Crust

Mantle

Outer Core

Inner Core

Deep Learning

Day 13: Convolutional
Neural Networks

CSCl1 1470
Eric Ewing

Tuesday,
9/30/25

Only certain input pixels are “connected” to
certain output pixels

image output
02 Oo Ol 3 Colored dots in the input
pixels represent which
O O O output pixels that input
7 1O 10 OO pixel contributes to — 4 — 3
O O O
0 20 5@ OO If this were fully connected, 2 - 9
every input pixel would have
all Four output colors
015|114

Key Idea 1: Filters are Learnable

image Filter/kernel

2013

1|11
7111110

0/0| 0| =
0250®

-1|-1(-1
05|14

output

Key Idea 2: Learn many filters

* Why are multiple filters a good idea?
e Can learn to extract different features of the image

Input image Output of filter 1 Output of filter 2

“Problem” With Convolution

2013

o|1l1]0 il Bl B
olo|2|o0| © |0]0]0
0l1]1]1 -1-11-1

* Output of convolution is always smaller than the input
* Why might we want the output size to be the same?

* To avoid the filter “eating at the border” of the image when applying multiple conv layers

Solution: Padding

Apply the kernel to ‘imaginary’ pixels surrounding the image

olr|IadIEFrIDN
R |lOoO|lW|HKL|O
oOjluU|IMN| O|W
WIN O|O|HR
O |lOoOoO | R, |IDN|HRH

Solution: Padding

Apply the kernel to ‘imaginary’ pixels surrounding the image

2 [2]o[3]1]1]":
2(1]2fofof2]>:
2 lal3|2]of1]>:
2l1]o|s]2]0]>
2lol1lo[3]0]-:

What Values to Use For These Pixels?

° 2101311 "
2|1]2]ofo[2]>:
e Es T a i
" 1({0[5]2]0 "
" 0(1]0(3]0 "

What Values to Use For These Pixels?

Standard practice: fill with zeroes

What Values to Use For These Pixels?

Standard practice: fill with zeroes

» Zero-valued padding pixels just result in some terms in the
convolution sum being zero

V(x,y) = IQK)(x,y) = Z Z I(x +m,y + n)K(m,n)

R P PRI
0j21]013]1|1]|0
.011]1j]0]0]2]0O0
* End result: equivalent to a applying a ‘masked’ s TaT312olz 5%
version of the filter that only covers the valid ;T Tols 121015
pixels olof1]o]|3]o]o0
0.0.0-0.0-0-0

Padding Modes in Tensorflow
2 available options: ‘VALID’ and ‘SAME’:

. Same
Va lld Filter slides over the bounds of the
Filter only slides over data, ensuring output size is the
“Valid” regions of the “Same" as input size (when stride = 1)
data
01 0]1]0|O0|0(O
2 0 1 3 01210111310
0O(1|1|0 ol1|1|2(3]o0
0 0 2 0 Ol14|3|2]|]1]60
0181311310
O(1 (1|1
Oj]0|0]0]0]O

VALID Padding in Tensorflow

tf.nn.conv2d (input, filter, strides,
padding='VALID')

21013

0O(1]1|0
0(0(2(0
O0(1]|1]|1

VALID Padding in Tensorflow

tf.nn.conv2d (input, filter, strides,
padding='VALID')

210(1](3

0O(1(1]|0
0(0(2]|0
0(1]|1]|1

VALID Padding in Tensorflow

tf.nn.conv2d (input, filter, strides,
padding='VALID')

2101 (3

0O(1(1(0
0(0(2(0
0(1 (1|1

VALID Padding in Tensorflow

tf.nn.conv2d (input, filter, strides,
padding='VALID')

21013

0O(1(1|0
0(0(2]|0
0(1(1]|1

We already tried this! (reduced output size)

21031
1|0 |-1
1/1(0]0 0|1
X 2|10 |-2| =
1 0 2 0 "VALID" o 1 o 1
Stride =1 1 0 _ 1
1012

SAME Padding in Tensorflow

tf.nn.conv2d (input, filter, strides,
padding=' SAME’)

O |l O | OO | O | O
O || KL |IDN]|O
Ol Wl Ww|r|O|O
Ol rRr|IDN|DMNMN|HFL|O
oO|lWw| L, W]|W]|O
O|lO0O|]OC|OC]|O| O

SAME Padding in Tensorflow

tf.nn.conv2d (input, filter, strides,
padding=' SAME’)

O|lOoO0|]O0O|OC]| O] O
O|jlo || L |IDN]|]O
Ol R |IDN|IDNMN|KFL|O
Ol Wi Fr|IW]|]|W)|O
O]l O | O|OC]| O] O

oO|lWwW| Ww|+Hr]|]|O| O

SAME Padding in Tensorflow

tf.nn.conv2d (input, filter, strides,
padding=' SAME’)

