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Getting network output

Remaining Question: If the convolution creates another [h x w x d] 
tensor, how do we actually get an output?
How can we turn use convolutions for classification?

https://learnopencv.com/understa
nding-convolutional-neural-
networks-cnn/



Color images…

What if our input has multiple channels (colors)? Do we apply filters 
to each individual color matrix? Or in some other way?

Source: Martin Görner



Multi-Channel Input

Option #2
N channels to 1 output

Option #1
n channels to n outputs

Which makes more sense?



Multi-Channel Input

Option #2
N channels to 1 output

Option #1
n channels to n outputs

N-channels to 1 output allows information 
from separate channels to be used 

together









Today’s Goals

(1) What non-linear activation functions are available to us?
(2) Learn about Convolutional Architectures

(1) Many more decisions to make about structure of network than MLPs



Activation Functions

Remember, a linear combination of features, even if repeated many 
times, will always be linear.

Still need some type of non-linear activation (e.g., ReLUs)

We also have other convolution-specific activation functions called 
“pooling” operations

















































































- All are desirable properties!
- How do CNNs fare?

- Max pooling gives some amount 
of size and translational 
invariance

- But in general, CNNs do not fare 
well with large changes in 
lighting or scale.

- Consequences of not having these 
invariances?

- Require lots of training data
- Have to show network many 

examples of lighting changes, 
scale changes, etc.
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- All are desirable properties!
- How do CNNs fare?

- Max pooling gives some amount 
of size and translational 
invariance

- But in general, CNNs do not fare 
well with large changes in 
lighting or scale.

- Consequences of not having these 
invariances?

- Require lots of training data
- Have to show network many 

examples of lighting changes, 
scale changes, etc.

Can we address these concerns 
without collecting additional data?

Data Augmentation! Use 
rotated/scaled/shifted images 

from your dataset to train
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If this is a cat in our 
dataset, it is an image 
with a label (cat)
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VGG uses 3x3 filters for everything, AlexNet uses 
11, 5, 3, 3. Number of channels typically 

increases as depth increases



Filters tend to get smaller  as depth increases, 
number of output channels (num filters) 

increases (or stay the same)

VGG uses 3x3 filters for everything, AlexNet uses 
11, 5, 3, 3. Number of channels typically 

increases as depth increases



What if we didn’t use a convolution?

How many weights would there be if we have an input image of 
224x224x3 and want to go to a hidden layer size of 4096?

What is the size of the Jacobian 𝜕𝑧
𝜕𝑊

?



With Convolutions

VGG uses 3x3 convolutions, how many weights are in the first filter 
bank to go from 224x224x3 to 224x224x64?



Convolutions and Depth

Convolutions are much 
faster to run than a linear 
layer on the same size input

We can add more layers to 
CNNs than MLPs with the 
same inference time

Theory: Having more layers gives better performance with the 
same number of total weights (with lots of caveats)



Convolutions and Depth

Convolutions are much 
faster to run than a linear 
layer on the same size input

We can add more layers to 
CNNs than MLPs with the 
same inference time

Theory: Having more layers gives better performance with the 
same number of total weights (with lots of caveats)

But we start to run into other issues as the depth of 
our neural networks increase… 



What’s the biggest limitation 
in increasing depth?



The Return of Gradients

Common activation functions typically have a derivative smaller 
than 1 (or at least not more than 1)



≤1



≤1
Adding more layers adds more 

terms with gradient ≤1



≤1
Adding more layers adds more 

terms with gradient ≤1

Multiplying by terms ≤1 makes 
things smaller…

Gradients earlier in the network 
tend to “Vanish”



Could we fix it by making everything “steeper”

• Vanishing gradients are caused by the repeated multiplication of 
numbers smaller than 1

• If we make those numbers larger than 1, we have a separate 
problem…



Could we fix it by making everything “steeper”

• Vanishing gradients are caused by the repeated multiplication of 
numbers smaller than 1

• If we make those numbers larger than 1, we have a separate 
problem…

Exploding Gradients



If you could make one change to a weight to have the biggest 
change on output, which weight would you pick?















Tensorflow

Option #1: Residual Block
 tfm.vision.layers.ResidualBlock(filters, strides)

Option #2:
 

https://keras.io/examples/vision/edsr/

Original Input Intermediate Output















Motivation of BatchNorm

• Reduce “internal co-variate shift”
• Neural networks are trained on a certain distribution of data and 

are expected to be tested on the same distribution
• If we were to scale the colors of an image significantly at test time, 

we wouldn’t expect a neural network to do well
• The same can be said for our intermediate layers

• They expect a certain distribution of inputs, if that changes significantly 
from example to example, it will be hard to learn

• (Most commonly cited reason for using BatchNorm)



The only issue is that controlling internal 
covariate shift does not matter that much…



BatchNorm makes the loss landscape smoother 
with fewer local minima, saddle points, and other 
problematic areas for gradient descent



Theory, intuition, and experimental results can all tell you different 
things

Why does BatchNorm work so well?
Intuition: If normalizing input data 
works so well for training, why not 
normalize input features to 
intermediate layers?

Theory/experiments: Makes 
gradients of loss function “better”

Why do CNNs work so well?
Intuition: Looking for a way to get 
“spatial reasoning” or translational 
invariance

Theory/experiments: Maybe it’s just 
that using fewer weights lets us go 
deeper and deep networks learn 
better (and also they have spatial 
reasoning)



Recap

Convolutions let us train train 
deeper networks than MLPs

Adding significantly more depth 
presents new challenges 

(vanishing/exploding gradients)

Residual layers and batch norm 
can help reduce those effects

Convolutions and Pooling give us 
translationally equivariant layers 

in our network

Small translations in input 
cause translations in output

Translations

CNN Architectures
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