Day 5: Classification and Hyperparameters
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Recap: MLPs

Input: X Target: Y

1. Compute Error/Loss on training set

2. Run Backprop and SGD

3. Repeat until convergence

4. If performance on validation setis
acceptable, terminate, else try new
hyperparameters



Hyperparameters

The parameters of a Neural
Network are what is trained (e.g.,
weights and biases).

The hyperparameters of a

b Neural Network are the
parameters that you have
D \ b control of that control that
We | training.
> Y [— Output
b Ws
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Data Preprocessing

Normalization: Shift each feature to be of a similar scale

x—min(x)

Apply: x" =

min(x)—max(x)
feature to lie within [0, 1].

Before normalization: different Distance A: 10 inches
features can be different scales, Distance B: 25inches
different units, etc. Distance C: 40 inches
After normalization: Each feature Normalized Features:

has same impact on model [0, 0.5, 1]

to every feature in dataset, shifting each

Distance A: 1000 inches
Distance B: 2500 inches
Distance C: 4000 inches

Normalized Features:
[0, 0.5, 1]



Data Preprocessing
Normalization: Shift each feature to be of a similar scale

x-mint®)__ v, every feature in dataset, shifting each

Apply: X' = min(x)—max(x)
feature to lie within [0, 1].

Before normalization: different Gradient Descent converges faster when working with normalized data!
features can be different scales,
different units, etc. loffe, Sergey; Christian Szegedy (2015). "Batch Normalization: Accelerating

Deep Network Training by Reducing Internal Covariate Shift".
After normalization: Each feature
has same impact on model



Network Initialization

What if we begin with all
parameters setto 0?
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> Y [— Output




Network Initialization

What if we begin with all
parameters setto 0?

All neurons would have the same
value, gradients would be the

y \ b same.

W5 \ 4
> Y [— Output




Network Initialization
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Network Initialization

Idea #1: Uniform random weights between -1 and 1
(works fine)

W5 \ 4
=| Y. — Output




Network Initialization

ldea #1: Uniform random weights between -1 and 1
(works fine)

b But... what if there are many many weights in a layer?
The scale of the output can grow, variance of output

increases
W5 v
=| Y. — Output
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Network Initialization

Idea #1: Uniform random weights between -1 and 1
(works fine)

But... what if there are many many weights in a layer?
The scale of the output can grow.

/

|dea #2: Xavier (Glorot) initialization:

Y. — Output

Uniform: Initialize each weight uniformly at random in
. 6
b Ws the range [-x, x] with x =
Nin+Nout

R

Variance of arandom variable in fixed
2

range [-X, X] is % (easy to derive from

definition of variance)




Network Initialization

Idea #1: Uniform random weights between -1 and 1
(works fine)

But... what if there are many many weights in a layer?
The scale of the output can grow.

/

|dea #2: Xavier (Glorot) initialization:

Y. — Output

Uniform: Initialize each weight uniformly at random in
. 6
b Ws the range [-x, x]withx = [———
Nin+Nout

Z /
Normal: Initialize each

weight with mean 0 and
Variance of arandom variable in fixed - 2
5 standard deviation g = [———
Nin+tNout

range [-X, X] is % (easy to derive from

definition of variance)




Network Initialization

Idea #1: Uniform random weights between -1 and 1
(works fine)

b But... what if there are many many weights in a layer?
The scale of the output can grow.

Ws - |dea #2: Xavier (Glorot) initialization:
Y. — Output - : : :
Uniform: Initialize each weight uniformly at random in
b Ws the range [-x, x] with x = /;
Nin+Nout
)

Normal: Initialize each weight with mean 0 and
: : . , 2
Keeps variance of z and gradients of |standard deviationo = |————
Nin+Nout

weights the same for each layer at
initialization.

Understanding the difficulty of training deep feedforward neural networks. Xavier Glorot, Yoshua Bengio



Hidden Layers

* How deep (# hidden layers) should your network be?
* How wide (# neurons in a layer) should your network be?

. hidden laver 1  hidden layver 2 hidden layver 3
input layer

- a‘. .
ANz Qe

M Tl :.f""
L i o Y &
NS @7 @
N
W Ny

f
)0
”

1y
)

o
2
Lo

b
P

i
[
%

i

-

]
D

P AL
PN

e A

Q)

oy

]

T
,

"‘.