O] O] O | O] O]| O
oO|jlo || FL]IDN]|O
Ol rr|IDN|IDNMNMN|PKFL]|O

oOlWwW|lRr|W]|W]|O
O] O] O | O] O | O

oOlW| WwWw|kFLr]|]O|O

SAME Padding in Tensorflow

tf.nn.conv2d (input, filter, strides,
padding=' SAME’)

oOj]o |~ L] DN]|O
Ol r|IDNMN|DMN|PKFL]|O
ol Ww|lr|IWw|Ww]|Oo
Ol O] O0O|O| O | O

oO|lWw|lWw| r]|O|O

O]l O | O | O] O] O

Output Size of a Convolution Layer

The output size of a convolution layer depends on 4 Hyperparameters:

~ Padding=2

- The amount of padding, P

O|]lO0O|]OCO|]O]| O | O
O|lO0O|]OC|] O] O | O
O |lOC]|J]WOW|DMN|]O|O
O |l O | DN W|O | O
O |]O0O | O] O] O | O
O |0 | O] 0| O | O

Output Size of a Convolution Layer

Suppose we know the number of filters, their size, the stride, and
padding (n,f,s,p).

Then for a convolution layer with input dimension w x h x d, the output
dimensions w’ x h’ x d’ are:

F S
ow —f+2p p—

W = S + 1 n_[\

\

) 1 d d
h—f+2
Ol —
S h
hl‘
d =n W

Output Size for “VALID” Padding

IR B S Let w = 4
S
4 -3+4+2-0
num filters n = 1 w =
Filter size f =3 1
strides =1

paddingp =0 =14+1=2

+ 1

Output Size for “VALID” Padding

/

W =

w—f+2p
S |

1

num filtersn = 1
Filter size f =3
strides =1
paddingp =0

OO |O|DN

R Ok |O

R IR

R 1O 0O W

Output Size for “VALID” Padding

w—f+2p

/

w =
S

num filtersn = 1
Filter size f =3
strides =1
paddingp =0

O[O |O|N

R Ok |O

RN R

R O[O |W

Output Size for “VALID” Padding

w —f +2
, f P

w' = : 1

20113

num filters n = 1 O|1|1(0
filter size f =3

Str.ide s=1 0/]0(2]|0

paddingp =0 ol1l11

Output Size for “VALID” Padding

w —f +2
, f P

w' = : 1

201113

num filtersn =1 O(1(1(0
Filter size f =3

Sl'.r.ide s=1 0(0]1210

paddingp =0 ol1l1l1

Output Size for “SAME” Padding

w — =
L f+2p_|_1 Letw = 4
S
, 4 —3+2-1
num Filtersn = 1 w = 1 +1
filter size f=3
strides =1
padding p = 1* =3+1=4

Padding size needs to be determined

Output Size for “SAME” Padding

w—f+2
, f P

w = 1
S

num filtersn = 1

Filter size f =3
stride s =1

paddingp = 1*

Ol OO0 |]O| O| O
O|Jlo || |IDN]|]O
Ol rRr I DN|IDMNNIFHFH|O
oO|lW|lkFr]|IW|W]|O
Ol OO |O0O|O)|O| O

oO|lW|W|HKHr|O|O

Padding size needs to be determined \)

Output Size for “SAME” Padding

, W —f+2p olojofo|ofo
w' = F 1
S 012|0]1|3]|0
0O11|1]2]|3]|0
num filtersn =1
Filter size f =3 01413121219
strides =1 0o(8|3|[1]3]|0
addingp = 1*
padding p olofo|o|lo]o
Padding size needs to be determined \ ’

Output Size for “SAME” Padding

o= W —f+ 2P+ . olofofoflo]o
S ol2lo0l1]3]0
Ol1]11]12]|3]|0
num filtersn =1

filter size f=3 0141320
stride s =1 olg8l31113]0

addingn = 1*
P 9P Oj]o0]J]O0O]|O]|]O0]|O

Padding size needs to be determined | J

Any questions?

| . r J%,
Output Size for “SAME” Padding EN
-~
L w—f+2p ‘1 ojof(fo|lo|O]|oO
S 0|2|0|1(|3]0 1123
ol1]|]1]12(|3]|0
num filtersn =1
Filter size f =3 014]13[2]]0
stride s =1 o|l83[1]13]0
ddi =1*
pacding p olofo|lolo]o \
Padding size needs to be determined \ ’ =4

Getting network output

Remaining Question: If the convolution creates another [h x w x d]
tensor, how do we actually get an output?

How can we turn use convolutions for classification?

