
Deep Learning

Eric Ewing

CSCI 1470

Thursday,
10/2/25

Day 9: ResNet and
Adversarial Learning

Depth is
increasing ☺

But… other
problems start
to occur 

Each blue and green box
contain a reLU operation

≤1
Adding more layers adds more

terms with gradient ≤1

Multiplying by terms ≤1 makes
things smaller…

Gradients earlier in the network
tend to “Vanish”

Tensorflow

Option #1: Residual Block
 tfm.vision.layers.ResidualBlock(filters, strides)

Option #2:

https://keras.io/examples/vision/edsr/

Original Input Intermediate Output

Motivation of BatchNorm

• Reduce “internal co-variate shift”
• Neural networks are trained on a certain distribution of data and

are expected to be tested on the same distribution
• If we were to scale the colors of an image significantly at test time,

we wouldn’t expect a neural network to do well
• The same can be said for our intermediate layers

• They expect a certain distribution of inputs, if that changes significantly
from example to example, it will be hard to learn

• (Most commonly cited reason for using BatchNorm)

The only issue is that controlling internal
covariate shift does not matter that much…

BatchNorm makes the loss landscape smoother
with fewer local minima, saddle points, and other
problematic areas for gradient descent

Theory, intuition, and experimental results can all tell you different
things

Why does BatchNorm work so well?
Intuition: If normalizing input data
works so well for training, why not
normalize input features to
intermediate layers?

Theory/experiments: Makes
gradients of loss function “better”

Why do CNNs work so well?
Intuition: Looking for a way to get
“spatial reasoning” or translational
invariance

Theory/experiments: Maybe it’s just
that using fewer weights lets us go
deeper and deep networks learn
better (and also they have spatial
reasoning)

Depth Giveth and Depth Taketh Away

Resnet trained on image classification task

Depth Giveth and Depth Taketh Away

Resnet trained on image classification task

What’s the
problem?

Dealing with Overfitting (Again)

Option #1: Hyperparameter Tuning
 - Try a shallower network

Dealing with Overfitting (Again)

Option #1: Hyperparameter Tuning
 - Try a shallower network

Dealing with Overfitting (Again)

Option #1: Hyperparameter Tuning
 - Try a shallower network

The size of the linear layer is controlled by number of max-pools
Fewer convolutions could actually increase weights in the network…

Dealing with Overfitting (Again)

Option #1: Hyperparameter Tuning
 - Try a shallower network
 - Fewer channels in convolutions

Hyperparameter Tuning

• Manually tuning parameters is seen by DL practitioners as a bit
“old fashioned”
• The goal of deep learning is to automatically find good models in a general

way
• Any human-driven heuristic approach makes the process specific

Hyperparameter Tuning

• Manually tuning parameters is seen by DL practitioners as a bit
“old fashioned”
• The goal of deep learning is to automatically find good models in a general

way
• Any human-driven heuristic approach makes the process specific

Can we write a method to ___ and then run deep learning on that output?
(center the image, recognize letters on signs, label parts of a sentence)

The Bitter Lesson of AI

The biggest lesson that can be read from 70 years of AI research is that
general methods that leverage computation are ultimately the most
effective, and by a large margin.
 Richard Sutton

The Bitter Lesson of AI

The biggest lesson that can be read from 70 years of AI research is that
general methods that leverage computation are ultimately the most
effective, and by a large margin.
 Richard Sutton

1) AI researchers have often tried to build knowledge into their agents
2) This always helps in the short term, and is personally satisfying to the

researcher, but
3) In the long run it plateaus and even inhibits further progress
4) Breakthrough progress eventually arrives by an opposing approach

based on scaling computation by search and learning.

Hyperparameter Tuning

• Manually tuning parameters is seen by DL practitioners as a bit
“old fashioned”
• The goal of deep learning is to automatically find good models in a general

way
• Any human-driven heuristic approach makes the process specific

Can we write a method to ___ and then run deep learning on that output?
(center the image, recognize letters on signs, label parts of a sentence)

Manual hyperparameter tuning is a flaw that
needs to be overcome

Dealing with Overfitting (Again)

Option #1: Hyperparameter Tuning
 - Try a shallower network
 - Fewer channels in convolutions

Option #2: Regularization
 - “Encourage” model to be lower complexity

Regularization: L2 Norm Penalty

Intuition: high degree polynomials typically don’t
work for regression tasks because they overfit.

When they overfit, the parameters of some terms
get very large.

Let’s penalize the model for having large
parameters.

