CSCl1470
Eric Ewing

Thursday,
10/2/25

- Deep Learning

Day 9: ResNet and
dversarial Learning

..“

Depth is
increasing ©

But... other
problems start
to occur ®

convl

conv2

conv3

convd

Each blue and green box
contain a reLU operation

convs fc6 fc7 fe8

28 x 28 x 512

56 x 56 x 256

A
11/x 112 x 128

14xi14xi5|1,i ? 1x1x4096 1x 1x1000

Tx7x512

@ convolution+ReLU
Efﬂlnax pooling

X

_

oL
aa'” az'“ aam 3L ! L
—

oL JL da™ 9z7'* 9a""
oW, " 9™ 377 g oW,

https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33, https://cv-tricks.com/keras/understand-implement-resnets/

Revolution of Depth

8Iayers | 8layers shallow

—————— ILSVRC'14 ILSVRC'13 ILSVRC'12Z ILSVRC'11 ILSVRC'10
W VGG AlexNet

i | . . :
Deep Layers Somvﬁ;re - Initial eNet Classification top-5 error (%)

the middle Layers

More Complicated Networks

ResNet:

Lots of layers, tons of learnable parameters

Avoids Vanishing Gradient problem

but how?
Revolution of Depth

152 layers
s
| 221ayers | | 19 Iayers I I

3.57 l I 8 layers 8 layers shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

arXiv preprint arXiv:1512.03385, 2015. 51

Image Classification on ImageNet

Leaderboard Community Models Dataset
View Top 1 Accuracy v by Date v for | All models v
100 E
Meta Pseudo Labels (EfficientNet-L2) CoCa (finetuned)
20 FixResNeXt-101 32x48d NoisyStudent (EfficientNet-B7)
> NASNET-A(6)
U .
§ 20 Inception V3 Inception ResNet V2
- VGG
W]
O
<
= 70
% OverFeat
= Alexnet
60
50
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Other models State-of-the-art models

More Complicated Networks
ResNet: =

Lots of layers, tons of learnable parameters
Avoids Vanishing Gradient problem

weight layer
F(x) l relu

weight layer

X

Residual Block >

identity

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning For image recognition.
arXiv preprint arXiv:1512.03385, 2015.

Residual Blocks

In very deep nets, each layer often needs
to learn just a small transformation of the
preceding layer (identity + change)

|dea: explicitly design the network such
that the output of each layer is the identity
+ some deviation from it

* Deviation is known as a residual

X Skip connection
weight layer
F(x) l relu =
weight layer identity

53

Residual Blocks

* |In very deep nets, each layer often needs
to learn just a small transformation of th
preceding layer (identity + change)

* ldea: explicitly design the network such
that the output of each layer is the identi
+ some deviation from it

* Deviation is known as a residual

« Allows gradient to flow through two
pathways

* Significantly stabilizes training of very
deep networks

https://blog.perceptilabs.com/using-resnets-to-detect-anomalies-in-industrial-iot-textile-production/

Gradient
pathway-1

Input to the
residual block

(x)

Identity mapping

Gradient pathway-2
<
\ /

Residual mapping
i.e. F(x)

Gradient
pathway-1

Output of the
residual block
H(x) = F(x) + x

54

Tensorflow

Option #1: Residual Block

tfm.vision.layers.ResidualBlock(filters, strides)
Option #2:

Residual Block
def ResBlock(inputs):
x = layers.Conv2D(64, 3, padding="same", activation="relu") (inputs)

x = layers.Conv2D(64, 3, padding="same") (x)
x = layers.Add() ([inputs, x])
return x

Original Input Intermediate Output

https://keras.io/examples/vision/edsr/

Residual Blocks

* |In very deep nets, each layer often needs
to learn just a small transformation of th
preceding layer (identity + change)

* ldea: explicitly design the network such
that the output of each layer is the identi
+ some deviation from it

* Deviation is known as a residual

« Allows gradient to flow through two
pathways

* Significantly stabilizes training of very
deep networks

https://blog.perceptilabs.com/using-resnets-to-detect-anomalies-in-industrial-iot-textile-production/

Gradient
pathway-1

Input to the
residual block

(x)

<

Identity mapping

Gradient pathway-2

\/

;

Residual mapping
i.e. F(x)