VGG-16 CNN Architecture

FC-6 FC-7 FC-8

1x1x4096 1x1x1000

TxTx512

@ convolution+ReLLU

[_ﬂ max pooling
fully connec ted+ReLU https://lea rnOpenCV.Com/UnderSta

224 224 x 64 nding-convolutional-neural-
networks-cnn/

Color images...

What if our input has multiple channels (colors)? Do we apply filters
to each individual color matrix? Or in some other way?

Source: Martin Gorner

Multi-Channel Input

Which makes more sense?

Option #1
n channels to n outputs

Kernel Input Kernel Output Input
11213
112
4 [5|6 | *

Input
PP
o[1]2H
3lals
6|7 s K

Option #2
N channels to 1 output

o
-2
Il
~l
co
w
w
P
I
MD}
Wl =
[e2] w O
Al =
2] (4] N P
‘.I\.

2|3 01112)
011 7 |
314 |5 %
213
6718

Kernel Input Kernel
1123
1] 2
4 | 516 | %
3| 4
= 71819
01 = +
213 0[1]2
011
3|4 |5 | %*
2|3

Output

56

72

104

120

Multi-Channel Input

from separate channels to be used

N-channels to 1 output allows information

Input
PP
o[1]2H
3lals
6|7 s K

together
Option #1 Option #2
n channels to n outputs N channels to 1 output
Kernel Input Kernel Output Input Kernel Input Kernel
11213 11213
1|2 1|2
4 5|6 |* 4156 *
3|4 ‘ [114 3| 4
71819 K ol11]2 H = 71819
011 — — 5| » [0] 1 — +
2|3 3145
2|3 0o[1]2) 2|3 0f1]2
011 6|l7 18K 011
3[4]|5]|* 3|45 *
2|3 2|3
678 6718

Output

56

72

104

120

Bias Term in Convolution Layers

-

Bias
2 (031
10 (-1 1
il el B 2|10 (-2 +
® —
1/0|2]0ww .
Stride =1 1 0 _1
11012
Just like a fully connected layer, we can have a learnable additive bias

for convolution.

Adding a Bias in Tensorflow

If you use tf.nn.conv2d, bias can be added with:

tf.nn.bias_add(value, bias)

Conv2D output Bias variable to add

e.g.
tf.Variable (tf.random.normal ([16]))
for a conv2d output with 16 channels

FU ll d OCU m e n ta ti O n h e re: https://www.tensorflow.org/api_docs/python/tf/nn/bias_add

Adding a Bias in Tensorflow

If you are using keras layers, bias is included by default:

tf.keras.layers.Conv2D(filters, kernel_sz, strides, padding,@

LN

Number of Filters : : :
Filter Size g4 ides along Type of Padding
each dimension (VALID or SAME)

FU ll d OCU m e n ta tl O n h e re: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/Conv2D

Today’s Goals

(1) What non-linear activation functions are available to us?

(2) Learn about Convolutional Architectures
(1) Many more decisions to make about structure of network than MLPs

Activation Functions

Remember, a linear combination of features, even if repeated many
times, will always be linear.

Still need some type of non-linear activation (e.g., ReLUs)

We also have other convolution-specific activation functions called
“pooling” operations

Max Pooling

Max pooling with stride 2 and 2x2 filters

Max of pixels
in window

27

Max Pooling

Max pooling with stride 2 and 2x2 filters

Max of pixels
in window

28

Max Pooling

Max pooling with stride 2 and 2x2 filters

Max of pixels
in window

29

Max Pooling

Max pooling with stride 2 and 2x2 filters

Max of pixels
in window

30

Max Pooling

Max pooling with stride 2 and 2x2 filters

Max of pixels
in window

31

Max Pooling

Max pooling with stride 2 and 2x2 filters

Why use Max Pooling?

32

Pooling: Motivation

Max Pooling

» Keeps track of regions with highest activations, indicating object presence

* Controllable way to lower (coarser) resolution (down sample the convolution output)

Original Image Convolution Output After Pooling

33

Other Pooling Techniques

Average pooling with stride 2 and 2x2 filters

Average pixel
values in each
window

34

Any questions?

n?9

€3

Learning a Pooling Function

- The network can learn its own pooling function
- Implement via a strided convolution layer

Learned filter
weights

35

Our neural network so far

output

linear layer softmax

Convolutional Neural Network Architecture

output
64

linear layer softmax

CNN Architecture

A
N\
N
N'-.\
——~
-
”

output

linear layer softmax

CNN Architecture

output

linear layer softmax

CNN Architecture

output

linear layer softmax

CNN Architecture

This part learns to extract features from the image

64

N
A S
N
~
-

“~ RelU
3 +
Pool

32

\

N\ RelU

— i +
Pool

CNN Architecture

/ A single convolutional layer

.
N\
< / ReLU
-
B == +
Pool

32

CNN Architecture

64

N RelU

+
Pool

32

Activation after filter passes over image

\

N\ RelU

s +
Pool

15

CNN Architecture

This part learns to perform a specific task
(e.q. classification) using those features

