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Recap: MLPs

1. Compute Error/Loss on training set
2. Run Backprop and SGD
3. Repeat until convergence
4. If performance on validation set is 

acceptable, terminate, else try new 
hyperparameters
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The parameters of a Neural 
Network are what is trained (e.g., 
weights and biases).

The hyperparameters of a 
Neural Network are the 
parameters that you have 
control of that control that 
training.
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Normalization: Shift each feature to be of a similar scale

Apply: 𝑥’ =
𝑥−𝑚𝑖𝑛 𝑥

𝑚𝑖𝑛 𝑥 −𝑚𝑎𝑥 𝑥
 to every feature in dataset, shifting each 

feature to lie within [0, 1].

Before normalization: different 
features can be different scales, 
different units, etc.

After normalization: Each feature 
has same impact on model

Distance A: 10 inches 
Distance B: 25 inches 
Distance C: 40 inches

Normalized Features:
[0, 0.5, 1]

Distance A: 1000 inches 
Distance B: 2500 inches 
Distance C: 4000 inches

Normalized Features:
[0, 0.5, 1]



Data Preprocessing

Normalization: Shift each feature to be of a similar scale

Apply: 𝑥’ =
𝑥−𝑚𝑖𝑛 𝑥

𝑚𝑖𝑛 𝑥 −𝑚𝑎𝑥 𝑥
 to every feature in dataset, shifting each 

feature to lie within [0, 1].

Before normalization: different 
features can be different scales, 
different units, etc.

After normalization: Each feature 
has same impact on model

Gradient Descent converges faster when working with normalized data!

Ioffe, Sergey; Christian Szegedy (2015). "Batch Normalization: Accelerating 
Deep Network Training by Reducing Internal Covariate Shift".
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What if we begin with all 
parameters set to 0?

All neurons would have the same 
value, gradients would be the 

same.



Network Initialization

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output



Network Initialization

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

Idea #1: Uniform random weights between -1 and 1 
(works fine)
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Idea #1: Uniform random weights between -1 and 1 
(works fine)

But… what if there are many many weights in a layer? 
The scale of the output can grow, variance of output 
increases
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Idea #1: Uniform random weights between -1 and 1 
(works fine)

But… what if there are many many weights in a layer? 
The scale of the output can grow.

Idea #2: Xavier (Glorot) initialization:
Uniform: Initialize each weight uniformly at random in 
the range [-x, x] with x = 6

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡

Variance of a random variable in fixed 

range [-x, x] is 𝑥
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 (easy to derive from 

definition of variance)
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Idea #1: Uniform random weights between -1 and 1 
(works fine)

But… what if there are many many weights in a layer? 
The scale of the output can grow.

Idea #2: Xavier (Glorot) initialization:
Uniform: Initialize each weight uniformly at random in 
the range [-x, x] with x = 6

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡

Normal: Initialize each weight with mean 0 and 
standard deviation 𝜎 =

2

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡

Variance of a random variable in fixed 

range [-x, x] is 𝑥
2

3
 (easy to derive from 

definition of variance)
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Idea #1: Uniform random weights between -1 and 1 
(works fine)

But… what if there are many many weights in a layer? 
The scale of the output can grow.

Idea #2: Xavier (Glorot) initialization:
Uniform: Initialize each weight uniformly at random in 
the range [-x, x] with x = 6

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡

Normal: Initialize each weight with mean 0 and 
standard deviation 𝜎 =

2

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡
Keeps variance of z and gradients of 
weights the same for each layer at 

initialization.

Understanding the difficulty of training deep feedforward neural networks. Xavier Glorot, Yoshua Bengio
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Hidden Layers

• How deep (# hidden layers) should your network be?
• How wide (# neurons in a layer) should your network be?

How complex is the problem you are 
trying to solve?

Process of (informed) trial and error.
How do you know if one hyper-

parameter setting is better than 
another?
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How to use the Validation Set

(In theory)

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--Vmlldzo0NjA1ODY0

Model starts 
overfitting

Early Stopping Algorithm
1. Track training loss and validation loss
2. If validation loss starts to increase, terminate

What if your validation loss is much higher 
than training loss?