Gradient
pathway-1

Output of the
residual block
H(x) = F(x) + x

54

Activation Amount

Batch Normalization (stabilizing training)

ldea: normalize the activations for each feature at each layer

Activation with Batch Norm

. Activation without Batch Norm 10.0
0.0
7.5 4 e
5.0 -F 5.0 4
€
2.5 3 2.5
v £
<
0.0 5 00 VWA N NWNANMNNAMAN SN MANNS
E:
-5 g =251
<
~5d -5.0
-7.
? -7.5
-10.0 T T T T
0 20 40 60 80 100 -10.0 T T T T
0 20 40 60 80 100

Feature in Batch
Feature in Batch

Why might we want to do this?

55

Batch Normalization: Motivation

More stable inputs = faster training

MNIST test accuracy vs number of training steps

1

09} 7

0.8h - = = Without BN

With BN

10K 20K 30K 40K 50K

https://arxiv.org/pdf/1502.03167.pdf

56

Batch Normalization: Implementation

For each feature x, Start by calculating the batch mean and standard
deviation for each feature:

batch_size
i=0 Xi

Hbatch = batch_size

- 2
batch_size
i=0 (xi _ ﬂbatch)

\ batchg;,,

Opatch =

Batch Normalization: Implementation

Normalize by subtracting feature x’s batch mean, then divide by batch
standard deviation.

, X — Upatch
x p—

Opatch

Feature x now has mean 0 and variance 1 along the batch

Batch Normalization in Tensorflow

tf.keras.layers.BatchNormalization (input)

D 0 C U IT] e n ta tl 0 n : https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/BatchNormalization

59

Motivation of BatchNorm

e Reduce “internal co-variate shift”

e Neural networks are trained on a certain distribution of data and
are expected to be tested on the same distribution

* |f we were to scale the colors of an image significantly at test time,
we wouldn’t expect a neural network to do well

* The same can be said for our intermediate layers

* They expect a certain distribution of inputs, if that changes significantly
from example to example, it will be hard to learn

* (Most commonly cited reason for using BatchNorm)

The only issue Is that controlling internal
covariate shift does not matter that much...

How Does Batch Normalization Help Optimization?

Shibani Santurkar* Dimitris Tsipras* Andrew Ilyas* Aleksander Madry
MIT MIT MIT MIT
shibani@mit.edu tsipras@mit.edu ailyas@mit.edu madry@mit.edu
Abstract

Batch Normalization (BatchNorm) is a widely adopted technique that enables
faster and more stable training of deep neural networks (DNNs). Despite its
pervasiveness, the exact reasons for BatchNorm’s effectiveness are still poorly
understood. The popular belief is that this effectiveness stems from controlling
the change of the layers’ input distributions during training to reduce the so-called
“internal covariate shift”. In this work, we demonstrate that such distributional
stability of layer inputs has little to do with the success of BatchNorm. Instead,
we uncover a more fundamental impact of BatchNorm on the training process: it
makes the optimization landscape significantly smoother. This smoothness induces
a more predictive and stable behavior of the gradients, allowing for faster training.

BatchNorm makes the loss landscape smoother
with fewer local minima, saddle points, and other
problematic areas for gradient descent

How Does Batch Normalization Help Optimization?

Shibani Santurkar* Dimitris Tsipras* Andrew Ilyas* Aleksander Madry
MIT MIT MIT MIT
shibani@mit.edu tsipras@mit.edu ailyas@mit.edu madry@mit.edu
Abstract

Batch Normalization (BatchNorm) is a widely adopted technique that enables
faster and more stable training of deep neural networks (DNNs). Despite its
pervasiveness, the exact reasons for BatchNorm’s effectiveness are still poorly
understood. The popular belief is that this effectiveness stems from controlling
the change of the layers’ input distributions during training to reduce the so-called
“internal covariate shift”. In this work, we demonstrate that such distributional
stability of layer inputs has little to do with the success of BatchNorm. Instead,
we uncover a more fundamental impact of BatchNorm on the training process: it
makes the optimization landscape significantly smoother. This smoothness induces
a more predictive and stable behavior of the gradients, allowing for faster training.