—> > Z | O | output

linear layer softmax

16

CNN Architecture

Flattened data
/ (beginning of the fully
connected portion)

—> > Z 1 O | output

near layer softmax

e —

17

CNN Architecture

Fully connected layers
to classify input

\

- —> g Z " O [output

linear layer softmax

18

CNN Architecture

Input

Label="Llama”

output

linear layer softmax

19

Feature Extraction using multiple convolution
layers

Hierarchy of features
Sequence of layers detect broader and broader features

225 —

o ~ \
~~2, £ Relu ReLU

225

+ +
Pool Pool

96

20

Any questions?

Exa m p I e: N etWO I k D i SSe Ct i on hitp://netdissect.csail.mit.edu/

Layer 3 active regions Layer 4 active regions Layer 5 active regions

21

“Eye Detector” “Eyes and Nose Detector” “Dog Face Detector”

ILSVRC 2012

(ImageNet Large Scale Visual Recognition Challenge)

The classification task on ImageNet:

For each image, assign 5 labels in order of decreasing confidence.
one of these labels matches the ground truth

Carpet
Zebra
Llama
Flower
Horse

v B W)=

https://commons.wikimedia.org/wiki/File:Common_zebra 1.jpg

Predictions:

Success if

22

ILSVRC 2012

Percentage that model fails to classify is known as Top 5 Error Rate

h

t

tps://commons.wikimedia.ora/wiki/File:Puffer Fish DSC01257.JPG

Predictions:

Sponge
Person
Llama
Flower
Boat

Ll a8 ol S

23

AlexNet: Why CNNs Are a Big Deal

Major performance boost on ImageNet at ILSCRV 2012
Top 5 error rate of 15.3% compared to 26.2% achieved by 2nd place

0.9

mm SuperVision
m—|S)

=)
&

e
@®

o
=

o
&

Note: SuperVision is the
name of Alex’s team

Average Classification Accuracy
o ' o
D ~

o
&

0.5

1 1.I5 2 2.'5 3 9.’5 4 4.|5
Number of Guesses
http://image-net.org/challenges/LSVRC/2012/analysis/

AlexNet

- 60 million parameters
- 5 Convolutional Layers
. 3 Fully Connected Layers

55

27
13 13 13

: S — -“,—- 3 . B —\‘:‘ - - ~
1 ol X P - 13 > 13 3 - = 13 dense | |dense
224 s\|_|- 27 N T 3 L1 -
55 384 384 256 1000
256 I Max

e Max pooling 4096 4096

Stride\| o pooling pooling
224 of 4

3

|Alex Krizhevsky et al. 2012

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convo
lutional-neural-networks.pdf

25

Pooling

7’

\|I,

linear layer softmax

output

26

So...did we achieve our goal of
translational invariance?

What was Translational Invariance again?

« To make a neural net f robust in this same way, it should ideally
satisfy translational invariance: f (T (x)) = f (x), where
e x is the input image
* T is a translation (i.e. a horizonal and/or vertical shift)

5 i

. T a . 1945 4 12t
0 "= e o o o @ = L
) I o o o o o (I L
] L B o 0 0 v o " e L
4 "N D an e N
1 N] o 0 0o 0 @ N v
) 0 0 [0 0 o o o o o]
) 0« 6o 0 0 0o 0 o 0
] . = 0 o o 0 0 0o o0 o " 0
5 " 0 o [6 0 0o o0 0 0 "B 0
0 _ 0o o 0 0 0 0 0 o " 0
o B o o — ¢ o B & B ® : B 0
0 ® i 0o o 0o 0 R R w i 0
' _—
) e 3 0 o o 0o 0o 0o 0 0 n ’ 0
o " o o o @ B & B o - = 0
0 N 0 o o 0o 0o 0 0 0 . 0
) "N 0o o o 0o 0 0 0 o0 | 0
0 :r » 0 o 0 0 0 0 0 o :r B 0
0 0 o0 o 0 0 © 0 o0 0
Lo o o] lo o o o o o 0l

37

Are CNNs Translation Invariant?

= Convolution is translation equivariant
* A translated input results in an output translated by the same amount

« f(T(D) =T(f(D)

* T®K)(x,y) =TI Q K)(x,y)

f(

kHere,(I ® K)(x,y) = ZZ!(JC +m,y +n)K(m,n)

38

Are CNNs Translation Invariant?

