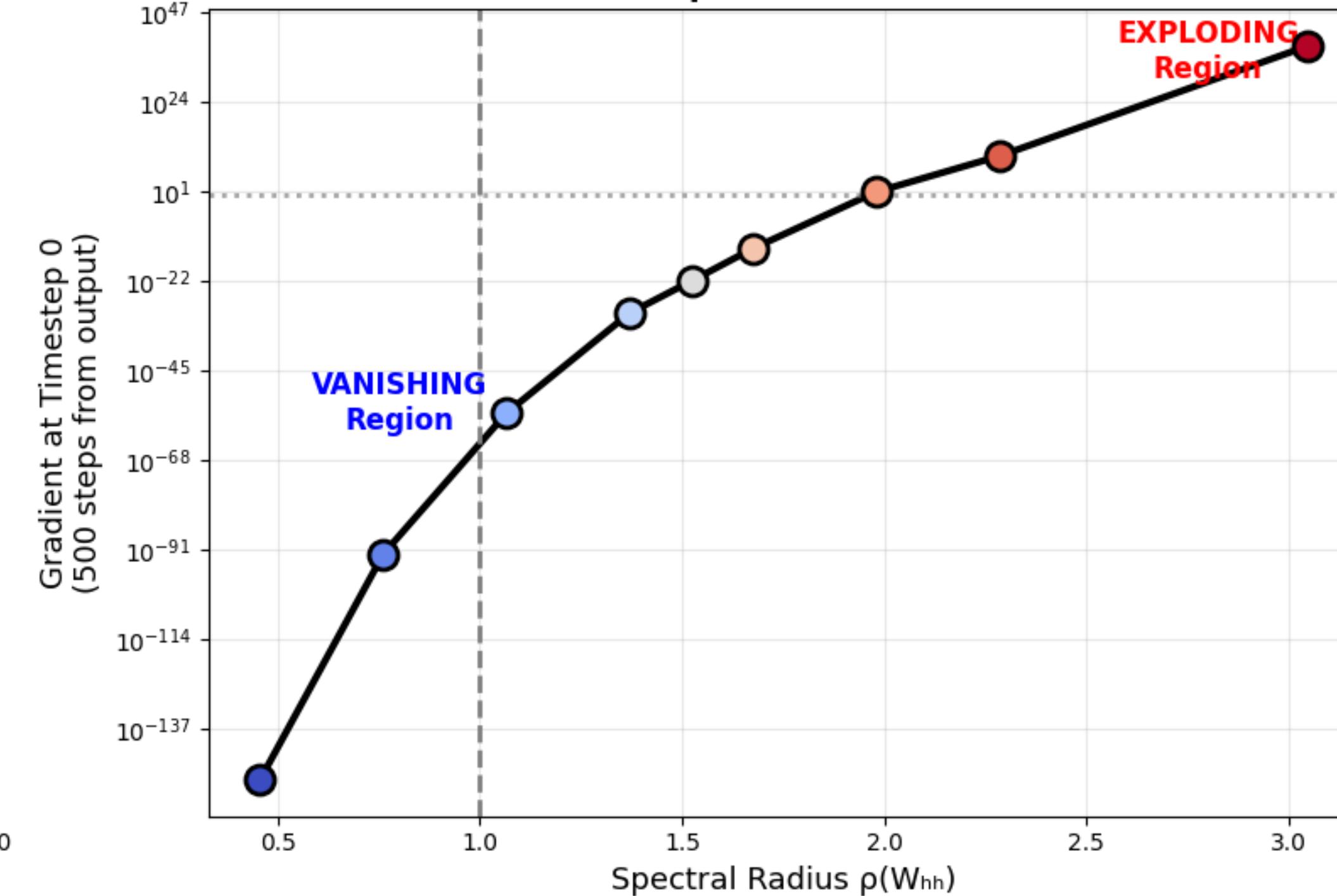
Hidden State (h)

Output Vector (y)

Real Tanh RNN: Gradient Flow Through 500 Timesteps
 (Single layer RNN with tanh activation)