Zrerg i s g v g Wy g "-‘.--.

e Sa Ao o, e e o 7 r.-'--."',#:- o e

e e T g N e e W A
el g B s I ok et W :
@ 2NN g st
. ey o ey ::.I":- e ..:1_::1- :.:. _.:i""-l';:ji 5 - h‘-‘:i"r"‘:":;-'
@ W et el
TSN\ R e & e
e Wy s e it
W ZaEa W =\




Hidden Layers

* How deep (# hidden layers) should your network be?
* How wide (# neurons in a layer) should your network be?

. hidden laver 1  hidden layver 2 hidden layver 3
input layer
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Hidden Layers

* How deep (# hidden layers) should your network be?
* How wide (# neurons in a layer) should your network be?

. hidden laver 1  hidden laver 2 hidden layer 3
input layer

How complex is the problem you are
trying to solve?

Process of (informed) trial and error.
How do you know if one hyper- mw

parameter setting is better than f < ,f;- %ﬁm,
\:Q,r ::.

another? CF :’ﬁ“*




How to use the Validation Set

Loss

(In theory)

The Learning Curves

training

Epochs

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA1ODYO
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(In theory)

The Learning Curves

Loss

Model starts
overfitting

training

Epochs
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How to use the Validation Set

(In theory)

Early Stopping Algorithm
1. Track training loss and validation loss

2. If validation loss starts to increase, terminate
The Learning Curves

Loss

Model starts
overfitting

training

Epochs
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How to use the Validation Set

(In theory)

Early Stopping Algorithm
1. Track training loss and validation loss

2. If validation loss starts to increase, terminate
The Learning Curves

What if your validation loss is much higher

Loss than training loss?

Model starts
overfitting

training

Epochs
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How to use the Validation Set

(In theory)

Early Stopping Algorithm
1. Track training loss and validation loss

2. If validation loss starts to increase, terminate
The Learning Curves

What if your validation loss is much higher

Loss than training loss?

Model.st.arts Your model has overfit, try
overfitting reducing its size

training

Epochs

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA1ODYO



How to use the Validation Set

(In theory)

Early Stopping Algorithm
1. Track training loss and validation loss

2. If validation loss starts to increase, terminate
The Learning Curves

What if your validation loss is much higher
than training loss?

Loss
Model.st.arts Your model has overfit, try
overfitting reducing its size
training
What if your validation loss and training loss
Epochs are both high?

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA1ODYO



How to use the Validation Set

(In theory)

Early Stopping Algorithm
1. Track training loss and validation loss

_ 2. Ifvalidation loss starts to increase, terminate
The Learning Curves

What if your validation loss is much higher
than training loss?

Loss
Model.st.arts Your model has overfit, try
overfitting reducing its size
training
What if your validation loss and training loss
Epochs are both high?

Your model has underfit,
try increasing its size

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA1ODYO



|s adding more width or depth better?



|s adding more width or depth better?

4« C&CI1470

CSCl11470 Deep Learning

Section SO01, CRN 26629
Spring 2025



Theoretical Approaches to Understanding Depth

Proofs:

- Are there functions that deep networks can represent better than
shallow networks (with similar numbers of neurons)?

Conceptual Understanding:
- Neural Networks and Manifolds for representation learning



Benefits of depth in neural networks

“For any positive integer k, there exist neural networks with ©(k?3) layers, ©(1)
nodes per layer, and O(1) distinct parameters which can not be approximated
by networks with O(k) layers unless they are exponentially large — they must

possess Q(2%) nodes.”

Matus Telgarsky “Benefits of depth in neural networks”, JMLR
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There exist functions that
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deep networks
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Benefits of depth in neural networks

“For any positive integer k, there exist neural networks with ©(k?3) layers, ©(1)
nodes per layer, and O(1) distinct parameters which can not be approximated
by networks with O(k) layers unless they are exponentially large — they must

possess Q(2%)

nodes.”

There exist functions that

shallow networks cannot

represent as efficiently as
deep networks

Matus Telgarsky “Benefits of depth in neural networks”, JMLR

How well does theory match real
world applications? Are these
functions pathological?




Depth-Width Tradeoffs in Approximating Natural Functions with
Neural Networks

Itay Safran Ohad Shamir
Weizmann Institute of Science Weizmann Institute of Science
itay.safran@weizmann.ac.il ohad.shamir@weizmann.ac.1il

With the same number of total parameters, deep networks can learn more complex functions.