Regularization: L2 Norm Penalty

Intuition: high degree polynomials typically don’t
work for regression tasks because they overfit.

When they overfit, the parameters of some terms
get very large.

Let’s penalize the model for having large
parameters.

Original Loss=𝑀𝑆𝐸(𝑦, ො𝑦)

L2 Regularization Loss =𝑀𝑆𝐸(𝑦, ො𝑦) + 𝜆 𝑤0
2 + 𝑤1

2 + 𝑤2
2…

1

2

Regularization: L2 Norm Penalty

Intuition: high degree polynomials typically don’t
work for regression tasks because they overfit.

When they overfit, the parameters of some terms
get very large.

Let’s penalize the model for having large
parameters.

Original Loss=𝑀𝑆𝐸(𝑦, ො𝑦)

L2 Regularization Loss =𝑀𝑆𝐸(𝑦, ො𝑦) + 𝜆 𝑤0
2 + 𝑤1

2 + 𝑤2
2…

1

2

L2 Norm (2 refers to power)

Regularization L2 Norm Penalty

• Why do neural networks overfit? Perhaps their weights get large as
well.

• Can add a penalty to all weights or individual layers
• Smaller weights → simpler function learned

Regularization: Dropout

Image source https://www.istockphoto.com/illustrations/indoor-climbing

Recap

Residual blocks prevent
vanishing gradients

BatchNorm helps to stabilize
training as networks get deep

Regularization is a somewhat
automated way of preventing

overfitting

The Real World

• Hey, your models work great!
• Let’s deploy them to the real world!
• What could go wrong?

Papernot et al. Practical Black-Box Attacks against Machine Learning

The Real World

• Hey, your models work great!
• Let’s deploy them to the real world!
• What could go wrong?

Stop Sign: 99%

Papernot et al. Practical Black-Box Attacks against Machine Learning

The Real World

• Hey, your models work great!
• Let’s deploy them to the real world!
• What could go wrong?

Stop Sign: 99%

Papernot et al. Practical Black-Box Attacks against Machine Learning

The Real World

• Hey, your models work great!
• Let’s deploy them to the real world!
• What could go wrong?

Stop Sign: 99% Yield Sign: 99%

Papernot et al. Practical Black-Box Attacks against Machine Learning

The Real World

• Hey, your models work great!
• Let’s deploy them to the real world!
• What could go wrong?

Stop Sign: 99% Yield Sign: 99%

Papernot et al. Practical Black-Box Attacks against Machine Learning

Adversarial Learning

- Can we (or adversaries) break our deep learning models
- Adversarial Attack: Can we add a small amount of noise to an

input that results in a misclassification?
- Data Poisoning: Can we insert data in the training dataset that

corrupts the model’s training?

Objective

• In Deep Learning, our objective is to minimize loss
• What do you think the objective of our adversary is?

Objective

• In Deep Learning, our objective is to minimize loss
• What do you think the objective of our adversary is?

Maximize (Test) Loss

Objective

• In Deep Learning, our objective is to minimize loss
• What do you think the objective of our adversary is?

Maximize (Test) Loss

Want to follow direction of
gradient (Gradient Ascent)

Objective

• In Deep Learning, our objective is to minimize loss
• What do you think the objective of our adversary is?
• What does our adversary have control of?

• Input data?
• Training Data?
• Our model? (Uh oh)

Objective

• In Deep Learning, our objective is to minimize loss
• What do you think the objective of our adversary is?
• What does our adversary have control of?

• Input data?
• Training Data?
• Our model? (Uh oh)

Most Commonly Studied

Normal Training:
- Compute gradients wrt weights and biases
- Update via gradient descent

Adversarial Example:
- Compute gradients wrt input
- Update input via gradient ascent

Normal Training:
- Compute gradients wrt weights and biases
- Update via gradient descent

Adversarial Example:
- Compute gradients wrt input
- Update input via gradient ascent

Learning a transformation to
an input

Attack Model

We do not expect to be able to withstand an attacker with unlimited
power.
If attackers can add unlimited noise, they can just change the image
entirely.

Threat Model

• We limit the power of the attacker
• Attacks must fall within some 𝐿𝑝-Ball of radius r

• 𝐿1-Ball: Sum of noise must be below r
• 𝐿2-Ball: Square root (sum of squared noise for each pixel) must be below

r
• 𝐿∞-Ball: Largest individual value of attack noise must be below r

https://medium.com/towards-data-science/know-your-enemy-7f7c5038bdf3

Gradient Ascent around
an input sample

What happens if we hit the
constraint and can’t keep

following the gradient?