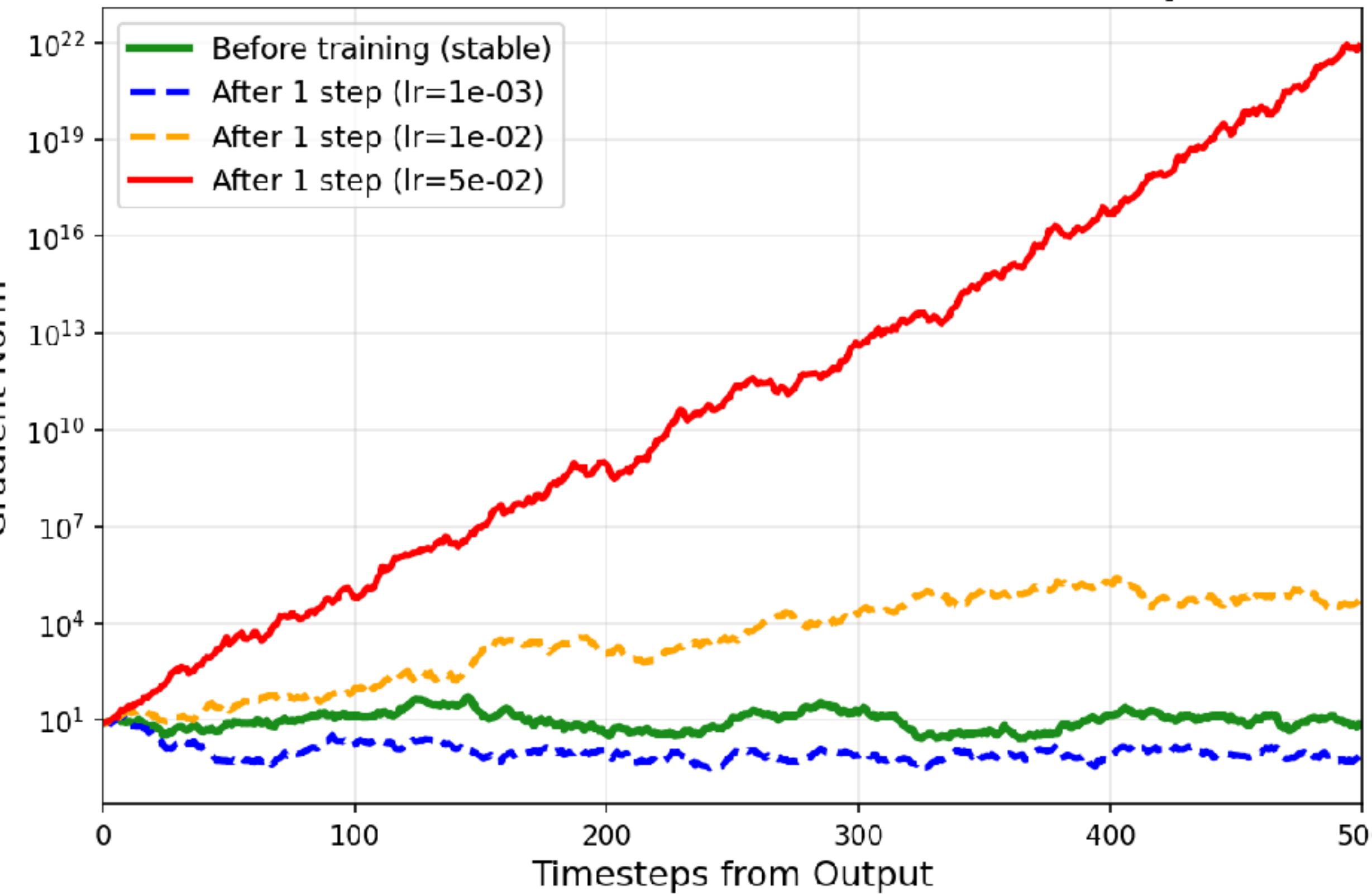


Gradient Reaching First Timestep
 vs Spectral Radius

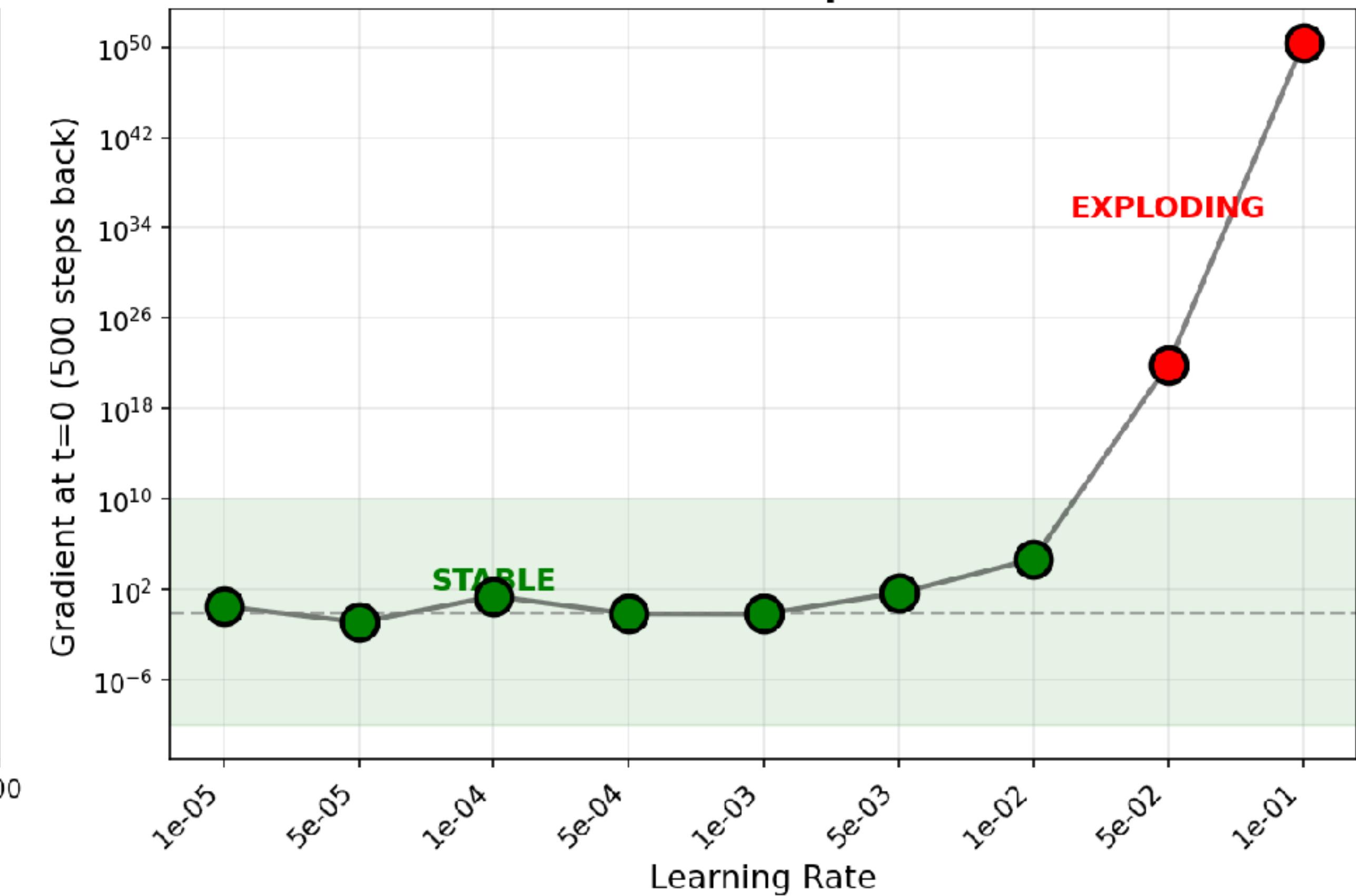


Training Instability: One Gradient Step Destroys Careful Initialization

Gradient Flow: Before vs After ONE Gradient Update



**Gradient Reaching First Timestep
After ONE Update**



Mitigating Long Context Issues in RNNs

Any suggestions?

Mitigating Long Context Issues in RNNs

Any suggestions?

Adam EMA will be too slow

Any update can lead to collapse/explosion

Constrain the parameters singular values!

Mitigating Long Context Issues in RNNs

Efficient Orthogonal Parametrisation of Recurrent Neural Networks Using Householder Reflections

Zakaria Mhammedi^{1,2} Andrew Hellicar² Ashfaqur Rahman² James Bailey¹

Unitary Evolution Recurrent Neural Networks

Martin Arjovsky ^{*}

Amar Shah ^{*}

Yoshua Bengio

Universidad de Buenos Aires, University of Cambridge,
Université de Montréal. Yoshua Bengio is a CIFAR Senior Fellow.