Recall that NNs are compositions of functions for which we are learning parameters:

Fa(i(j))

It’s better (in general) to have more functions composed than itis to have more complex functions



* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how
many weights are there total?

. hidden layver 1 hidden laver 2 hidden layer 3
input layer
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* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how

many weights are there total?

. hidden layver 1 hidden laver 2 hidden layer 3
input layer
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* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how
many weights are there total?

* What if we double the width of each hidden layer?

. hidden layver 1 hidden laver 2 hidden layer 3
input layer
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* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how

many weights are there total? W, € ngng
W, € R<%%

« What if we double the width of each hidden layer? W, € R20%20
W4, € RZOX4
Total =1080

. hidden layver 1 hidden laver 2 hidden layer 3
input layer
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* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how
many weights are there total?

* What if we double the depth?
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* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how
many weights are there total?

* What if we double the depth?

input layer

hidden layer 1

hidden layver 2 hidde
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n layer 3

W1 = RlOXlO
W2 € RlOXlO
W3 = ]RlOXlO
W4_ = RlOXlO
W5 = RlOXlO
W6 € RlOXlO
W7 € RlOX‘l-
Total = 640
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Hypothesis: real-world high-dimensional data lies on low-dimensional
manifolds embedded within the high-dimensional space.



The Manifold Hypothesis

Manifold: A space that appears locally like Euclidean space

Locally, the surface of the earth appears
like a flat plane in R?, while the earth
itself is a sphere(-ish) in R3

Hypothesis: real-world high-dimensional data lies on low-dimensional
manifolds embedded within the high-dimensional space.

Even though we may have d features in your data, it may require
many fewer features to fully represent.



MNIST and Manifolds

Viktor Toth and Lauri Parkkonen “Autoencoding sensory substitution”, 2019
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MNIST and Manifolds

Hypothesis: real-world high-dimensional data lies on
low-dimensional manifolds embedded within the high-
dimensional space.

MNIST images are 28x28 or 784 pixels total.

If we restrict our pixels to only being black or white (0
or 1), then there are 278%* possible images we can
create.

How many of these images are digits?

Our high-dimensional data is very sparse in high

dimensions, perhaps there is a lower dimensional
space where it can be better represented.

Viktor Toth and Lauri Parkkonen “Autoencoding sensory substitution”, 2019



MNIST and Manifolds

bbb lOOOOOOOOOOVOVOS
Qaeboao222C00000000002
48422222228565600000002
Hypothesis: real-world high-dimensional data lies on 44222222335556006652
low-dimensional manifolds embedded within the high- 94a42222233338858665852
: : 99428323223 333355855557
dimensional space. 99993333333333555557
9999993333333 8585s85s857r7
MNIST images are 28x28 or 784 pixels total. 7999999333333 3888587r77
7999999888333 88¢8¢858757
If we restrict our pixels to only being black or white (0 3 3 3 g g g g g g g g g 2 g : z :;5_;
784 TR
or 1), then there are 27°* possible images we can 7999999888666666¢66s5s
create. 7999999988666666¢6¢¢5vs
7994999993868 6666¢6¢6¢¢s
How many of these images are digits? 7999499999988 08¢6¢¢¢E¢¢<£ s
79999971739V 0006 ¢¢€¢€¢€4/
Our high-dimensional data is very sparse in high 77997711y b BT
dimensions, perhaps there is a lower dimensional 7777171 7 ryyvvvberrrrs/
7222223112320 00 02 0 22

space where it can be better represented.

A learned manifold of MNIST
Viktor Toth and Lauri Parkkonen “Autoencoding sensory substitution”, 2019



Deep Networks and Representation Learning

Neural network for binary classification

Output Layer

Hidden Layer
Input Layer

Hidden Layer



Deep Networks and Representation Learning

Layer has inputs and
Neural network for binary classification one output that maps

inputs to [0, 1]

Output Leyer
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Input Layer




Deep Networks and Representation Learning

Layer has inputs and
Neural network for binary classification one output that maps

inputs to [0, 1]

Looks a lot like a
perceptron...

Output Leyer

Hidden Layer

Input Layer




Perceptrons are Linear Separators

—> Output

2006



“Embedding” Layer

Neural network for binarjy classification

\ 4

Hidden Layer
Input Layer




“Embedding” Layer

If the network can achieve 100%
accuracy and the final layer is a linear
Neural network for binarjy classification separator (ala a perceptron), what does
. thatimply about the embedding layer?