Your model has overfit, try 
reducing its size

What if your validation loss and training loss 
are both high?

Your model has underfit, 
try increasing its size
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Is adding more width or depth better?



Theoretical Approaches to Understanding Depth

Proofs:
- Are there functions that deep networks can represent better than 

shallow networks (with similar numbers of neurons)?

Conceptual Understanding:
- Neural Networks and Manifolds for representation learning



Benefits of depth in neural networks

“For any positive integer k, there exist neural networks with Θ(k3) layers, Θ(1) 
nodes per layer, and Θ(1) distinct parameters which can not be approximated 
by networks with O(k) layers unless they are exponentially large — they must 
possess Ω(2𝑘) nodes.”

Matus Telgarsky “Benefits of depth in neural networks”, JMLR
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Benefits of depth in neural networks

“For any positive integer k, there exist neural networks with Θ(k3) layers, Θ(1) 
nodes per layer, and Θ(1) distinct parameters which can not be approximated 
by networks with O(k) layers unless they are exponentially large — they must 
possess Ω(2𝑘) nodes.”

Matus Telgarsky “Benefits of depth in neural networks”, JMLR

There exist functions that 
shallow networks cannot 
represent as efficiently as 

deep networks

How well does theory match real 
world applications? Are these 

functions pathological?



With the same number of total parameters, deep networks can learn more complex functions.

Recall that NNs are compositions of functions for which we are learning parameters:

𝑓(𝑔(ℎ 𝑖 𝑗 𝑥

It’s better (in general) to have more functions composed than it is to have more complex functions
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Total = 340
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• If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how 
many weights are there total?

• What if we double the width of each hidden layer?
𝑊1 ∈ ℝ10×20

𝑊2 ∈ ℝ20×20

𝑊3 ∈ ℝ20×20

𝑊4 ∈ ℝ20×4

Total =1080
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• If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how 
many weights are there total?

• What if we double the depth? 𝑊1 ∈ ℝ10×10

𝑊2 ∈ ℝ10×10

𝑊3 ∈ ℝ10×10

𝑊4 ∈ ℝ10×10

𝑊5 ∈ ℝ10×10

𝑊6 ∈ ℝ10×10

𝑊7 ∈ ℝ10×4

Total = 640
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The Manifold Hypothesis

Manifold: A space that appears locally like Euclidean space

Hypothesis: real-world high-dimensional data lies on low-dimensional 
manifolds embedded within the high-dimensional space.

Even though we may have 𝑑 features in your data, it may require 
many fewer features to fully represent.

Locally, the surface of the earth appears 
like a flat plane in ℝ2, while the earth 

itself is a sphere(-ish) in ℝ3
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MNIST and Manifolds

A learned manifold of MNIST

Hypothesis: real-world high-dimensional data lies on 
low-dimensional manifolds embedded within the high-
dimensional space.

MNIST images are 28x28 or 784 pixels total. 

If we restrict our pixels to only being black or white (0 
or 1), then there are 2784 possible images we can 
create.

How many of these images are digits?

Our high-dimensional data is very sparse in high 
dimensions, perhaps there is a lower dimensional 
space where it can be better represented.

Viktor Toth and Lauri Parkkonen “Autoencoding sensory substitution”, 2019
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Deep Networks and Representation Learning

Layer has inputs and 
one output that maps 
inputs to [0, 1]

Looks a lot like a 
perceptron…



Perceptrons are Linear Separators
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“Embedding” Layer

If the network can achieve 100% 
accuracy and the final layer is a linear 
separator (ala a perceptron), what does 
that imply about the embedding layer?

Neural Networks are learning to 
transform data into new learned 
“features” in the embedding layer. In the 
case of classification, the NN tries to 
learn linearly separable features.