MARJOVSKY@DC.UBA.AR
AS793@CAM.AC.UK

projUNN: efficient method for training deep networks with unitary matrices

Bobak T. Kiani
MIT
bkiani@mit.edu

Randall Balestrieri
Meta AI, FAIR
rbalestrieri@fb.com

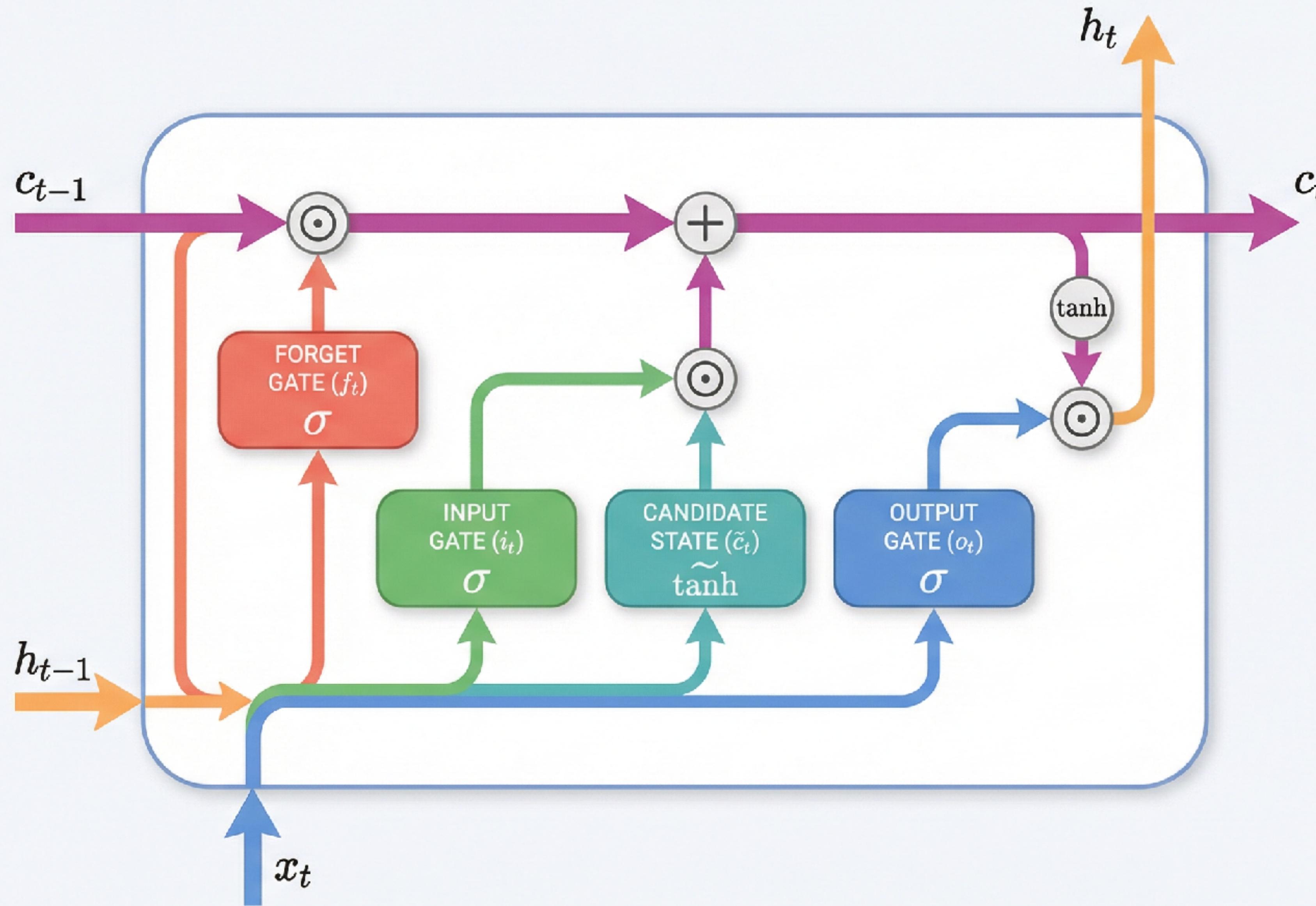
Yann LeCun
NYU & Meta AI, FAIR
yann@fb.com

Seth Lloyd
MIT & Turing Inc.
slloyd@mit.edu

Mitigating Long Context Issues in RNNs

Any idea on how to enforce orthogonal/unitary W ?

LSTM Cell



Equations

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{c}_t = \tanh(W_c \cdot [h_{t-1}, x_t] + b_c)$$