Hidden Layer

Input Layer




Meural network for binar

“Embeddi

ng” Layer

y classification

A\

Input Layer

Hidden Layer

y

If the network can achieve 100%
accuracy and the final layer is a linear
separator (ala a perceptron), what does
that imply about the embedding layer?

Neural Networks are learning to
transform data into new learned
“features” in the embedding layer. In the
case of classification, the NN tries to
learn linearly separable features.




A Linear Transformation applied
to (X, y) coordinates

0.5

05

1 1 1 1
-1 -0.5 0 0.5 1

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/



A Linear Transformation applied A series of linear transformations
to (X, y) coordinates (4) applied to (x, y) coordinates to
separate a spiral

1_ _I T T T ] l B
0.5 — 0.5 | // .\\
/ N\
/
7
/ J
4] 0 / /
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/
0.5 0.5 \\\n ’j/
\ N—
\
-1 o ) ) = -1 [ : - -
-1 -0.5 0 0.5 1 1 -0.5 0 0.5

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/



Manifold Hypothesis

Data may be hard to classify in its original
form, but a series of transformations can

transform it to a representation where
classification is easy.

Neural Networks may be knot
“untanglers”

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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What “Shape” Should your Network Be?

Each layer is same size

Start with

largest layer End with

smallest layer

U-net-style?

I Autoencoder I .




So How Many Layers/How Large Should the be?

* Finalembedding needs to be expressive enough to represent your
data in meaningful learned features

* Layer(s) before your embedding layer should be complex enough
to transform your data into the embedding features.

* You are unlikely to need more than three sequential hidden linear
layers for most common tasks



Overparameterization

Overparametization: Using more
parameters than necessaryfora ML
problem.

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou

Daan Wierstra Martin Riedmiller
DeepMind Technologies

{vlad,koray,david,alex.graves,ioannis,daan,martin.riedmiller} @ deepmind.com

~10,000 parameters in network



Overparameterization

Overparametization: Using more
parameters than necessaryfora ML
problem.

Most of the time, networks use many
more parameters than necessary.

In general, it’s impossible to know the
fewest amount of parameters that
could solve a problem.

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou
Daan Wierstra Martin Riedmiller
DeepMind Technologies

{vlad,koray,david,alex.graves,ioannis,daan,martin.riedmiller} @ deepmind.com

~10,000 parameters in network



Overparameterization

PLAYING ATARI WITH S1x NEURONS

Giuseppe Cuccu Julian Togelius Philippe Cudré-Mauroux
eXascale Infolab Game Innovation Lab eXascale Infolab
Department of Computer Science Tandon School of Engineering Department of Computer Science
University of Fribourg, Switzerland New York University, NY, USA University of Fribourg, Switzerland
name.surname@unifr.ch julian@togelius.com name.surname@unifr.ch

ABSTRACT

) , Deep reinforcement learning, applied to vision-based problems like Atari games, maps pixels directly to ac-
(This paper doesn’t use SGD or tions; internally, the deep neural network bears the responsibility of both extracting useful information and
bac kprop, but another optimi zation making decisions based on it. By separating the image processing from decision-making, one could better
understand the complexity of each task, as well as potentially find smaller policy representations that are eas-

m ethod) ier for humans to understand and may generalize better. To this end, we propose a new method for learning
policies and compact state representations separately but simultaneously for policy approximation in reinforce-
ment learning. State representations are generated by an encoder based on two novel algorithms: Increasing
Dictionary Vector Quantization makes the encoder capable of growing its dictionary size over time, to address
new observations as they appear in an open-ended online-learning context; Direct Residuals Sparse Coding
encodes observations by disregarding reconstruction error minimization, and aiming instead for highest infor-
mation inclusion. The encoder autonomously selects observations online to train on, in order to maximize code
sparsity. As the dictionary size increases, the encoder produces increasingly larger inputs for the neural net-
work: this is addressed by a variation of the Exponential Natural Evolution Strategies algorithm which adapts
its probability distribution dimensionality along the run. We test our system on a selection of Atari games using
tiny neural networks of only 6 to 18 neurons (depending on the game’s controls). These are still capable of
achieving results comparable—and occasionally superior—to state-of-the-art techniques which use two orders
of magnitude more neurons.



