
Deep Learning

Eric Ewing

CSCI 1470

Tuesday,
9/30/25

Day 13: Convolutional
Neural Networks

Padding size needs to be determined

Padding size needs to be determined

Padding size needs to be determined

Padding size needs to be determined

Padding size needs to be determined

Getting network output

Remaining Question: If the convolution creates another [h x w x d]
tensor, how do we actually get an output?
How can we turn use convolutions for classification?

https://learnopencv.com/understa
nding-convolutional-neural-
networks-cnn/

Color images…

What if our input has multiple channels (colors)? Do we apply filters
to each individual color matrix? Or in some other way?

Source: Martin Görner

Multi-Channel Input

Option #2
N channels to 1 output

Option #1
n channels to n outputs

Which makes more sense?

Multi-Channel Input

Option #2
N channels to 1 output

Option #1
n channels to n outputs

N-channels to 1 output allows information
from separate channels to be used

together

Today’s Goals

(1) What non-linear activation functions are available to us?
(2) Learn about Convolutional Architectures

(1) Many more decisions to make about structure of network than MLPs

Activation Functions

Remember, a linear combination of features, even if repeated many
times, will always be linear.

Still need some type of non-linear activation (e.g., ReLUs)

We also have other convolution-specific activation functions called
“pooling” operations

- All are desirable properties!
- How do CNNs fare?

- Max pooling gives some amount
of size and translational
invariance

- But in general, CNNs do not fare
well with large changes in
lighting or scale.

- Consequences of not having these
invariances?

- Require lots of training data
- Have to show network many

examples of lighting changes,
scale changes, etc.

- All are desirable properties!
- How do CNNs fare?

- Max pooling gives some amount
of size and translational
invariance

- But in general, CNNs do not fare
well with large changes in
lighting or scale.

- Consequences of not having these
invariances?

- Require lots of training data
- Have to show network many

examples of lighting changes,
scale changes, etc.

Can we address these concerns
without collecting additional data?

- All are desirable properties!
- How do CNNs fare?

- Max pooling gives some amount
of size and translational
invariance

- But in general, CNNs do not fare
well with large changes in
lighting or scale.

- Consequences of not having these
invariances?

- Require lots of training data
- Have to show network many

examples of lighting changes,
scale changes, etc.

Can we address these concerns
without collecting additional data?

Data Augmentation! Use
rotated/scaled/shifted images

from your dataset to train

Data Augmentation

If this is a cat in our
dataset, it is an image
with a label (cat)

Data Augmentation

If this is a cat in our
dataset, it is an image
with a label (cat)

This is also a cat

Data Augmentation

If this is a cat in our
dataset, it is an image
with a label (cat)

This is also a cat This is also a cat

Data Augmentation

If this is a cat in our
dataset, it is an image
with a label (cat)

This is also a cat This is also a cat

This is also a cat

Data Augmentation

If this is a cat in our
dataset, it is an image
with a label (cat)

This is also a cat This is also a cat

This is also a cat

This is also a cat

VGG uses 3x3 filters for everything, AlexNet uses
11, 5, 3, 3. Number of channels typically

increases as depth increases

Filters tend to get smaller as depth increases,
number of output channels (num filters)

increases (or stay the same)

VGG uses 3x3 filters for everything, AlexNet uses
11, 5, 3, 3. Number of channels typically

increases as depth increases

What if we didn’t use a convolution?

How many weights would there be if we have an input image of
224x224x3 and want to go to a hidden layer size of 4096?

What is the size of the Jacobian 𝜕𝑧
𝜕𝑊

?

With Convolutions

VGG uses 3x3 convolutions, how many weights are in the first filter
bank to go from 224x224x3 to 224x224x64?