Constrained Optimization

• Projected Gradient Ascent (PGA):
• Run Gradient Ascent
• If noise goes outside of constraint set, project back into constraint set

(Picture is for minimization)

https://www.researchgate.net/publication/358122337_Adaptive_Model_for_Magnetic_Particle_Mapping_Using_Magnetoelectric_Sensors

How big of a problem is this?

• Most models will never be under threat from
adversarial attacks

• But doesn’t this tell us something new about our
models?

How big of a problem is this?

• Most models will never be under threat from
adversarial attacks

• But doesn’t this tell us something new about our
models?

Fictional Character

Why Adversarial Attacks Work

Why Adversarial Attacks Work

We assume our
datasets are IID (Train

set looks like validation
set looks like test set)

Why Adversarial Attacks Work

We assume our
datasets are IID (Train

set looks like validation
set looks like test set)

Adversarial attacks
change the distribution

of the test set

Why Adversarial Attacks Work

We assume our
datasets are IID (Train

set looks like validation
set looks like test set)

Adversarial attacks
change the distribution

of the test set

Performance on training
set/validation set is no
longer indicative of test

performance

What did we learn in the first place?

If such small noise can change the outputs of our network, it clearly
is not making decisions in the way that humans do.
It isn’t always making decisions about stop signs based on color,
shape, or text…

YieldStop Sign

What did we learn in the first place?

Deep learning learns the “easiest” good representation, which can
be very brittle and break under small perturbations

YieldStop Sign

Defenses

Defenses

How can we make more robust models?

Defenses

How can we make more robust models?
• Ensembles

• Train multiple different models average results
• (Can make models more robust, but not resistant to adversarial attacks)

Defenses

How can we make more robust models?
• Ensembles

• Train multiple different models average results
• (Can make models more robust, but not resistant to adversarial attacks)

• Data Augmentation?
• Just add lots of random noise to inputs while training?
• Add in Adversarial Examples while training?

Defenses

How can we make more robust models?
• Ensembles

• Train multiple different models average results
• (Can make models more robust, but not resistant to adversarial attacks)

• Data Augmentation?
• Just add lots of random noise to inputs while training?
• Add in Adversarial Examples while training?

• Provably Robust Networks
• Lipschitz Continuity!

Attack Transfer

Adversarial Examples tend to fool other networks as well

YieldStop Sign

Attack Transfer

Adversarial Examples tend to fool other networks as well

YieldStop Sign

If this attack was made using ResNet, it would likely work against VGG

Attack Transfer

• This also gives us another tool for adversarial attacks
• Suppose the model we are trying to break is not public (i.e., you

can’t find the gradients)
• Black-box attack:

• Train a “surrogate” model on the same dataset
• Construct an adversarial example that works against your surrogate

model
• Send attack to original model

Data Augmentation

If breaking the IID assumption caused
our issues, can we just change the
distribution of the training set?

Data Augmentation

What if we just add lots of images with small amounts of random
noise to our training data?

Data Augmentation

What if we just add lots of images with small amounts of random
noise to our training data?

Cannot have enough new data to densely sample a high
dimensional ball around each original input (number of points
required grows exponentially with dimension)

Data Augmentation

What if we just add lots of images with small amounts of random
noise to our training data?

Cannot have enough new data to densely sample a high
dimensional ball around each original input (number of points
required grows exponentially with dimension)

Holes will still exist where your network can be exploited

Adversarial Training

Adversarial Training

New Training Objective: Train a network that has lowest loss when
attacked

Adversarial Training

New Training Objective: Train a network that has lowest loss when
attacked

min
𝜃

max
𝜖

𝐿(𝑥 + 𝜖)

Adversarial Training

New Training Objective: Train a network that has lowest loss when
attacked

min
𝜃

max
𝜖

𝐿(𝑥 + 𝜖)

Min-Max optimization problem can utilize sets of techniques from
adversarial game theory

Adversarial Training

For each batch:
 Network produces output 𝑦𝑝𝑟𝑒𝑑
 Attacker finds attack noise 𝜖
 𝑦𝑎𝑑𝑣 = 𝑦𝑝𝑟𝑒𝑑 + 𝜖

 Compute loss 𝐿(𝑦𝑎𝑑𝑣, 𝑦)
 Run SGD to update weights

Adversarial Training

For each batch:
 Network produces output 𝑦𝑝𝑟𝑒𝑑
 Attacker finds attack noise 𝜖
 𝑦𝑎𝑑𝑣 = 𝑦𝑝𝑟𝑒𝑑 + 𝜖