Theory, intuition, and experimental results can all tell you different
things

Why do CNNs work so well?
Intuition: Looking for a way to get
“spatial reasoning” or translational
invariance

Why does BatchNorm work so well?
Intuition: If normalizing input data
works so well for training, why not
normalize input features to

. . o
intermediate layers: Theory/experiments: Maybe it’s just

that using fewer weights lets us go
deeper and deep networks learn
better (and also they have spatial
reasoning)

Theory/experiments: Makes
gradients of loss function “better”

Depth Giveth and Depth Taketh Away

Train Loss
Validation Loss

Loss

0 L | | } | | | |]
0 10 20 30 40 50 60 70 80 90 100
Number of Iterations

Resnettrained on image classification task

Depth Giveth and Depth Taketh Away

1.8 [~

Train Loss
1.6 Validation Loss

14 -

What’s the 12 - -
problem?

Loss
—

0.2 _

0 | L l + L L
0 10 20 30 40 50 60 70 80 90 100

Number of Iterations

Resnettrained on image classification task

Dealing with Overfitting (Again)

Option #1: Hyperparameter Tuning
- Try a shallower network

224x224x3

VGG:

Dealing with Overfitting (Again)

Option #1: Hyperparameter Tuning

- Try a shallower network

224x224x64
12x112x128

56x56x256

28x28x512

14x14x512

7x7x512

Pool

1x4096 1x4096

Ll

— output

1x1000

48

Dealing with Overfitting (Again)

Option #1: Hyperparameter Tuning

224x224x3

VGG:

ool

12x112x128
56x56x256
Pool
Pool

- Try a shallower network

224x224x64

28x28x512

14x14x512

Pool

7x7x512

Pool

1x4096 1x4096

l

1x1000

The size of the linear layer is controlled by number of max-pools
Fewer convolutions could actually increase weights in the network...

— output

48

Dealing with Overfitting (Again)

Option #1: Hyperparameter Tuning
- Try a shallower network
- Fewer channels in convolutions

Hyperparameter Tuning

* Manually tuning parameters is seen by DL practitioners as a bit
“old fashioned”

* The goal of deep learning is to automatically find good models in a general
way

* Any human-driven heuristic approach makes the process specific

Hyperparameter Tuning

* Manually tuning parameters is seen by DL practitioners as a bit
“old fashioned”

* The goal of deep learning is to automatically find good models in a general
way

* Any human-driven heuristic approach makes the process specific

Can we write a methodto__ and then run deep learning on that output?
(center the image, recognize letters on signs, label parts of a sentence)

The Bitter Lesson of Al

The biggest lesson that can be read from 70 years of Al research is that
general methods that leverage computation are ultimately the most
effective, and by a large margin.

Richard Sutton

The Bitter Lesson of Al

The biggest lesson that can be read from 70 years of Al research is that
general methods that leverage computation are ultimately the most
effective, and by a large margin.

Richard Sutton

1) Al researchers have often tried to build knowledge into their agents

2) This always helps in the short term, and is personally satisfying to the
researcher, but

3) Inthelongrun it plateaus and even inhibits further progress

4) Breakthrough progress eventually arrives by an opposing approach
based on scaling computation by search and learning.

Hyperparameter Tuning

* Manually tuning parameters is seen by DL practitioners as a bit
“old fashioned”

* The goal of deep learning is to automatically find good models in a general
way

* Any human-driven heuristic approach makes the process specific

Can we write a methodto__ and then run deep learning on that output?
(center the image, recognize letters on signs, label parts of a sentence)

Manual hyperparameter tuning is a flaw that
needs to be overcome

Dealing with Overfitting (Again)

Option #1: Hyperparameter Tuning
- Try a shallower network
- Fewer channels in convolutions

Option #2: Regularization
- “Encourage” model to be lower complexity

Regularization: L2 Norm Penalty

Intuition: high degree polynomials typically don’t
work for regression tasks because they overfit. ﬂ

When they overfit, the parameters of some terms
get very large. y

Let’s penalize the model for having large
parameters.

Regularization: L2 Norm Penalty

Intuition: high degree polynomials typically don’t
work for regression tasks because they overfit. ﬂ

When they overfit, the parameters of some terms
get very large. y

Let’s penalize the model for having large
parameters.

