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Word Tokenizer

T hey went t o t he groecery s t or e and b ought breaid

Split on spaces — 9 tokens

“They" "went" “to" “the" “grocery" “store" “and" “bought™ "bread"

vocab size
= 50,000



Vocabulary:

Character Tokenizer
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Average Sequence Length vs Vocabulary Size
for Different Tokenizers
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Unigram (N=1): Predict next token from 1 previous token

predicts
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to the grocery store and bought bread
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Full History: Predict next token from ALL previous tokens
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Context size: 1
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Vanilla RNN Layer

hy = tanh(Wgp, - ; + Why - hi—1 + bp)
Y= Why ; ht <+ by

. Input Vector (x) . Hidden State (h)

. Output Vector (y)



Vanilla RNN Layer
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hy = tanh(Wyp, - 1 + Whp, - hi—1 + by)
Y= Why ; ht < b'y
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Vanilla RNN Layer

\ | i ht = tanh(Wmh =Tt Whh . ht—l o bh)
ht_l . | ht | \ ht+1 | Yt = Why - bt + by
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Gradient Norm (log scale)

Real Tanh RNN: Gradient Flow Through 500 Timesteps Gradient Reaching First Timestep

(Single layer RNN with tanh activation) vs Spectral Radius
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Training Instability: One Gradient Step Destroys Careful Initialization

Gradient Reaching First Timestep

Gradient Flow: Before vs After ONE Gradient Update After ONE Update
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Mitigating Long Context Issues in RNNs

Any suggestions?



Mitigating Long Context Issues in RNNs

Any suggestions?

Adam EMA will be too slow
Any update can lead to collapse/explosion

Constrain the parameters singular values!



Mitigating Long Context Issues in RNNs
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Mitigating Long Context Issues in RNNs

Any idea on how to enforce orthogonal/unitary W?
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Equations

fi = o(Wj - [ht—1, ] + by)

it = (Wi - [he—1, ] + b;)

¢; = tanh(W, - [ht—la xt] + be)
Ct =ft®ct_1 +it®fz’t

o = a(W, [h,t_l,:rt] + b,)

hi = o © tanh(c;)

Legend

Decides what to discard

FORGET GATE (f;) |ripyss

Decides what new info
to store

INPUT GATE (4,)

LD IS PSRN Proposes new values

SRR IR Decides what to output

o / C¢ (Cell State)  Memory Highway

O  tanh O, —+

Sigmoid  Hyperbolic  Element-wise Addition
Tangent Multiplication



GRU Cell

LEGEND:
- Reset gate: controls how much past to use for candidate - Update gate: controls interpolation between old and new
"GRU: 2 gates, no separate cell state”

EQUATIONS:
ze = o(W; - [he-1,%¢] + by)

re = (W - [he-1, %] + b;)

hy = tanh(W - [, © hy_1, X¢] + b)
hy=(1—-2)Qhi_1+2,0h,




Try it!

RNN #

class torch.nn.RNN(input size, hidden size, num_layers=1, nonlinearity='tanh',
bias=True, batch_first=False, dropout=0.0, bidirectional=False, device=None,

dtype=None) [sourcel

LSTM

class torch.nn.LSTM(input size, hidden size, num_layers=1, bias=True, batch first=False,

dropout=0.0, bidirectional=False, proj_size=0, device=None, dtype=None) # Isource]

GRU

class torch.nn.GRU(input size, hidden size, num_layers=1, bias=True, batch_first=False,

dropout=0.0, bidirectional=False, device=None, dtype=None) [source]




Questions?



