
Deep Learning

Eric Ewing

CSCI 1470

Thursday,
10/2/25

Day 9: ResNet and 
Adversarial Learning



Depth is 
increasing ☺

But… other 
problems start 
to occur 

Each blue and green box 
contain a reLU operation



≤1
Adding more layers adds more 

terms with gradient ≤1

Multiplying by terms ≤1 makes 
things smaller…

Gradients earlier in the network 
tend to “Vanish”















Tensorflow

Option #1: Residual Block
 tfm.vision.layers.ResidualBlock(filters, strides)

Option #2:
 

https://keras.io/examples/vision/edsr/

Original Input Intermediate Output















Motivation of BatchNorm

• Reduce “internal co-variate shift”
• Neural networks are trained on a certain distribution of data and 

are expected to be tested on the same distribution
• If we were to scale the colors of an image significantly at test time, 

we wouldn’t expect a neural network to do well
• The same can be said for our intermediate layers

• They expect a certain distribution of inputs, if that changes significantly 
from example to example, it will be hard to learn

• (Most commonly cited reason for using BatchNorm)



The only issue is that controlling internal 
covariate shift does not matter that much…



BatchNorm makes the loss landscape smoother 
with fewer local minima, saddle points, and other 
problematic areas for gradient descent



Theory, intuition, and experimental results can all tell you different 
things

Why does BatchNorm work so well?
Intuition: If normalizing input data 
works so well for training, why not 
normalize input features to 
intermediate layers?

Theory/experiments: Makes 
gradients of loss function “better”

Why do CNNs work so well?
Intuition: Looking for a way to get 
“spatial reasoning” or translational 
invariance

Theory/experiments: Maybe it’s just 
that using fewer weights lets us go 
deeper and deep networks learn 
better (and also they have spatial 
reasoning)



Depth Giveth and Depth Taketh Away

Resnet trained on image classification task



Depth Giveth and Depth Taketh Away

Resnet trained on image classification task

What’s the 
problem?



Dealing with Overfitting (Again)

Option #1: Hyperparameter Tuning
 - Try a shallower network
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Dealing with Overfitting (Again)

Option #1: Hyperparameter Tuning
 - Try a shallower network

The size of the linear layer is controlled by number of max-pools
Fewer convolutions could actually increase weights in the network…



Dealing with Overfitting (Again)

Option #1: Hyperparameter Tuning
 - Try a shallower network
 - Fewer channels in convolutions



Hyperparameter Tuning

• Manually tuning parameters is seen by DL practitioners as a bit 
“old fashioned”
• The goal of deep learning is to automatically find good models in a general 

way
• Any human-driven heuristic approach makes the process specific
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way
• Any human-driven heuristic approach makes the process specific

Can we write a method to ___ and then run deep learning on that output?
(center the image, recognize letters on signs, label parts of a sentence)
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The biggest lesson that can be read from 70 years of AI research is that 
general methods that leverage computation are ultimately the most 
effective, and by a large margin.
 Richard Sutton



The Bitter Lesson of AI

The biggest lesson that can be read from 70 years of AI research is that 
general methods that leverage computation are ultimately the most 
effective, and by a large margin.
 Richard Sutton

1) AI researchers have often tried to build knowledge into their agents
2) This always helps in the short term, and is personally satisfying to the 

researcher, but
3) In the long run it plateaus and even inhibits further progress
4) Breakthrough progress eventually arrives by an opposing approach 

based on scaling computation by search and learning.



Hyperparameter Tuning

• Manually tuning parameters is seen by DL practitioners as a bit 
“old fashioned”
• The goal of deep learning is to automatically find good models in a general 

way
• Any human-driven heuristic approach makes the process specific

Can we write a method to ___ and then run deep learning on that output?
(center the image, recognize letters on signs, label parts of a sentence)

Manual hyperparameter tuning is a flaw that 
needs to be overcome



Dealing with Overfitting (Again)

Option #1: Hyperparameter Tuning
 - Try a shallower network
 - Fewer channels in convolutions

Option #2: Regularization
 - “Encourage” model to be lower complexity



Regularization: L2 Norm Penalty

Intuition: high degree polynomials typically don’t 
work for regression tasks because they overfit.

When they overfit, the parameters of some terms 
get very large.

Let’s penalize the model for having large 
parameters.
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Regularization: L2 Norm Penalty

Intuition: high degree polynomials typically don’t 
work for regression tasks because they overfit.