Overparameterization

Bias-Variance Tradeoff
(Traditional Understanding)

A Farewell to the Bias-Variance Tradeoff?
An Overview of the Theory of Overparameterized Machine Learning

Blag? Yehuda Dar* Vidya Muthukumar’ Richard G. Baraniuk*
Optimal solution
Total error
]
I ; ) Variance
!
? Abstract
Underfitting Overfitting The rapid recent progress in machine learning (ML) has raised a number of scientific questions
zone I zone that challenge the longstanding dogma of the field. One of the most important riddles is the good

empirical generalization of overparameterized models. Overparameterized models are excessively
complex with respect to the size of the training dataset, which results in them perfectly fitting
(i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is
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(smaller width/fewer layers). If underfitting, add
more model complexity.
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Model Complexity

If you are overfitting, reduce model complexity
(smaller width/fewer layers). If underfitting, add
more model complexity.
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(We will cover other techniques for managing
overfitting soon)
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Optimizers

* SGD, SGD + Momentum, SGD + Adaptive Momentum (Adam),
RMSProp,... the list is ever growing

* How do you choose between them?

* Just use Adam.
* The only downside is that it might work so well that you end up overfitting.
* Suggested initial learning rate of 3e-4



Batch Size and Learning Rate

Having too small a batch or too high a learning rate can cause
variance in training/validation loss — symptoms often look similar

model accuracy Loss
0.875 ] — train 1.075 A —— train
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> 0.800 4 ' 1.000 -
E I|l
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2 |
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https://karpathy.github.io/2019/04/25/recipe/

General Tips

- Don’t change too much at once.

- Keep track of parameters you’ve tested and track their
performance

- Don’t just randomly guess parameters, apply critical thinking, /\
7/( come up with a hypothesis and test your hypothesis. 7/(
(Use the scientific method)

Andrej Karpathy: A recipe for training neural networks
https://karpathy.github.i0/2019/04/25/recipe/
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AutoML

Neural Architecture Search (NAS)

Changing hyperparameters results in different performance, can we
run an optimization algorithm on our hyperparameters?

Optimizer
Evolutionary al gorithm ) Candidat . .
e i e architccre | archiectwres P10 cons:
nforcement leaming generation_| m D—@ - No longer need - Takes avery long time...
< ) D:f;)“ﬂ human input - Hyperparameters are discrete
ra\z [ % ] - Mayfind better and highly dependent (e.g.,
h = hyperparameters width/depth), it’s a really hard
F
Performance evaluator than humans optimization problem...
Training and validation .
Model Parameter sharing Performance
Updatc Surmgﬂ[e modeal Cvaluatiﬂn

oooooo

T LU ol
I;\.\| '_(\‘\_X _\_“|

adx By B

https://www.researchgate.net/publication/353166978_Action_Command_Encoding_for_Surrogate_Assisted_Neural_Architecture_Search
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Option #1: Grid search

Define a set of possible parameters (i.e., learning rates, width,
depth, etc)

Try every combination of hyperparameters possible, pick setting
with best validation set performance.

What are some downsides of grid search?
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AutoML

Option #2: Bayesian Optimization

We believe the performance of hyperparameters that are
close together, should have similar results.

Define a set of possible parameters (i.e., learning rates, width,
depth, etc)

Try sets of possible hyperparameters, each with some probability.

- The probability that you try a specific hyperparameter setting
depends on the performance of nearby hyperparameter settings.

- Also track uncertainty of hyperparameters (i.e., settings you have
not tried something close to before)



AutoML

Keras tuner is compatible with Tensorflow, Pytorch, and Jax and has
various automatic hyperparameter tuning methods

KerasTuner

C)star 2,871

KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain
points of hyperparameter search. Easily configure your search space with a define-by-run syntax,
then leverage one of the available search algorithms to find the best hyperparameter values for
your models. KerasTuner comes with Bayesian Optimization, Hyperband, and Random Search
algorithms built-in, and is also designed to be easy for researchers to extend in order to experiment

with new search algorithms.



A Brief History of Al with Deep Learning
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What has happened in the last 15 years?

What has changed?
1. Power and efficiency of compute (GPUSs)
2. Availability of data (the internet)
3. New Architectures (e.g., CNNs, Transformers)




Issues with MLPs

1. Resource Intensive
2. Difficult to incorporate certain types of information

3. (and more)



Issues with MLPs

1. Resource Intensive



GPUs to the rescue!