Original Loss=MSE (y, ¥)

1
L2 Regularization Loss =MSE (y, 9) + A(W¢ + w? + w2 ...)2

Regularization: L2 Norm Penalty

Intuition: high degree polynomials typically don’t
work for regression tasks because they overfit. ﬂ

When they overfit, the parameters of some terms
get very large. y

Let’s penalize the model for having large
parameters.

Original Loss=MSE (y, ¥)

1
L2 Regularization Loss =MSE (y, 9) + A(W¢ + w? + w2 ...)2

L2 Norm (2 refers to power)

Regularization L2 Norm Penalty

* Why do neural networks overfit? Perhaps their weights get large as
well.

* Can add a penalty to all weights or individual layers
* Smaller weights — simpler function learned

from keras import regularizers

model.add(Dense(64, input_dim=64,
kernel_regularizer=regularizers.12(0.01)))

Dropout — general intuition

- Preventing the network from learning under perfect conditions; that
is, make it harder for the network to learn

A climbing analogy: 4
A person is climbing a wall using holds !

What if, | make a rule that she can climb

« ...only using certain holds (say just green ones!) b
 |fshe can learn to do this using fewer holds... <
« ..she'll definitely be able to do it with ALL the holds L

(learn better climbing techniques in the process)

Dropout ~= using only a certain holds instead of ALL the holds

Image source https://www.istockphoto.com/illustrations/indoor-climbing

Dropout - what?

A \ “/ NS
NIRRT
JSIBINRIN
AR
SEHINY

“V "'ﬁ mv v‘v
ALY B AV
NEHARRSY

<D ’:57 WKV

LSRN

Typical NN: the output of
every node in every layer
is used in the next layer of
the network

Dropout - what?

’(
2V (i _ Vst

RNAD
RSOHRIKL SRR

NSIKNK 7 N
Pl Y

ﬁ}f&‘@&ﬁ& LGOI

Dropout: in a single
training pass, the output
of randomly selected
nodes from each layer will
“drop out”, i.e. be setto 0

Dropout - what?

ISR
V2000 6
N
70
7 A AN 3
‘-lry" “\\r

Dropout: in a single
training pass, the output
of randomly selected
nodes from each layer will
“drop out”, i.e. be setto 0

Dropout - what?

Not just limited to the
% 4 input layer: can do this to
2

any layer of the network

= ®

4
)

1))
2 6 4
o 2 (-}
o o 3
1 4 o

Dropout - what?

The nodes that drop out will

.% be different each pass

(re-randomly selected)
O O

Dropout - what?

The nodes that drop out will
be different each pass

(re-randomly selected)

Dropout - why?

- Sort of looks like data augmentation, if you squint hard enough
- Augmenting the data by randomly dropping out parts of it

- Over multiple passes through the net (i.e. during training over many
epochs):

- Randomly dropping neurons “forces” each neuron to learn a non-trivial
weight

- The network can’t learn to rely on spurious correlations (i.e. meaningless
patterns), because they randomly might not be present

Dropout: Implications for test time

* During testing, we stop
dropping out and use all
of the neurons again

Dropout: Implications for test time

* During testing, we stop
dropping out and use all
of the neurons again

N7,
AR

&\ /
WX W N XL NAWSAVOE
QKN WHKLY VAV
NI IR
XL RERERK XN
LR\ RN
ER. S
G AR
FEOK ERK

U
U7 SN
)75

Dropout: Implications for test time

»" During testing, we stop
dropping out and use all of
the neurons again

- If a layer keeps a fraction p
of its neurons during
training, then when we use
all the neurons at test
time, the next layer will
get a bigger input than
expected...

What do we do!?

Dropout: Implications for test time

. Solution 1:
Multiply the values of all
neurons by p, so that the
expected magnitude of
the sum of neurons is the
same

Dropout: Implications for test time

. Solution 1:
Multiply the values of all
neurons by p, so that the
expected magnitude of
the sum of neurons is the
same

- Solution 2:
At training time, divide the
values of the kept neurons

by p

Any questions?

Dropout - implementation 7?9

- Handy keras layer! @ |

-tf.keras.layers.Dropout(rate)

- Hyperparameter between [0, 1]: the rate at which the outputs of the
previous layer are dropped

- Rate = 0.5: drop half, keep half
- Rate = 0.25: drop %4, keep %

The Real World

* Hey, your models work great!
* Let’s deploy them to the real world!
* What could go wrong?