- Max pooling is intended to give invariance to small translations

- The highest activation pixel can shift around within the pooling window, and the
output does not change

fCERD
fCERD
fCEED

https://divsoni2012.medium.com/translation-invariance-in-convolutional-neural-networks-61d9b6fa03df

|
o

So how does it all come together?

Convolution is
translation
equivariant

[1 Small shift

Max pooling gives
invariance to
small translations

40

https://www.doc.ic.ac.uk/~bkainz/teaching/DL/notes/equivariance.pdf

Are CNNs Translation Invariant?

. Answer: CNNs are “sort of” translation invariant

- Shifting the content of the image around tends not to drastically effect the
output classification probabilities...

64 -
: 32
\\
5 [~ Oy RelU L
,---" = P;ol

64 32

(Y= ﬁu
|
™~
Q

Label: “Cat”

L linear layer softmax

41
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.quora.com%2FW hy-and-how-are-convolutional-neural-networks-translation-invariant&psig=AOvVaw3CGbr5n49raEoDHt7opgHk&ust=16457980611340008&source=images&c

d=vfe&ved=0CAwQjhxqFwoTCPDfkdvBmPYCFQAAAAAdAAAAABAC

Are CNNs Translation Invariant?

. Answer: CNNs are “sort of” translation invariant

- Shifting the content of the image around tends not to drastically effect the
output classification probabilities...

y
s 32
. 3
5 0 (e 3 g \ o ”
-Gy ! SN b o Label: “Cat
- 9 Po

64 32

L linear layer softmax

42
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.quora.com%2FWhy-and-how-are-convolutional-neural-networks-translation-invariant&psig=AOvVaw3CGbr5n49raEoDHt 7o pgHk&ust=16457980611340008&source=images&c

d=vfe&ved=0CAwQjhxqFwoTCPDfkdvBmPYCFQAAAAAJAAAAABAC

Are CNNs Translation Invariant?

. Answer: CNNs are “sort of” translation invariant

. Shifting the content of the image around tends not to drastically effect the

output classification probabilities...
. ...but they are not, strictly speaking, translation invariant

Max Pool

)

s M

https://dsp.stackexchange.com/questions/24900/translation-invariance-in-max-pooling-and-cascading-with-convolutional-layer

These are
notall the
same!

43

Other Invariances

Rotation/Viewpoint Invariance

8

&

g

2

45

Other Invariances

Rotation/Viewpoint Invariance

8

&

g

Size Invariance

&

g

46

Other Invariances

Rotation/Viewpoint Invariance

8

&

g

Size Invariance

@

[llumination Invariance

&

&

Matt K
mattk

rause
rause

46

Other Invariances

Rotation/Viewpoint Invariance

&

Size Invariance

g 3

8

[llumination Invariance

&

=
R

Matt Krause
mattkrau.se

All are desirable properties!
How do CNNs fare?

- Max pooling gives some amount
of size and translational
invariance

- Butin general, CNNs do not fare
well with large changes in
lighting or scale.

Consequences of not having these
invariances?

- Require lots of training data

- Have to show network many
examples of lighting changes,
scale changes, etc.

46

Other Invariances

Rotation/Viewpoint Invariance

- All are desirable properties!

” - How do CNNs fare?
- Max pooling gives some amount

of size and translational
invariance
- Butin general, CNNs do not fare

well with large changes in

lighting or scale.

Size Invariance - Consequences of not having these

2 2 invariances?

- Require lots of training data
lllumination Invariance examples of lighting changes,

Can we address these concerns
without collecting additional data?

- Have to show network many
scale changes, etc.

Matt Krause 46
mattkrau.se

Other Invariances

Rotation/Viewpoint Invariance

&

g

Size Invariance

8

[llumination Invariance

A&

&
-

R

Data Augmentation! Use
rotated/scaled/shifted images
from your dataset to train

All are desirable properties!
How do CNNs fare?

- Max pooling gives some amount

of size and translational
invariance

- Butin general, CNNs do not fare

well with large changes in
lighting or scale.
Consequences of not having these
invariances?
- Require lots of training data
- Have to show network many
examples of lighting changes,
scale changes, etc.

Can we address these concerns
without collecting additional data?