« Graphics Processing Units

o GPUISI alrle really good at computing mathematical operations in
parallel!

- Matrix multiplication == many independent multiply and add
operations
Easily parallelizable

GPUs are great for this!

Image courtesy: https://global.aorus.com/blog-detail.php?i=878




CPU v/s GPU

output

output

T

Write
back

CPU

]

input

/ ALU Arithmetic logic unit

A

Decode

!

Fetch

T

input

https://dlsys.cs.washington.edu/pdf/lecture5.pdf

the the
instruction and instruction. (Covert
any data from
main memory.

the instruction into
a language the CPU
understands.)

instruction.
(Complete the
instruction)



CPU v/s GPU

GPU: specialized accelerator

output Fetch

output WIite Decode
T back Jaw\ /A /A /AL
CPU AU | [ A\ [ A [ A Jau\ /A /A [ Aw
InpuI Decio % Vector operations / ALU\ / ALU\ / ALU\ / ALU\
Fetch (SSE/AVX) /au\ /AW /A [ Aw

iniut /au\ /A /A [Aw

Write back

https://dlsys.cs.washington.edu/pdf/lecture5.pdf



GPU-Parallel Acceleration

* User code (kernels) is compiled on the
host (the CPU) and then transferred to the
device (the GPU)

* Kernel is executed as a grid
* Each grid has multiple thread blocks
* Each thread block has multiple warps

A warp is the basic schedule unit in
kernel execution

A warp consists of 32 threads

Compute Unified Device
Architecture is a parallel
computing platform and
application programming

interface (API)

CUDA compute model

s

[ Host ( Kernel 0 ) ]
A 2
/~ __ Device £\
Grid 0
(_ Block0 ) (__Biock1 ) (_Block2 ) (_ Block3 )
(_Block4 ) (__BlockS§ ) (_Block6 ) (_ Block7 )

(_Block8 ) ( Block9 ) ( Block10 ) ( Block11 )

(“Block12 ) ( Block13 ) ( Block14 ) ( Block15 )

N\

14



GPU-Parallel Acceleration

CUDA compute model
8 - \ N
[ Host ( Kernel 0 ] ]
v
4 Device \
Grid 0
( BlockO ) ( Block1 ) ( Block2 ) ( Block3 )
( Block4 ) ( BlockS ) ( Blocké ) ( Block7 )
( Block8 ) ( BlockS ) ( Block10 ) ( Block11 )
(Block 12 ) ( Bock13 ) (_Block1a ) (_Block15 )

- Programmer decides how they want
to parallelize the computation across
grids and blocks

* Modern deep learning frameworks take
care of this for you

- CUDA compiler figures out how to
schedule these units of computation
on to the physical hardware

15



Any questions?

GPU-Parallel Acceleration r N

CUDA compute model

* Upshot: order of magnitude speedups!

Host ( Kernel 0 )

v e Example: training CNN on CIFAR-10 dataset
/~__ Device %)
Grid 0
Block1 ) ( Block2 ) (_ Block3 )
Block5 ) (_ Block6 ) (_ Block7 )
Block9 ) (_Block10 ) (__Block11 )

B s (BT (e Speed of training,
Device examples/sec

2 X AMD Opteron 6168 440
17-7500U 415
GeForce 940MX 1190
GeForce 1070 6500
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(" Block 12
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nttps://medium.com/@andriylazorenko/tensorriow-perrormance-test-cp
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https://www.researchgate.net/publication/236666656_Accelerating_Fibre_Orientation_Estimation_from_Diffusion_Weighted_Magnetic_Resonance_lmaging_Using_GPUs
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AMD Radeon RX 6900 XT 16GB

AMD Radeon RX 6800 XT 16GB

gaming and graphiCS, GeForce RTX 3090 Ti 24GB
why not for Al? e

GeForce RTX 3090 24GB
GeForce RTX 3080 10GB

AMD Radeon RX 6750 XT 12GB
AMD Radeon RX 6700 XT 12GB
GeForce RTX 3070 Ti 8GB

GeForce RTX 3070 8GB

GeForce RTX 3060 Ti 8GB

20 40 60 80 100

- CUDA is far better than competitors (AMD) (With a benchmarking tool made by AMD)
- Easiertouse

- Better optimization
-  AMD makes GPUs for graphics, NVIDIA makes GPUs for Al

CUDA is Still a Giant Moat for NVIDIA

Despite everyone's focus on hardware, the software of Al is what protects NVIDIA

n  JAMES WANG
g MAR 23, 2024



Issues with MLPs

2. Difficult to incorporate certain types of information



MLPs and Spatial Reasoning
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MLPs and Spatial Reasoning
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MLPs and Spatial Reasoning
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MLPs and Spatial Reasoning

Image is transformed to
vector of pixels

What would happen if
we permuted the
ordering of the pixels?