Papernot et al. Practical Black-Box Attacks against Machine Learning

The Real World

* Hey, your models work great!
* Let’s deploy them to the real world!
* What could go wrong?

Stop Sign: 99%

Papernot et al. Practical Black-Box Attacks against Machine Learning

The Real World

* Hey, your models work great!
* Let’s deploy them to the real world!
* What could go wrong?

Stop Sign: 99%

Papernot et al. Practical Black-Box Attacks against Machine Learning

Yy

The Real World

* Hey, your models work great!
* Let’s deploy them to the real world!
* What could go wrong?

Stop Sign: 99% Yield Sign: 99%

Papernot et al. Practical Black-Box Attacks against Machine Learning

The Real World

* Hey, your models work great!

* Let’s deploy them to the real world

* What could go wrong?

Yield Sign: 99%

Papernot et al. Practical Black-Box Attacks against Machine Learning

Stop Sign: 99%

Adversarial Learning

- Can we (or adversaries) break our deep learning models

- Adversarial Attack: Can we add a small amount of noise to an
Input that results in a misclassification?

- Data Poisoning: Can we insert data in the training dataset that
corrupts the model’s training? A

Cé:
>

Cm
AR/
/\,‘ ﬁq r(

(L

Objective

* In Deep Learning, our objective is to minimize loss
* What do you think the objective of our adversary is?

£

£
%ﬁz]

Objective

* In Deep Learning, our objective is to minimize loss
* What do you think the objective of our adversary is?

Maximize (Test) Loss

£

@7]

Objective

* In Deep Learning, our objective is to minimize loss
* What do you think the objective of our adversary is?

Maximize (Test) Loss

Want to follow direction of 4_5{2:@,

gradient (Gradient Ascent) =
@%*{’
A (S

Objective

* In Deep Learning, our objective is to minimize loss
* What do you think the objective of our adversary is?

* What does our adversary have control of?
* Input data?
* Training Data? s
 Our model? (Uh oh) 92

Objective

* In Deep Learning, our objective is to minimize loss
* What do you think the objective of our adversary is?
* What does our adversary have control of?

* Input data? \
Most Commonly Studied

* Training Data?
* Our model? (Uh oh)

Normal Training:
- Compute gradients wrt weights and biases
- Update via gradient descent

i A O ot > o g

Adversarial Example:
- Compute gradients wrt input

gy, Sen. MmO -

iy - Update input via gradient ascent

Learning a transformation to

an input
:), Normal Training;
* Vs A v - Compute gradients wrt weights and biases
) N S - Update via gradient descent
— O gy ,
» oA e @ S Adversarial Example:
Ay QA MNNS @ e\ - Compute gradients wrt input
e o e i - Update input via gradient ascent

Attack Model

We do not expect to be able to withstand an attacker with unlimited

power.

If attackers can add unlimited noise, they can just change the image

entirely.

Threat Model

* We limit the power of the attacker

e Attacks must fall within some LP-Ball of radius r
« L1 _Ball: Sum of noise must be below r

e L?-Ball: Square root (sum of squared noise for each pixel) must be below
r

« L*-Ball: Largest individual value of attack noise must be below r

High

. loss
Gradient Ascent around
an input sample
What happens if we hit the
constraint and can’t keep
following the gradient?
Low
loss

https://medium.com/towards-data-science/know-your-enemy-7f7¢c5038bdf3

Constrained Optimization

* Projected Gradient Ascent (PGA):

* Run Gradient Ascent
* |f noise goes outside of constraint set, project back into constraint set

(Picture is for minimization)
Feasible oo e

-

k Unconstrained —~~~.__

Minimum

https://www.researchgate.net/publication/358122337_Adaptive_Model_for_Magnetic_Particle_Mapping_Using _Magnetoelectric_Sensors

How big of a problem is this?

e Most models will never be under threat from
adversarial attacks

* But doesn’t this tell us something new about our
models?

How big of a problem is this?

e Most models will never be under threat from
adversarial attacks

* But doesn’t this tell us something new about our
models?