When they overfit, the parameters of some terms 
get very large.

Let’s penalize the model for having large 
parameters.

Original Loss=𝑀𝑆𝐸(𝑦, ො𝑦)

L2 Regularization Loss =𝑀𝑆𝐸(𝑦, ො𝑦) + 𝜆 𝑤0
2 + 𝑤1

2 + 𝑤2
2…

1

2

L2 Norm (2 refers to power)



Regularization L2 Norm Penalty

• Why do neural networks overfit? Perhaps their weights get large as 
well.

• Can add a penalty to all weights or individual layers
• Smaller weights → simpler function learned



Regularization: Dropout

Image source https://www.istockphoto.com/illustrations/indoor-climbing 





























Recap

Residual blocks prevent 
vanishing gradients

BatchNorm helps to stabilize 
training as networks get deep

Regularization is a somewhat 
automated way of preventing 

overfitting



The Real World

• Hey, your models work great!
• Let’s deploy them to the real world!
• What could go wrong?

Papernot et al. Practical Black-Box Attacks against Machine Learning
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The Real World

• Hey, your models work great!
• Let’s deploy them to the real world!
• What could go wrong?

Stop Sign: 99% Yield Sign: 99%

Papernot et al. Practical Black-Box Attacks against Machine Learning



Adversarial Learning

- Can we (or adversaries) break our deep learning models
- Adversarial Attack: Can we add a small amount of noise to an 

input that results in a misclassification?
- Data Poisoning: Can we insert data in the training dataset that 

corrupts the model’s training?



Objective

• In Deep Learning, our objective is to minimize loss
• What do you think the objective of our adversary is?
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Want to follow direction of 
gradient (Gradient Ascent)
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Objective

• In Deep Learning, our objective is to minimize loss
• What do you think the objective of our adversary is?
• What does our adversary have control of?

• Input data?
• Training Data?
• Our model? (Uh oh)

Most Commonly Studied



Normal Training:
- Compute gradients wrt weights and biases
- Update via gradient descent

Adversarial Example:
- Compute gradients wrt input
- Update input via gradient ascent



Normal Training:
- Compute gradients wrt weights and biases
- Update via gradient descent

Adversarial Example:
- Compute gradients wrt input
- Update input via gradient ascent

Learning a transformation to 
an input



Attack Model

We do not expect to be able to withstand an attacker with unlimited 
power.
If attackers can add unlimited noise, they can just change the image 
entirely.



Threat Model

• We limit the power of the attacker
• Attacks must fall within some 𝐿𝑝-Ball of radius r

• 𝐿1-Ball: Sum of noise must be below r
• 𝐿2-Ball: Square root ( sum of squared noise for each pixel) must be below 

r
• 𝐿∞-Ball: Largest individual value of attack noise must be below r



https://medium.com/towards-data-science/know-your-enemy-7f7c5038bdf3

Gradient Ascent around 
an input sample

What happens if we hit the 
constraint and can’t keep 

following the gradient?



Constrained Optimization

• Projected Gradient Ascent (PGA):
• Run Gradient Ascent
• If noise goes outside of constraint set, project back into constraint set

(Picture is for minimization)

https://www.researchgate.net/publication/358122337_Adaptive_Model_for_Magnetic_Particle_Mapping_Using_Magnetoelectric_Sensors



How big of a problem is this?

• Most models will never be under threat from 
adversarial attacks

• But doesn’t this tell us something new about our 
models?



How big of a problem is this?

• Most models will never be under threat from 
adversarial attacks

• But doesn’t this tell us something new about our 
models?

Fictional Character
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Why Adversarial Attacks Work

We assume our 
datasets are IID (Train 

set looks like validation 
set looks like test set)

Adversarial attacks 
change the distribution 

of the test set

Performance on training 
set/validation set is no 
longer indicative of test 

performance



What did we learn in the first place?

If such small noise can change the outputs of our network, it clearly 
is not making decisions in the way that humans do.
It isn’t always making decisions about stop signs based on color, 
shape, or text…

YieldStop Sign



What did we learn in the first place?

Deep learning learns the “easiest” good representation, which can 
be very brittle and break under small perturbations

YieldStop Sign
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Defenses

How can we make more robust models?
• Ensembles

• Train multiple different models average results
• (Can make models more robust, but not resistant to adversarial attacks)

• Data Augmentation?
• Just add lots of random noise to inputs while training?
• Add in Adversarial Examples while training?