$$c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$$

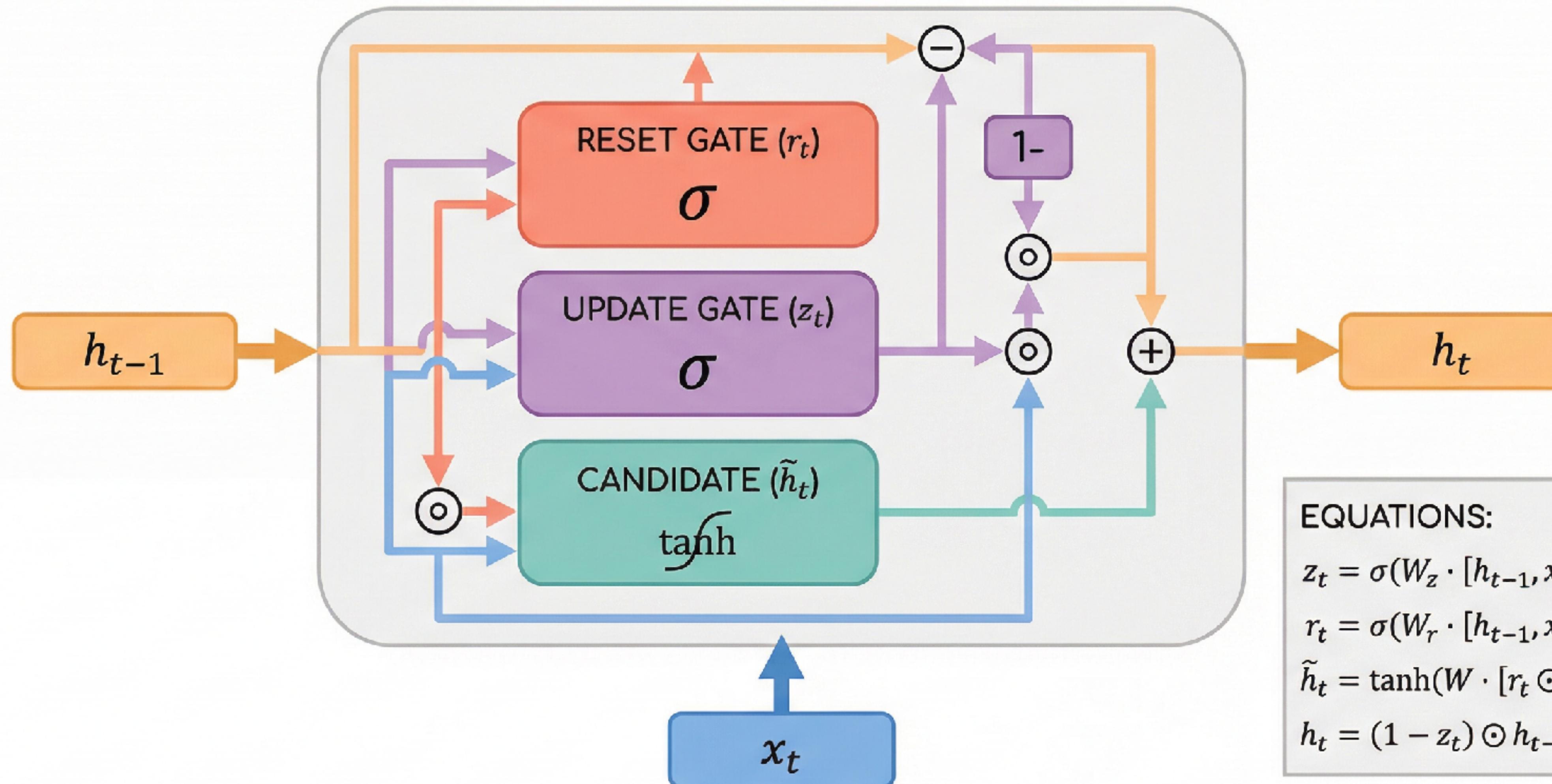
$$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$$

$$h_t = o_t \odot \tanh(c_t)$$

Legend

FORGET GATE (f_t)	Decides what to discard from cell state
INPUT GATE (i_t)	Decides what new info to store
CANDIDATE STATE (\tilde{c}_t)	Proposes new values
OUTPUT GATE (o_t)	Decides what to output
c_{t-1}/c_t (Cell State)	Memory Highway
σ	Sigmoid
\tanh	Hyperbolic Tangent
\odot	Element-wise Multiplication
$+$	Addition

GRU Cell



EQUATIONS:

$$z_t = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z)$$

$$r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r)$$

$$\tilde{h}_t = \tanh(W \cdot [r_t \odot h_{t-1}, x_t] + b)$$

$$h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t$$

LEGEND:

- Reset gate: controls how much past to use for candidate
 - Update gate: controls interpolation between old and new
- "GRU: 2 gates, no separate cell state"

Try it!

RNN

```
class torch.nn.RNN(input_size, hidden_size, num_layers=1, nonlinearity='tanh',
bias=True, batch_first=False, dropout=0.0, bidirectional=False, device=None,
dtype=None)
```

[\[source\]](#)

LSTM

```
class torch.nn.LSTM(input_size, hidden_size, num_layers=1, bias=True, batch_first=False,
dropout=0.0, bidirectional=False, proj_size=0, device=None, dtype=None) #
```

[\[source\]](#)

GRU

```
class torch.nn.GRU(input_size, hidden_size, num_layers=1, bias=True, batch_first=False,
dropout=0.0, bidirectional=False, device=None, dtype=None)
```

[\[source\]](#)

Questions?