Fictional Character

€

S

al
(&

i

v
jffé"
<
‘ll
A
- —
X

Why Adversarial Attacks Work

[.I.D. Machine Learning

I: Independent
I: Identically
D: Distributed

All train and test examples
drawn independently from

same distribution

Why Adversarial Attacks Work

[.I.D. Machine Learning

We assume our
datasets are lID (Train
set looks like validation
set looks like test set)

I: Independent

I: Identically
D: Distributed

All train and test examples
drawn independently from

same distribution

Why Adversarial Attacks Work

We assume our
datasets are lID (Train
set looks like validation
set looks like test set)

[.I.D. Machine Learning

Adversarial attacks
change the distribution
of the test set

I: Independent
I: Identically
D: Distributed

All train and test examples
drawn independently from
same distribution

Why Adversarial Attacks Work

We assume our
datasets are lID (Train
set looks like validation
set looks like test set)

[.I.D. Machine Learning

I: Independent

I

Adversarial attacks
change the distribution
of the test set

|

Performance on training

set/validation setis no

longerindicative of test
performance

I: Identically
D: Distributed

All train and test examples
drawn independently from
same distribution

What did we learn in the first place?

If such small noise can change the outputs of our network, it clearly
Is not making decisions in the way that humans do.

Itisn’t always making decisions about stop signs based on color,
shape, or text...

Stop Sign Yield

What did we learn in the first place?

Deep learning learns the “easiest” good representation, which can
be very brittle and break under small perturbations

S

AR e
D e - 4
RN T G b

-
A

Stop Sign Yield

Defenses

Defenses

How can we make more robust models?

Defenses

How can we make more robust models?

* Ensembles
* Train multiple different models average results
* (Can make models more robust, but not resistant to adversarial attacks)

Defenses

How can we make more robust models?

* Ensembles
* Train multiple different models average results
* (Can make models more robust, but not resistant to adversarial attacks)

* Data Augmentation?
* Just add lots of random noise to inputs while training?
* Add in Adversarial Examples while training?

Defenses

How can we make more robust models?

* Ensembles
* Train multiple different models average results
* (Can make models more robust, but not resistant to adversarial attacks)

* Data Augmentation?
* Just add lots of random noise to inputs while training?
* Add in Adversarial Examples while training?

* Provably Robust Networks
* Lipschitz Continuity!

Attack Transfer

Yield

Stop Sign

Adversarial Examples tend to fool other networks as well

Attack Transfer

Adversarial Examples tend to fool other networks as well

If this attack was made using ResNet, it would likely work against VGG

R

2
WA
v

007 x

S

Stop Sign Yield

Attack Transfer

* This also gives us another tool for adversarial attacks

* Suppose the model we are trying to break is not public (i.e., you
can’tfind the gradients)

 Black-box attack:

* Train a “surrogate” model on the same dataset

* Construct an adversarial example that works against your surrogate
model

* Send attack to original model

Data Augmentation

If breaking the IID assumption caused
ourissues, can we just change the
distribution of the training set?

Data Augmentation

What if we just add lots of images with small amounts of random
noise to our training data?

Data Augmentation

What if we just add lots of images with small amounts of random
noise to our training data?

Cannot have enough new data to densely sample a high
dimensional ball around each original input (hnumber of points
required grows exponentially with dimension)

Data Augmentation

What if we just add lots of images with small amounts of random
noise to our training data?

Cannot have enough new data to densely sample a high
dimensional ball around each original input (hnumber of points
required grows exponentially with dimension)

Holes will still exist where your network can be exploited

Adversarial Training

Adversarial Training

New Training Objective: Train a network that has lowest loss when
attacked

Adversarial Training

New Training Objective: Train a network that has lowest loss when
attacked

mgin max L(x + €)
€

Adversarial Training

New Training Objective: Train a network that has lowest loss when
attacked

mgin max L(x + €)
€

Min-Max optimization problem can utilize sets of techniques from
adversarial game theory

Adversarial Training

For each batch:
Network produces output y,,;eq
Attacker finds attack noise €
Yadv = Ypred T €
Compute loss L(V 4., V)
Run SGD to update weights

Adversarial Training

For each batch:
Network produces output y,,;eq
Attacker finds attack noise €
Yadv = Ypred T €
Compute loss L(V 4., V)
Run SGD to update weights

Another whole gradient
descent process

Adversarial Training

For each batch:
Network produces output y,,;eq
Attacker finds attack noise €
Yadv = Ypred T €
Compute loss L(V 41, V)
Run SGD to update weights

Another whole gradient
descent process

Adversary makes move
(generates noise)
Defender responds
(updates weights)

Adversarial Training

For each batch:
Network produces output y,,;eq
Attacker finds attack noise €
Yadv = Ypred T €
Compute loss L(V 41, V)
Run SGD to update weights

P
<

What are the tradeoffs of
using adversarial training?