Matt Krause
mattkrau.se

46

Data Augmentation

If thisis a catin our
dataset, itis an image
with a label (cat)

Data Augmentation

If thisis a catin our Thisisalso acat
dataset, itis an image
with a label (cat)

Data Augmentation

If thisis acatin our This is also a cat This is also acat
dataset, itis an image
with a label (cat)

Data Augmentation

This is also a cat

If thisis acatin our This is also a cat This is also acat
dataset, itis an image
with a label (cat)

Data Augmentation

This is also a cat

If thisis acatin our This is also a cat This is also acat
dataset, itis an image
with a label (cat)

This isalso acat

More Complicated Networks

55 g —
27
\ 13 13 13
‘t y i "=
AleXNet: o | SQ: 5 L 27 BQ: r=%e :ﬁ: -1 s 3&‘—‘: 13 dense | |dense
224 5 o 3 T 3 -
55 384 384 256]
s — n | 1000
Max Max pooling 409 4096

Stride\| o pooling pooling
224 of 4

3

224x224x64
224x224x3
14x14x512]
7X7x512 —1 |
VGG: ({(| 1] O [—*output
Pool | |
1 1x1000
Poel 1x4096 1x4096 -

More Complicated Networks

55

27

13 13 13
N
1 1
A|€XNEt' 1 S ; = - += "j‘." et dense | |dense

77

rLd

v

22‘ 5 o 3 1 3 -
384 384 256
35 Mo 1000
256 . 100
Max e pooling 40096 4096
Stride pooling pooling
294 96

VGG uses 3x3 filters for everything, AlexNet uses
11, 5, 3, 3. Number of channels typically
increases as depth increases

224x224x3

14x14x512

Ao e

Pool 1x1000
Pool 1x4096 1x4096 48

VGG:

\ 4
\

O —>output

More Complicated Networks

55

27

13 13 13
N
1 i ¢
. 5 —‘-:;. 3_ L™ ’ \—‘T pds
AleXNEt. 1 . = - - 13 3 _ 1 13 3& - 13 dense dense

77

77

224 S\L.|7 N T N -~
55 384 384 256 1000
M ot
Max 2t Max p:;mg 4096 4096
.\ || Stride\| o | Pocling pooling
VGG uses 3x3 filters for everything, AlexNet uses Filters tend to get smaller as depth increases,
11, 5, 3, 3. Number of channels typically number of output channels (num filters)
increases as depth increases increases (or stay the same)

224x224x3

7xX7x512

VGG:

\ 4
A

O [—>output

Pool

1x1000
1x4096 1x4096 48

What if we didn’t use a convolution?

How many weights would there be if we have an input image of
224x224x3 and want to go to a hidden layer size of 40967

0z

What is the size of the Jacobian W?

224x224x3

>

VGG:

1x1000

1x4096 1x4096

48

With Convolutions

VGG uses 3x3 convolutions, how many weights are in the first filter
bank to go from 224x224x3 to 224x224x647?

224x224x64

VGG:

14x14x512
7x7x512
> > — o —output

Pool 1x1000
1x4096 1x4096 48

Convolutions and Depth

Convolutions are much
faster to run than a linear
layer on the same size input

We can add more layers to
CNNs than MLPs with the
same inference time

Theory: Having more layers gives better performance with the
same number of total weights (with lots of caveats)

Convolutions and Depth

Convolutions are much
faster to run than a linear
layer on the same size input

We can add more layers to
CNNs than MLPs with the
same inference time

Theory: Having more layers gives better performance with the
same number of total weights (with lots of caveats)

But we start to run into other issues as the depth of
our neural networks increase...

Revolution of Depth

16.4

11.7

22 layers [19 layers)

TEE

ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33

The Return of Gradients

Common activation functions typically have a derivative smaller

than 1 (or at least not more than 1)

1.0 -
0.8
0.6
0.4
0.2

0.0 4

Sigmoid function and it's derivative:

— o(x)
— Zalx)

aa“] . azm - m

rl: oL JoL 9da'* 97 94"
W, " 9™ 377 g ow,

BLl

EA 5

—

X
—— _— e _

- = - azm - m

L _ 9L 34 92” 9"
oW, " 9a” dz'* 94! oW,

v

-\ﬁL

oL _,

T)

R

Adding more layers adds more
terms with gradient <1

X

_

oL
aa“] azm aam oL —=1 L
—

oL JL da™ 9z7'* 9a""
oW, " 9™ 377 g oW,

Could we fix it by making everything “steeper”

* Vanishing gradients are caused by the repeated multiplication of
numbers smaller than 1

* If we make those numbers larger than 1, we have a separate
problem...

Could we fix it by making everything “steeper”

* Vanishing gradients are caused by the repeated multiplication of
numbers smaller than 1

* If we make those numbers larger than 1, we have a separate
problem...

Exploding Gradients

224x224x3

VGG:

If you could make one change to a weight to have the biggest
change on output, which weight would you pick?