Will the training of the
neural network differ?

No! MLPs do not use spatial
information, it does not
matter which order the pixels
arefedinsolongasitisthe
same ordering for every input




MLPs and Spatial Reasoning

Image is transformed to
vector of pixels

Isn’t this actually a hard
problem that we are
trying to learn?




Limitations of Full Connections for MNIST

Suppose we've got a well-trained MNIST classiFfier...
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Limitations of Full Connections for MNIST

Suppose we've got a well-trained MNIST classifier...

1

#1 encoded as [ )

this pixel gets weight 0.6

0 0 ) 0 0o 0 0 o0
0 0 0 0o 0 0 o0
0 5 B 0 o 0 0 o0
0 HE B 0 0 0 0 0
cooom m o o oo o ol this pixel gets weight 0.1
0 | A4 0 0 0 0
0 B = 0 ‘ 0 g0 ——)
0 0 0 EH 4 0 o 0 o0 o
0 0 0 B = 0 0 0 0
0 0 0 ] 0 0 ] (
0 0 0 Bl 1 0
0 0 0 ? . 1 0
) 0 ) 0 0 0
) 0 ) 0 0 0

this pixel gets weight 0.9



Limitations of Full Connections for MNIST

If we shift the digit to the right, then a different set of
weights becomes relevant C— etwork might have
trouble classifying this as a 1...

this pixel gets weight 0.6

—hh.

. | this pixel gets weight 0.1

12
CAEEEEEEEN

EEEERESEES

#1 encoded as [ _

Canyou tell thisis a 1? this pixel gets weight 0.9




This would not be a problem for the
human visual system

Our eyes don't look at absolute intensity values... this pixel has a low intensity

-ne

o o this pixel has a high intensity
X T

*

BEEEE RS

#1 encoded as

this pixel has a low intensity



This would not be a problem for the
human visual system

...but rather local differences in intensities this intensity difference is large

= this intensity difference is large
5 G 5

12
‘AEEEEEEEN

#1 encoded as [ ]

this intensity difference is zero



Translational Invariance

~ To make a neural net f robust in this same wayj, it should ideally satisfy
translational invariance: f (T (x)) = f(x), where
« x is the inputimage
« T is a translation (i.e. a horizonal and/or vertical shift)
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Fully Connected Nets are not
Translationally Invariant

this pixel gets weight 0.6 this pixel gets weight 0.6
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Fully Connected Nets are not
Translationally Invariant

this pixel gets weight 0.6

o o o o this pixel gets weight 0.1
0 r: _-)

I
T

this pixel gets weight 0.9

Sum of these three: 0.6 - 08+ 0.1-04+09-1 = 1.38

!

How to make the network
translationally invariant?

this pixel gets weight 0.6

A AEEEEEEEN

EEEERERES

: this pixel gets weight 0.1
; B

this pixel gets weight 0.9

Sum of these three: 0.6 - 0+4+0.1:-0.4 +09-0=0.4




How to make the network

F u I Iy CO NN ecte d N EtS are nOt translationally invariant?

Focus on local

Translationally Invariant differences/patterns

this pixel gets weight 0.6 this pixel gets weight 0.6
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LA I -
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this pixel gets weight 0.9 this pixel gets weight 0.9

Sum of these three: 0.6 - 08+ 0.1-04+09-1 =1.38 Sum of these three: 0.6 -04+0.1-04 +09-0=0.4



MLPs and Spatial Reasoning

MLPs (also called fully-connected networks) have weights from
every pixel to every neuron

Fully Connected
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MLPs and Spatial Reasoning

How can we change a fully-
connected network to
account for spatial
information?

MLPs (also called fully-connected networks) have weights from

every pixel to every neuron

000 0000000000000

Fully Connected
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OO0 O0OO0O0000O0O0




How can we change a fully-
connected network to

MLPs and Spatial Reasoning account for spatial

information?