 Compute loss 𝐿(𝑦𝑎𝑑𝑣, 𝑦)
 Run SGD to update weights

Another whole gradient
descent process

Adversarial Training

For each batch:
 Network produces output 𝑦𝑝𝑟𝑒𝑑
 Attacker finds attack noise 𝜖
 𝑦𝑎𝑑𝑣 = 𝑦𝑝𝑟𝑒𝑑 + 𝜖

 Compute loss 𝐿(𝑦𝑎𝑑𝑣, 𝑦)
 Run SGD to update weights

Another whole gradient
descent process

Adversary makes move
(generates noise)

Defender responds
(updates weights)

Adversarial Training

For each batch:
 Network produces output 𝑦𝑝𝑟𝑒𝑑
 Attacker finds attack noise 𝜖
 𝑦𝑎𝑑𝑣 = 𝑦𝑝𝑟𝑒𝑑 + 𝜖

 Compute loss 𝐿(𝑦𝑎𝑑𝑣, 𝑦)
 Run SGD to update weights

Another whole gradient
descent process

Adversary makes move
(generates noise)

Defender responds
(updates weights)What are the tradeoffs of

using adversarial training?

Provably Robust Networks

Provably Robust Networks

Can we guarantee our
network will not deviate
too much within some

radius?

Maximum Gradient

If we knew the maximum
gradient c = ∇𝜖𝐿, then we know
that our loss function can
change up to 𝑐 ⋅ 𝑟

If we can bound the gradient of a function to some
constant c, that function is Lipschitz Continuous.

Maximum Gradient

If we knew the maximum
gradient c = ∇𝜖𝐿, then we know
that our loss function can
change up to 𝑐 ⋅ 𝑟

Why is this true?

If we can bound the gradient of a function to some
constant c, that function is Lipschitz Continuous.

Lipschitz Continuity

sin 𝑥 is Lipschitz Continuous,
it has a maximum derivative of 1

𝑥2 is not Lipschitz Continuous, it
does not have a maximum derivative

Are Neural Networks Lipschitz Continuous?

Are Neural Networks Lipschitz Continuous?

• If f and g are both Lipschitz continuous functions, then h=f(g(x)) is
also Lipschitz continuous.

Are Neural Networks Lipschitz Continuous?

• If f and g are both Lipschitz continuous functions, then h=f(g(x)) is
also Lipschitz continuous.

• Gradients are determined by weight layers and activation
functions

Are Neural Networks Lipschitz Continuous?

• If f and g are both Lipschitz continuous functions, then h=f(g(x)) is
also Lipschitz continuous.

• Gradients are determined by weight layers and activation
functions

• Assume ReLU activation for simplicity (maximum derivative of 1)

Are Neural Networks Lipschitz Continuous?

• If f and g are both Lipschitz continuous functions, then h=f(g(x)) is
also Lipschitz continuous.

• Gradients are determined by weight layers and activation
functions

• Assume ReLU activation for simplicity (maximum derivative of 1)
• Maximum gradient possible is determined by weights of network

(which are finite)

Are Neural Networks Lipschitz Continuous?

• If f and g are both Lipschitz continuous functions, then h=f(g(x)) is
also Lipschitz continuous.

• Gradients are determined by weight layers and activation
functions

• Assume ReLU activation for simplicity (maximum derivative of 1)
• Maximum gradient possible is determined by weights of network

(which are finite)
• Lipschitz constant c may be very large, but it exists

Limiting Lipschitz Constant

Limiting Lipschitz Constant

• It can be shown that the Lipschitz Constant for a single weight
matrix W is the largest singular value of that matrix
• The largest Singular Value is the square root of the largest eigenvalue of

the matrix 𝑊𝑇𝑊

Limiting Lipschitz Constant

• It can be shown that the Lipschitz Constant for a single weight
matrix W is the largest singular value of that matrix
• The largest Singular Value is the square root of the largest eigenvalue of

the matrix 𝑊𝑇𝑊

• If we want to limit the Lipschitz Constant for a single layer, we just
have to divide by that Singular Value…
• Can divide by 2 * Singular value to limit Lipschitz constant to 1/2

Limiting Lipschitz Constant

• It can be shown that the Lipschitz Constant for a single weight
matrix W is the largest singular value of that matrix
• The largest Singular Value is the square root of the largest eigenvalue of

the matrix 𝑊𝑇𝑊

• If we want to limit the Lipschitz Constant for a single layer, we just
have to divide by that Singular Value…
• Can divide by 2 * Singular value to limit Lipschitz constant to 1/2

• This is called Spectral Normalization

Lipschitz Continuity

• Adding SpectralNormalization to layers, like BatchNorm, can help
networks learn smoother loss functions

• Can make models (slightly more) robust to adversarial attacks
• The downside is that it is a much more restrictive condition on the

network and the network may no longer learn good policies

Also for other applications…

Many physical phenomena are also Lipschitz
Continuous

If you are trying to predict a physical phenomena, it
may make sense to use Lipschitz continuity
regardless of adversarial attacks.