• Provably Robust Networks
• Lipschitz Continuity!



Attack Transfer

Adversarial Examples tend to fool other networks as well

YieldStop Sign



Attack Transfer

Adversarial Examples tend to fool other networks as well

YieldStop Sign

If this attack was made using ResNet, it would likely work against VGG



Attack Transfer

• This also gives us another tool for adversarial attacks
• Suppose the model we are trying to break is not public (i.e., you 

can’t find the gradients)
• Black-box attack:

• Train a “surrogate” model on the same dataset
• Construct an adversarial example that works against your surrogate 

model
• Send attack to original model



Data Augmentation

If breaking the IID assumption caused 
our issues, can we just change the 
distribution of the training set?



Data Augmentation

What if we just add lots of images with small amounts of random 
noise to our training data?
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Cannot have enough new data to densely sample a high 
dimensional ball around each original input (number of points 
required grows exponentially with dimension)



Data Augmentation

What if we just add lots of images with small amounts of random 
noise to our training data?

Cannot have enough new data to densely sample a high 
dimensional ball around each original input (number of points 
required grows exponentially with dimension)

Holes will still exist where your network can be exploited



Adversarial Training
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New Training Objective: Train a network that has lowest loss when 
attacked
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Adversarial Training

New Training Objective: Train a network that has lowest loss when 
attacked

min
𝜃

max
𝜖

𝐿(𝑥 + 𝜖)

Min-Max optimization problem can utilize sets of techniques from  
adversarial game theory



Adversarial Training

For each batch:
 Network produces output 𝑦𝑝𝑟𝑒𝑑
 Attacker finds attack noise 𝜖
 𝑦𝑎𝑑𝑣 = 𝑦𝑝𝑟𝑒𝑑 + 𝜖

 Compute loss 𝐿(𝑦𝑎𝑑𝑣, 𝑦)
 Run SGD to update weights
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Adversarial Training

For each batch:
 Network produces output 𝑦𝑝𝑟𝑒𝑑
 Attacker finds attack noise 𝜖
 𝑦𝑎𝑑𝑣 = 𝑦𝑝𝑟𝑒𝑑 + 𝜖

 Compute loss 𝐿(𝑦𝑎𝑑𝑣, 𝑦)
 Run SGD to update weights

Another whole gradient 
descent process

Adversary makes move 
(generates noise)

Defender responds 
(updates weights)What are the tradeoffs of 

using adversarial training?



Provably Robust Networks



Provably Robust Networks

Can we guarantee our 
network will not deviate 
too much within some 

radius?



Maximum Gradient

If we knew the maximum 
gradient c = ∇𝜖𝐿, then we know 
that our loss function can 
change up to 𝑐 ⋅ 𝑟

If we can bound the gradient of a function to some 
constant c, that function is Lipschitz Continuous.



Maximum Gradient

If we knew the maximum 
gradient c = ∇𝜖𝐿, then we know 
that our loss function can 
change up to 𝑐 ⋅ 𝑟

Why is this true?

If we can bound the gradient of a function to some 
constant c, that function is Lipschitz Continuous.



Lipschitz Continuity

sin 𝑥  is Lipschitz Continuous, 
it has a maximum derivative of 1

𝑥2 is not Lipschitz Continuous, it 
does not have a maximum derivative



Are Neural Networks Lipschitz Continuous?
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Are Neural Networks Lipschitz Continuous?

• If f and g are both Lipschitz continuous functions, then h=f(g(x)) is 
also Lipschitz continuous.

• Gradients are determined by weight layers and activation 
functions

• Assume ReLU activation for simplicity (maximum derivative of 1)
• Maximum gradient possible is determined by weights of network 

(which are finite)
• Lipschitz constant c may be very large, but it exists
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Limiting Lipschitz Constant

• It can be shown that the Lipschitz Constant for a single weight 
matrix W is the largest singular value of that matrix
• The largest Singular Value is the square root of the largest eigenvalue of 

the matrix 𝑊𝑇𝑊

• If we want to limit the Lipschitz Constant for a single layer, we just 
have to divide by that Singular Value…
• Can divide by 2 * Singular value to limit Lipschitz constant to 1/2

• This is called Spectral Normalization



Lipschitz Continuity

• Adding SpectralNormalization to layers, like BatchNorm, can help 
networks learn smoother loss functions

• Can make models (slightly more) robust to adversarial attacks
• The downside is that it is a much more restrictive condition on the 

network and the network may no longer learn good policies



Also for other applications…

Many physical phenomena are also Lipschitz 
Continuous

If you are trying to predict a physical phenomena, it 
may make sense to use Lipschitz continuity 
regardless of adversarial attacks.