224x224x64
12x112x128

56x56x256

28x28x512

14x14x512

7x7x512

Pool

1x4096 1x4096

1x1000

— output

48

https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33, https://cv-tricks.com/keras/understand-implement-resnets/

Revolution of Depth

8Iayers | 8layers shallow

—————— ILSVRC'14 ILSVRC'13 ILSVRC'12Z ILSVRC'11 ILSVRC'10
W VGG AlexNet

i | . . :
Deep Layers Somvﬁ;re - Initial eNet Classification top-5 error (%)

the middle Layers

More Complicated Networks

ResNet:

Lots of layers, tons of learnable parameters

Avoids Vanishing Gradient problem

but how?
Revolution of Depth

152 layers
s
| 221ayers | | 19 Iayers I I

3.57 l I 8 layers 8 layers shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

arXiv preprint arXiv:1512.03385, 2015. 51

Image Classification on ImageNet

Leaderboard Community Models Dataset
View Top 1 Accuracy v by Date v for | All models v
100 E
Meta Pseudo Labels (EfficientNet-L2) CoCa (finetuned)
20 FixResNeXt-101 32x48d NoisyStudent (EfficientNet-B7)
> NASNET-A(6)
U .
§ 20 Inception V3 Inception ResNet V2
- VGG
W]
O
<
= 70
% OverFeat
= Alexnet
60
50
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Other models State-of-the-art models

More Complicated Networks
ResNet: =

Lots of layers, tons of learnable parameters
Avoids Vanishing Gradient problem

weight layer
F(x) l relu

weight layer

X

Residual Block >

identity

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning For image recognition.
arXiv preprint arXiv:1512.03385, 2015.

Residual Blocks

In very deep nets, each layer often needs
to learn just a small transformation of the
preceding layer (identity + change)

|dea: explicitly design the network such
that the output of each layer is the identity
+ some deviation from it

* Deviation is known as a residual

X Skip connection
weight layer
F(x) l relu =
weight layer identity

53

Residual Blocks

* |In very deep nets, each layer often needs
to learn just a small transformation of th
preceding layer (identity + change)

* ldea: explicitly design the network such
that the output of each layer is the identi
+ some deviation from it

* Deviation is known as a residual

« Allows gradient to flow through two
pathways

* Significantly stabilizes training of very
deep networks

https://blog.perceptilabs.com/using-resnets-to-detect-anomalies-in-industrial-iot-textile-production/

Gradient
pathway-1

Input to the
residual block

(x)

Identity mapping

Gradient pathway-2
<
\ /

Residual mapping
i.e. F(x)

Gradient
pathway-1

Output of the
residual block
H(x) = F(x) + x

54

Tensorflow

Option #1: Residual Block

tfm.vision.layers.ResidualBlock(filters, strides)
Option #2:

Residual Block
def ResBlock(inputs):
x = layers.Conv2D(64, 3, padding="same", activation="relu") (inputs)

x = layers.Conv2D(64, 3, padding="same") (x)
x = layers.Add() ([inputs, x])
return x

Original Input Intermediate Output

https://keras.io/examples/vision/edsr/

Residual Blocks

* |In very deep nets, each layer often needs
to learn just a small transformation of th
preceding layer (identity + change)

* ldea: explicitly design the network such
that the output of each layer is the identi
+ some deviation from it

* Deviation is known as a residual

« Allows gradient to flow through two
pathways

* Significantly stabilizes training of very
deep networks

https://blog.perceptilabs.com/using-resnets-to-detect-anomalies-in-industrial-iot-textile-production/

Gradient
pathway-1

Input to the
residual block

(x)

Any questions?

Identity mapping Gradient
pathway-1

Gradient pathway-2

P Output of the
e SN / residual block
T H(x) = F(x) + x
Residual mapping
i.e. F(x)
54

Activation Amount

Batch Normalization (stabilizing training)

ldea: normalize the activations for each feature at each layer

Activation with Batch Norm

. Activation without Batch Norm 10.0
0.0
7.5 4 e
5.0 -F 5.0 4
€
2.5 3 2.5
v £
<
0.0 5 00 VWA N NWNANMNNAMAN SN MANNS
E:
-5 g =251
<
~5d -5.0
-7.
? -7.5
-10.0 T T T T
0 20 40 60 80 100 -10.0 T T T T
0 20 40 60 80 100

Feature in Batch
Feature in Batch

Why might we want to do this?

55

Batch Normalization: Motivation

More stable inputs = faster training

MNIST test accuracy vs number of training steps

1

09} 7

0.8h - = = Without BN

With BN

10K 20K 30K 40K 50K

https://arxiv.org/pdf/1502.03167.pdf

56

Batch Normalization: Implementation

For each feature x, Start by calculating the batch mean and standard
deviation for each feature:

batch_size
i=0 Xi

Hbatch = batch_size

- 2
batch_size
i=0 (xi _ ﬂbatch)

\ batchg;,,

Opatch =

Batch Normalization: Implementation

Normalize by subtracting feature x’s batch mean, then divide by batch
standard deviation.