Another whole gradient
descent process

Adversary makes move
(generates noise)
Defender responds
(updates weights)

Provably Robust Networks

Provably Robust Networks

High
loss

A

Can we guarantee our

network will not deviate

too much within some
radius?

Low
loss

Maximum Gradient

If we knew the maximum High
gradientc = V_L, then we know
that our loss function can
changeuptoc-r
If we can bound the gradient of a function to some Low

loss

constant c, that function is Lipschitz Continuous.

Maximum Gradient

High
loss

If we knew the maximum
gradientc = V_L, then we know

that our loss function can
changeuptoc-r

Why is this true?

Low

If we can bound the gradient of a function to some
loss

constant c, that function is Lipschitz Continuous.

Lipschitz Continuity

sin(x) is Lipschitz Continuous, x? is not Lipschitz Continuous, it

it has a maximum derivative of 1 does not have a maximum derivative

Are Neural Networks Lipschitz Continuous?

Are Neural Networks Lipschitz Continuous?

* If fand g are both Lipschitz continuous functions, then h=f(g(x)) is
also Lipschitz continuous.

Are Neural Networks Lipschitz Continuous?

* If fand g are both Lipschitz continuous functions, then h=f(g(x)) is
also Lipschitz continuous.

* Gradients are determined by weight layers and activation
functions

Are Neural Networks Lipschitz Continuous?

* If fand g are both Lipschitz continuous functions, then h=f(g(x)) is
also Lipschitz continuous.

* Gradients are determined by weight layers and activation
functions

* Assume RelLU activation for simplicity (maximum derivative of 1)

Are Neural Networks Lipschitz Continuous?

* If fand g are both Lipschitz continuous functions, then h=f(g(x)) is
also Lipschitz continuous.

* Gradients are determined by weight layers and activation
functions

* Assume RelLU activation for simplicity (maximum derivative of 1)

* Maximum gradient possible is determined by weights of network
(which are finite)

Are Neural Networks Lipschitz Continuous?

* If fand g are both Lipschitz continuous functions, then h=f(g(x)) is
also Lipschitz continuous.

* Gradients are determined by weight layers and activation
functions

* Assume RelLU activation for simplicity (maximum derivative of 1)

* Maximum gradient possible is determined by weights of network
(which are finite)

* Lipschitz constant ¢ may be very large, but it exists

Limiting Lipschitz Constant

Limiting Lipschitz Constant

* [t can be shown that the Lipschitz Constant for a single weight
matrix W is the largest singular value of that matrix

* The largest Singular Value is the square root of the largest eigenvalue of
the matrix WTW

Limiting Lipschitz Constant

* [t can be shown that the Lipschitz Constant for a single weight
matrix W is the largest singular value of that matrix

* The largest Singular Value is the square root of the largest eigenvalue of
the matrix WTW

* If we want to limit the Lipschitz Constant for a single layer, we just
have to divide by that Singular Value...

* Candivide by 2 * Singular value to limit Lipschitz constant to 1/2

Limiting Lipschitz Constant

* [t can be shown that the Lipschitz Constant for a single weight
matrix W is the largest singular value of that matrix
* The largest Singular Value is the square root of the largest eigenvalue of
the matrix WTW
* If we want to limit the Lipschitz Constant for a single layer, we just
have to divide by that Singular Value...
* Candivide by 2 * Singular value to limit Lipschitz constant to 1/2

* This is called Spectral Normalization

Lipschitz Continuity

 Adding SpectralNormalization to layers, like BatchNorm, can help
networks learn smoother loss functions

* Can make models (slightly more) robust to adversarial attacks

* The downside is that itis a much more restrictive condition on the
network and the network may no longer learn good policies

Also for other applications...

oe 2-multirotor team 3-multirotor team 4-multirotor team

(a) (c) (e)
Many physical phenomena are also Lipschitz o2
Continuous % 0.0
If you are trying to predict a physical phenomena, it b
may make sense to use Lipschitz continuity By
regardless of adversarial attacks. B @ L
= =1 0.8 m/s
:, 0.0
—0.4 1