Shi et al. Neural Swarm. 2022



Takeaways

Adversarial Attacks show how 
brittle models can be

Studying them gives us insights 
into what our networks learn

Defenses that make models 
robust against attacks probably 
also make them robust against 

other disturbances as well


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Tensorflow
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Motivation of BatchNorm
	Slide 18: The only issue is that controlling internal covariate shift does not matter that much…
	Slide 19: BatchNorm makes the loss landscape smoother with fewer local minima, saddle points, and other problematic areas for gradient descent
	Slide 20
	Slide 21: Depth Giveth and Depth Taketh Away
	Slide 22: Depth Giveth and Depth Taketh Away
	Slide 23: Dealing with Overfitting (Again)
	Slide 24: Dealing with Overfitting (Again)
	Slide 25: Dealing with Overfitting (Again)
	Slide 26: Dealing with Overfitting (Again)
	Slide 27: Hyperparameter Tuning
	Slide 28: Hyperparameter Tuning
	Slide 29: The Bitter Lesson of AI
	Slide 30: The Bitter Lesson of AI
	Slide 31: Hyperparameter Tuning
	Slide 32: Dealing with Overfitting (Again)
	Slide 33: Regularization: L2 Norm Penalty
	Slide 34: Regularization: L2 Norm Penalty
	Slide 35: Regularization: L2 Norm Penalty
	Slide 36: Regularization L2 Norm Penalty
	Slide 37: Regularization: Dropout
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Recap
	Slide 52: The Real World
	Slide 53: The Real World
	Slide 54: The Real World
	Slide 55: The Real World
	Slide 56: The Real World
	Slide 57: Adversarial Learning
	Slide 58: Objective
	Slide 59: Objective
	Slide 60: Objective
	Slide 61: Objective
	Slide 62: Objective
	Slide 63
	Slide 64
	Slide 65: Attack Model
	Slide 66: Threat Model
	Slide 67
	Slide 68: Constrained Optimization
	Slide 69: How big of a problem is this?
	Slide 70: How big of a problem is this?
	Slide 71: Why Adversarial Attacks Work
	Slide 72: Why Adversarial Attacks Work
	Slide 73: Why Adversarial Attacks Work
	Slide 74: Why Adversarial Attacks Work
	Slide 75: What did we learn in the first place?
	Slide 76: What did we learn in the first place?
	Slide 77: Defenses
	Slide 78: Defenses
	Slide 79: Defenses
	Slide 80: Defenses
	Slide 81: Defenses
	Slide 82: Attack Transfer
	Slide 83: Attack Transfer
	Slide 84: Attack Transfer
	Slide 85: Data Augmentation
	Slide 86: Data Augmentation
	Slide 87: Data Augmentation
	Slide 88: Data Augmentation
	Slide 89: Adversarial Training
	Slide 90: Adversarial Training
	Slide 91: Adversarial Training
	Slide 92: Adversarial Training
	Slide 93: Adversarial Training
	Slide 94: Adversarial Training
	Slide 95: Adversarial Training
	Slide 96: Adversarial Training
	Slide 97: Provably Robust Networks
	Slide 98: Provably Robust Networks
	Slide 99: Maximum Gradient
	Slide 100: Maximum Gradient
	Slide 101: Lipschitz Continuity
	Slide 102: Are Neural Networks Lipschitz Continuous?
	Slide 103: Are Neural Networks Lipschitz Continuous?
	Slide 104: Are Neural Networks Lipschitz Continuous?
	Slide 105: Are Neural Networks Lipschitz Continuous?
	Slide 106: Are Neural Networks Lipschitz Continuous?
	Slide 107: Are Neural Networks Lipschitz Continuous?
	Slide 108: Limiting Lipschitz Constant
	Slide 109: Limiting Lipschitz Constant
	Slide 110: Limiting Lipschitz Constant
	Slide 111: Limiting Lipschitz Constant
	Slide 112: Lipschitz Continuity
	Slide 113: Also for other applications…
	Slide 114: Takeaways