, X — Upatch
x p—

Opatch

Feature x now has mean 0 and variance 1 along the batch

Batch Normalization in Tensorflow

tf.keras.layers.BatchNormalization (input)

D 0 C U IT] e n ta tl 0 n : https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/BatchNormalization

59

Motivation of BatchNorm

e Reduce “internal co-variate shift”

e Neural networks are trained on a certain distribution of data and
are expected to be tested on the same distribution

* |f we were to scale the colors of an image significantly at test time,
we wouldn’t expect a neural network to do well

* The same can be said for our intermediate layers

* They expect a certain distribution of inputs, if that changes significantly
from example to example, it will be hard to learn

* (Most commonly cited reason for using BatchNorm)

The only issue Is that controlling internal
covariate shift does not matter that much...

How Does Batch Normalization Help Optimization?

Shibani Santurkar* Dimitris Tsipras* Andrew Ilyas* Aleksander Madry
MIT MIT MIT MIT
shibani@mit.edu tsipras@mit.edu ailyas@mit.edu madry@mit.edu
Abstract

Batch Normalization (BatchNorm) is a widely adopted technique that enables
faster and more stable training of deep neural networks (DNNs). Despite its
pervasiveness, the exact reasons for BatchNorm’s effectiveness are still poorly
understood. The popular belief is that this effectiveness stems from controlling
the change of the layers’ input distributions during training to reduce the so-called
“internal covariate shift”. In this work, we demonstrate that such distributional
stability of layer inputs has little to do with the success of BatchNorm. Instead,
we uncover a more fundamental impact of BatchNorm on the training process: it
makes the optimization landscape significantly smoother. This smoothness induces
a more predictive and stable behavior of the gradients, allowing for faster training.

BatchNorm makes the loss landscape smoother
with fewer local minima, saddle points, and other
problematic areas for gradient descent

How Does Batch Normalization Help Optimization?

Shibani Santurkar* Dimitris Tsipras* Andrew Ilyas* Aleksander Madry
MIT MIT MIT MIT
shibani@mit.edu tsipras@mit.edu ailyas@mit.edu madry@mit.edu
Abstract

Batch Normalization (BatchNorm) is a widely adopted technique that enables
faster and more stable training of deep neural networks (DNNs). Despite its
pervasiveness, the exact reasons for BatchNorm’s effectiveness are still poorly
understood. The popular belief is that this effectiveness stems from controlling
the change of the layers’ input distributions during training to reduce the so-called
“internal covariate shift”. In this work, we demonstrate that such distributional
stability of layer inputs has little to do with the success of BatchNorm. Instead,
we uncover a more fundamental impact of BatchNorm on the training process: it
makes the optimization landscape significantly smoother. This smoothness induces
a more predictive and stable behavior of the gradients, allowing for faster training.

Theory, intuition, and experimental results can all tell you different
things

Why do CNNs work so well?
Intuition: Looking for a way to get
“spatial reasoning” or translational
invariance

Why does BatchNorm work so well?
Intuition: If normalizing input data
works so well for training, why not
normalize input features to

. . o
intermediate layers: Theory/experiments: Maybe it’s just

that using fewer weights lets us go
deeper and deep networks learn
better (and also they have spatial
reasoning)

Theory/experiments: Makes
gradients of loss function “better”

Recap

Translations

CNN Architectures

—

Convolutions and Pooling give us
translationally equivariant layers
in our network

—

Small translations in input
cause translations in output

Convolutions let us train train
deeper networks than MLPs

Adding significantly more depth
presents new challen 5
(vanishing/exploding gradients)

Residual layers and batch norm
can help reduce those effects

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Getting network output
	Slide 34: Color images…
	Slide 35: Multi-Channel Input
	Slide 36: Multi-Channel Input
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Today’s Goals
	Slide 41: Activation Functions
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84: Data Augmentation
	Slide 85: Data Augmentation
	Slide 86: Data Augmentation
	Slide 87: Data Augmentation
	Slide 88: Data Augmentation
	Slide 89
	Slide 90
	Slide 91
	Slide 92: What if we didn’t use a convolution?
	Slide 93: With Convolutions
	Slide 94: Convolutions and Depth
	Slide 95: Convolutions and Depth
	Slide 96
	Slide 97: The Return of Gradients
	Slide 98
	Slide 99
	Slide 100
	Slide 101: Could we fix it by making everything “steeper”
	Slide 102: Could we fix it by making everything “steeper”
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110: Tensorflow
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117: Motivation of BatchNorm
	Slide 118: The only issue is that controlling internal covariate shift does not matter that much…
	Slide 119: BatchNorm makes the loss landscape smoother with fewer local minima, saddle points, and other problematic areas for gradient descent
	Slide 120
	Slide 121: Recap