Convolutions and Depth

Convolutions are much
faster to run than a linear
layer on the same size input

We can add more layers to
CNNs than MLPs with the
same inference time

Theory: Having more layers gives better performance with the
same number of total weights (with lots of caveats)

Convolutions and Depth

Convolutions are much
faster to run than a linear
layer on the same size input

We can add more layers to
CNNs than MLPs with the
same inference time

Theory: Having more layers gives better performance with the
same number of total weights (with lots of caveats)

But we start to run into other issues as the depth of
our neural networks increase…

What’s the biggest limitation
in increasing depth?

The Return of Gradients

Common activation functions typically have a derivative smaller
than 1 (or at least not more than 1)

≤1

≤1
Adding more layers adds more

terms with gradient ≤1

≤1
Adding more layers adds more

terms with gradient ≤1

Multiplying by terms ≤1 makes
things smaller…

Gradients earlier in the network
tend to “Vanish”

Could we fix it by making everything “steeper”

• Vanishing gradients are caused by the repeated multiplication of
numbers smaller than 1

• If we make those numbers larger than 1, we have a separate
problem…

Could we fix it by making everything “steeper”

• Vanishing gradients are caused by the repeated multiplication of
numbers smaller than 1

• If we make those numbers larger than 1, we have a separate
problem…

Exploding Gradients

If you could make one change to a weight to have the biggest
change on output, which weight would you pick?

Tensorflow

Option #1: Residual Block
 tfm.vision.layers.ResidualBlock(filters, strides)

Option #2:

https://keras.io/examples/vision/edsr/

Original Input Intermediate Output

Motivation of BatchNorm

• Reduce “internal co-variate shift”
• Neural networks are trained on a certain distribution of data and

are expected to be tested on the same distribution
• If we were to scale the colors of an image significantly at test time,

we wouldn’t expect a neural network to do well
• The same can be said for our intermediate layers

• They expect a certain distribution of inputs, if that changes significantly
from example to example, it will be hard to learn

• (Most commonly cited reason for using BatchNorm)

The only issue is that controlling internal
covariate shift does not matter that much…

BatchNorm makes the loss landscape smoother
with fewer local minima, saddle points, and other
problematic areas for gradient descent

Theory, intuition, and experimental results can all tell you different
things

Why does BatchNorm work so well?
Intuition: If normalizing input data
works so well for training, why not
normalize input features to
intermediate layers?

Theory/experiments: Makes
gradients of loss function “better”

Why do CNNs work so well?
Intuition: Looking for a way to get
“spatial reasoning” or translational
invariance

Theory/experiments: Maybe it’s just
that using fewer weights lets us go
deeper and deep networks learn
better (and also they have spatial
reasoning)

Recap

Convolutions let us train train
deeper networks than MLPs

Adding significantly more depth
presents new challenges

(vanishing/exploding gradients)

Residual layers and batch norm
can help reduce those effects

Convolutions and Pooling give us
translationally equivariant layers

in our network

Small translations in input
cause translations in output

Translations

CNN Architectures

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Getting network output
	Slide 34: Color images…
	Slide 35: Multi-Channel Input
	Slide 36: Multi-Channel Input
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Today’s Goals
	Slide 41: Activation Functions
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84: Data Augmentation
	Slide 85: Data Augmentation
	Slide 86: Data Augmentation
	Slide 87: Data Augmentation
	Slide 88: Data Augmentation
	Slide 89
	Slide 90
	Slide 91
	Slide 92: What if we didn’t use a convolution?
	Slide 93: With Convolutions
	Slide 94: Convolutions and Depth
	Slide 95: Convolutions and Depth
	Slide 96
	Slide 97: The Return of Gradients
	Slide 98
	Slide 99
	Slide 100
	Slide 101: Could we fix it by making everything “steeper”
	Slide 102: Could we fix it by making everything “steeper”
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110: Tensorflow
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117: Motivation of BatchNorm
	Slide 118: The only issue is that controlling internal covariate shift does not matter that much…
	Slide 119: BatchNorm makes the loss landscape smoother with fewer local minima, saddle points, and other problematic areas for gradient descent
	Slide 120
	Slide 121: Recap