Shi et al. Neural Swarm. 2022

Takeaways

Adversarial Attacks show how
brittle models can be

Studying them gives us insights
into what our networks learn

Defenses that make models
robust against attacks probably
also make them robust against

other disturbances as well

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Tensorflow
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Motivation of BatchNorm
	Slide 18: The only issue is that controlling internal covariate shift does not matter that much…
	Slide 19: BatchNorm makes the loss landscape smoother with fewer local minima, saddle points, and other problematic areas for gradient descent
	Slide 20
	Slide 21: Depth Giveth and Depth Taketh Away
	Slide 22: Depth Giveth and Depth Taketh Away
	Slide 23: Dealing with Overfitting (Again)
	Slide 24: Dealing with Overfitting (Again)
	Slide 25: Dealing with Overfitting (Again)
	Slide 26: Dealing with Overfitting (Again)
	Slide 27: Hyperparameter Tuning
	Slide 28: Hyperparameter Tuning
	Slide 29: The Bitter Lesson of AI
	Slide 30: The Bitter Lesson of AI
	Slide 31: Hyperparameter Tuning
	Slide 32: Dealing with Overfitting (Again)
	Slide 33: Regularization: L2 Norm Penalty
	Slide 34: Regularization: L2 Norm Penalty
	Slide 35: Regularization: L2 Norm Penalty
	Slide 36: Regularization L2 Norm Penalty
	Slide 37: Regularization: Dropout
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Recap
	Slide 52: The Real World
	Slide 53: The Real World
	Slide 54: The Real World
	Slide 55: The Real World
	Slide 56: The Real World
	Slide 57: Adversarial Learning
	Slide 58: Objective
	Slide 59: Objective
	Slide 60: Objective
	Slide 61: Objective
	Slide 62: Objective
	Slide 63
	Slide 64
	Slide 65: Attack Model
	Slide 66: Threat Model
	Slide 67
	Slide 68: Constrained Optimization
	Slide 69: How big of a problem is this?
	Slide 70: How big of a problem is this?
	Slide 71: Why Adversarial Attacks Work
	Slide 72: Why Adversarial Attacks Work
	Slide 73: Why Adversarial Attacks Work
	Slide 74: Why Adversarial Attacks Work
	Slide 75: What did we learn in the first place?
	Slide 76: What did we learn in the first place?
	Slide 77: Defenses
	Slide 78: Defenses
	Slide 79: Defenses
	Slide 80: Defenses
	Slide 81: Defenses
	Slide 82: Attack Transfer
	Slide 83: Attack Transfer
	Slide 84: Attack Transfer
	Slide 85: Data Augmentation
	Slide 86: Data Augmentation
	Slide 87: Data Augmentation
	Slide 88: Data Augmentation
	Slide 89: Adversarial Training
	Slide 90: Adversarial Training
	Slide 91: Adversarial Training
	Slide 92: Adversarial Training
	Slide 93: Adversarial Training
	Slide 94: Adversarial Training
	Slide 95: Adversarial Training
	Slide 96: Adversarial Training
	Slide 97: Provably Robust Networks
	Slide 98: Provably Robust Networks
	Slide 99: Maximum Gradient
	Slide 100: Maximum Gradient
	Slide 101: Lipschitz Continuity
	Slide 102: Are Neural Networks Lipschitz Continuous?
	Slide 103: Are Neural Networks Lipschitz Continuous?
	Slide 104: Are Neural Networks Lipschitz Continuous?
	Slide 105: Are Neural Networks Lipschitz Continuous?
	Slide 106: Are Neural Networks Lipschitz Continuous?
	Slide 107: Are Neural Networks Lipschitz Continuous?
	Slide 108: Limiting Lipschitz Constant
	Slide 109: Limiting Lipschitz Constant
	Slide 110: Limiting Lipschitz Constant
	Slide 111: Limiting Lipschitz Constant
	Slide 112: Lipschitz Continuity
	Slide 113: Also for other applications…
	Slide 114: Takeaways