MLPs (also called fully-connected networks) have weights from
every pixel to every neuron

a Fully Connected . Not Fully-Connected
Q O

@ [ O

Q ® O O O O

Q O O O O

O O O O O

O O O O O

O O O O

O O O = o O ©
O O O O O

O O O ® O O

O O O O O o

O O O ® O O

o & O O

9 O

S O



MLPs and Spatial Reasoning

Patches: Pixels close to each other




Advantages of Not Fully Connected Layers

* Fewer weights — Faster?
* The outputs of neurons are

“features” for local “patches” = NotFully-Connected
. O
* Incorporates spatial o
information (pixels that are - - -
close together matter) O O
O O
O
O ® ©
O O
O O O
O O O
O O O
O O
O
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Disadvantages of Not Fully Connected Layers

* What happens if the image is
Translated?

* The patches on the right side

were never trained with 5’s in : .
that side. S N S




Disadvantages of Not Fully Connected Layers

* What happens if the image is
Translated?

* The patches on the right side

were never trained with 5’s in j:_'
that side. S

5
]
il e S
il
T
i}

Even though we include spatial information, we still don’t
have spatial reasoning. (Can’t recognize a shifted 5 is stilla 5)




Disadvantages of Not Fully Connected Layers

* What happens if the image is
Translated?

* The patches on the right side

were never trained with 5’s in j:' j-j'
that side. S l - S

r : 1 15 M % B3 o 5 0 15 M X

What if we used the
same weights for each
patch? (Weight Sharing)

Even though we include spatial information, we still don’t
have spatial reasoning. (Can’t recognize a shifted 5 is stilla 5)




The Main Building Block: Convolution

Convolution is an operation that takes two inputs:

(1) An image (2D - B/W) (2) A Filter (also called a kernel)
1(1|1
O(0(O
-1|-1|-1

2D array of numbers; could be any values



What Convolution Does (Visually)

image filter/kernel
2013

71110 ol il s
0|2|5]|0 ® [9]9]60
0l5|1]a A\\ -1(-1|-1

(We use this symbol for convolution)
(The verb form is “convolve”)



What Convolution Does (Visually)
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What Convolution Does (Visually)

output

2x1 + 0x1 + 1x1 + 7x0
+ 0x0 + 1x0 + Ox-1 +

‘h
‘h
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What Convolution Does (Visually)

image output

o

o

o
= 1 O[O W




What Convolution Does (Visually)

image output

OO |Nd|DN
o
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What Convolution Does (Visually)

image

0x1

1x1

3x1

1x0

1x0

0x0

output

2x—1

5x—1

Ox—l

OO |




What Convolution Does (Visually)

output
Ox1 + 1x1 + 3x1 + OxO + 1x0
+ Ox0 + 2x-1 + 5x-1 + Ox-1
"7 TN
” ~
- |




What Convolution Does (Visually)

7x1 + 1x1 + 1x1 + Ox0 + 2x0
+ 5x0 + Ox-1 + 5x-1 + 1x-1

- e e e
—--
—
—

output




What Convolution Does (Visually)

image output

1x1 + 1x1 + Ox1 + 2x0 + 5x0 _4 _3
+ 0x0 +5x-1 + 1x-1 + 4x-1

—y, -
h-————ﬂ



What Convolution Does (Visually)

image filter/kernel

output

210]11(3

711]|1]0 all il e

ol25]0]® 2 t° - =
-1(-1|-1 3-8

O(5]|]11|4




Handmade Kernels and Filters

0 O
0 1
0

Identity kernel

1
9

1 1

1 1

1 1
Box blur

=l =1 =l
-1 8 -1
-1 -1 -1
Edge detection
1-
1
256

4
1

0 -1
-1 5

0 -1

]

—1

0_

Sharpen kernel

4 6 4 1]

16 24 16 4
24 36 24 6
16 24 16 4

4 6 4 1)

Gaussian blurr kernel

Operation

Kernel w

Image result g(x,y)

Identity

0 -1 0
—1 4 -1
0 -1 0
Ridge or edge detection |-
-1 -1 -1
-1 8 -1
-1 -1 -1
0 -1 0
Sharpen -1 5 —
0 -1
Box blur

(normalized)

Gaussian blur3 x 3

(approximation)




What Comes Next?

Can we learn a filter for our images rather than “hand crafting” one?
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