Deep Learning (1470)

Randall Balestriero

Class 10: Sequential Data and Language Modeling
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Recap!

 What is dropout?
 What is drop path?

 Why do we need to learn about residual connections and batch norm?



Sequential data

- Audio - Stock market
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- Weather
- DNA
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Natural Language

e Sequence of words

» "They went to the grocery store and bought breag ut butter, and

jam.

e Spam detectic
 Can be used for generative tasks
e Content creation

e Assistant



Language Modeling

How to represent language: tokenization

“They went to the grocery store and bought bread,
peanut butter, and jam.

- Consistent casing [“they”, “went”, “to”, “the”,
- Strip punctuation “grocery”, “store”, “and”,
PP

-One word is one token  bought™, “bread”, “peanut”,

(1} b 3 €€ b 3 €€ b 3
_Split on spaces butter”, “and”, “jam”]
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Language Modeling

How to represent language: tokenization

 Choose a hyperparameter vocab_size for how many words the model should
Know

 Keep only the vocab size most frequent words and replace everything else
with [UNK]

- “They galloped to the Ratty for dinner, and ate exactly
seventy-three waffle fries and chocolate peamilk.”

_ [ ﬂ't hey)), l"‘{]"" .S'_,‘.-, ﬂ'.toj), ((the))’ MHJ ﬂf,_i,::, ((_For)), (‘dinner,)),
“and”, “ate”, “exactly”, “UNK”, “waffle”, “fries”,
“and”, “chocolate™, “UNK”]



Language Modeling

How to represent language: tokenization

 Choose a hyperparameter for how many words the model should
Know

 Keep only the most frequent words and replace everything else
with [UNK]

 More complicated tokenization strategies: can you think of another example?
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Language Modeling

How to model language: conditional probability

» p(token;, token,, token;) = p(token,)p(token, | token,)p(token, | token,, token,)

P(“they went to the store”) = P(“they”)*P(“went”|“they”)*P(“to”|“they went *)* ..

What is the size of the transition matrix?

Quickly becomes intractable and with most sequences having 0 probability



Language Modeling

How to model language: conditional probability

- Goal: predict next word given a preceding sequence

Count(word,,word,,..word,,_,,word,,)

- P(word,,| word,,word,, ...word,,_1) =
( nl L 2’ n-1) Count(word,,word,,..word,_)

- Example task: predict the next word
- he danced

- Strategy: iterate through all words in vocabulary, and calculate

Count(he danced <word>)
- for each word
Count(he danced)



Language Modeling

How to model language: conditional probability

- Our training sentences were: Count(he danced < word >)

Count(he danced)

- “She danced happily”

- “They sang beautifully”

- “He danced energetically”
- “He sang happily”

- “She danced gracefully”

-“He danced _ _ _~

-“He danced happily”



Language Modeling

How to model language: conditional probability

Improvement: N-gram model — only look at N words at a time
(in this case, bigrams look at 2 words at a time)

-“danced happily”
-“sang beautifully”
-“danced energetically”
-“sang happily”
-“danced gracefully”

“He danced happily” now has 1/3 probability!

But what if the answer was “He danced beautifully”?
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Language Modeling

How to model language: conditional probability

Improvement: N-gram model — only look at N words at a time
(in this case, bigrams look at 2 words 2

-“danced
-“sang bea
-“danced e
-“sang hapy
-“danced gracefully”

“He danced happily” now has 1/3 probability!

But what if the answer was “He danced beautifully” ?
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Language Modeling

How to model language: Deep Networks

» We can model p(token, | token,, ..., token,_,;) = f,(token,, ..

* |s that a regression or a classification task?
« How many classes do we have?

 What do you think is a good architecture?

., token,_)



Questions?