~0.50 —0.25 0.00 025 0.50 —0.50 —0.25 0.00 0.25 0.50 —0.50 —0.25 0.00 0.25 0.50

y [m] y [m] y [m]
N , ,]
-12 -10 -8 -6 -4 -2 0 2 4
faz [9]

Shi et al. Neural Swarm. 2022

Takeaways

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Tensorflow
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Motivation of BatchNorm
	Slide 18: The only issue is that controlling internal covariate shift does not matter that much…
	Slide 19: BatchNorm makes the loss landscape smoother with fewer local minima, saddle points, and other problematic areas for gradient descent
	Slide 20
	Slide 21: Depth Giveth and Depth Taketh Away
	Slide 22: Depth Giveth and Depth Taketh Away
	Slide 23: Dealing with Overfitting (Again)
	Slide 24: Dealing with Overfitting (Again)
	Slide 25: Dealing with Overfitting (Again)
	Slide 26: Dealing with Overfitting (Again)
	Slide 27: Hyperparameter Tuning
	Slide 28: Hyperparameter Tuning
	Slide 29: The Bitter Lesson of AI
	Slide 30: The Bitter Lesson of AI
	Slide 31: Hyperparameter Tuning
	Slide 32: Dealing with Overfitting (Again)
	Slide 33: Regularization: L2 Norm Penalty
	Slide 34: Regularization: L2 Norm Penalty
	Slide 35: Regularization: L2 Norm Penalty
	Slide 36: Regularization L2 Norm Penalty
	Slide 37: Regularization: Dropout
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Recap
	Slide 52: The Real World
	Slide 53: The Real World
	Slide 54: The Real World
	Slide 55: The Real World
	Slide 56: The Real World
	Slide 57: Adversarial Learning
	Slide 58: Objective
	Slide 59: Objective
	Slide 60: Objective
	Slide 61: Objective
	Slide 62: Objective
	Slide 63
	Slide 64
	Slide 65: Attack Model
	Slide 66: Threat Model
	Slide 67
	Slide 68: Constrained Optimization
	Slide 69: How big of a problem is this?
	Slide 70: How big of a problem is this?
	Slide 71: Why Adversarial Attacks Work
	Slide 72: Why Adversarial Attacks Work
	Slide 73: Why Adversarial Attacks Work
	Slide 74: Why Adversarial Attacks Work
	Slide 75: What did we learn in the first place?
	Slide 76: What did we learn in the first place?
	Slide 77: Defenses
	Slide 78: Defenses
	Slide 79: Defenses
	Slide 80: Defenses
	Slide 81: Defenses
	Slide 82: Attack Transfer
	Slide 83: Attack Transfer
	Slide 84: Attack Transfer
	Slide 85: Data Augmentation
	Slide 86: Data Augmentation
	Slide 87: Data Augmentation
	Slide 88: Data Augmentation
	Slide 89: Adversarial Training
	Slide 90: Adversarial Training
	Slide 91: Adversarial Training
	Slide 92: Adversarial Training
	Slide 93: Adversarial Training
	Slide 94: Adversarial Training
	Slide 95: Adversarial Training
	Slide 96: Adversarial Training
	Slide 97: Provably Robust Networks
	Slide 98: Provably Robust Networks
	Slide 99: Maximum Gradient
	Slide 100: Maximum Gradient
	Slide 101: Lipschitz Continuity
	Slide 102: Are Neural Networks Lipschitz Continuous?
	Slide 103: Are Neural Networks Lipschitz Continuous?
	Slide 104: Are Neural Networks Lipschitz Continuous?
	Slide 105: Are Neural Networks Lipschitz Continuous?
	Slide 106: Are Neural Networks Lipschitz Continuous?
	Slide 107: Are Neural Networks Lipschitz Continuous?
	Slide 108: Limiting Lipschitz Constant
	Slide 109: Limiting Lipschitz Constant
	Slide 110: Limiting Lipschitz Constant
	Slide 111: Limiting Lipschitz Constant
	Slide 112: Lipschitz Continuity
	Slide 113: Also for other applications…
	Slide 114: Takeaways