A Linear Transformation applied 
to (x, y) coordinates

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/



A Linear Transformation applied 
to (x, y) coordinates

A series of linear transformations 
(4) applied to (x, y) coordinates to 
separate a spiral

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/



Manifold Hypothesis

Data may be hard to classify in its original 
form, but a series of transformations can 
transform it to a representation where 
classification is easy.

Neural Networks may be knot 
“untanglers”

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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What “Shape” Should your Network Be?
Each layer is same size

Start with 
largest layer End with 

smallest layer

Autoencoder

U-net-style?



So How Many Layers/How Large Should the be?

• Final embedding needs to be expressive enough to represent your 
data in meaningful learned features

• Layer(s) before your embedding layer should be complex enough 
to transform your data into the embedding features.

• You are unlikely to need more than three sequential hidden linear 
layers for most common tasks
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Overparameterization

Overparametization: Using more 
parameters than necessary for a ML 
problem.

~10,000 parameters in network

Most of the time, networks use many 
more parameters than necessary.

In general, it’s impossible to know the 
fewest amount of parameters that 
could solve a problem.



Overparameterization

~10,000 parameters in network

(This paper doesn’t use SGD or 
backprop, but another optimization 
method)
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Overparameterization

https://serokell.io/blog/bias-variance-tradeoff

Bias-Variance Tradeoff 
(Traditional Understanding)

If you are overfitting, reduce model complexity 
(smaller width/fewer layers). If underfitting, add 

more model complexity.

(We will cover other techniques for managing 
overfitting soon)
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Optimizers

• SGD, SGD + Momentum, SGD + Adaptive Momentum (Adam), 
RMSProp,… the list is ever growing

• How do you choose between them?

• Just use Adam.
• The only downside is that it might work so well that you end up overfitting.
• Suggested initial learning rate of 3e-4



Batch Size and Learning Rate

Having too small a batch or too high a learning rate can cause 
variance in training/validation loss – symptoms often look similar
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General Tips

- Don’t change too much at once.
- Keep track of parameters you’ve tested and track their 

performance
- Don’t just randomly guess parameters, apply critical thinking, 

come up with a hypothesis and test your hypothesis.
(Use the scientific method)
Andrej Karpathy: A recipe for training neural networks 
https://karpathy.github.io/2019/04/25/recipe/

https://karpathy.github.io/2019/04/25/recipe/


AutoML

Neural Architecture Search (NAS)
Changing hyperparameters results in different performance, can we 
run an optimization algorithm on our hyperparameters?

Pros:
- No longer need 

human input
- May find better 

hyperparameters 
than humans

Cons:
- Takes a very long time…
- Hyperparameters are discrete 

and highly dependent (e.g., 
width/depth), it’s a really hard 
optimization problem…

https://www.researchgate.net/publication/353166978_Action_Command_Encoding_for_Surrogate_Assisted_Neural_Architecture_Search
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AutoML

Option #1: Grid search

Define a set of possible parameters (i.e., learning rates, width, 
depth, etc)

Try every combination of hyperparameters possible, pick setting 
with best validation set performance.

What are some downsides of grid search?
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AutoML

Option #2: Bayesian Optimization

Define a set of possible parameters (i.e., learning rates, width, 
depth, etc)

Try sets of possible hyperparameters, each with some probability. 
- The probability that you try a specific hyperparameter setting 

depends on the performance of nearby hyperparameter settings.
- Also track uncertainty of hyperparameters (i.e., settings you have 

not tried something close to before)

We believe the performance of hyperparameters that are 
close together, should have similar results.



AutoML

Keras tuner is compatible with Tensorflow, Pytorch, and Jax and has 
various automatic hyperparameter tuning methods



https://medium.com/@lmpo/a-brief-history-of-ai-with-deep-learning-26f7948bc87b



What has happened in the last 15 years?

What has changed?
1. Power and efficiency of compute (GPUs)
2. Availability of data (the internet)
3. New Architectures (e.g., CNNs, Transformers)
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- CUDA is far better than competitors (AMD)
- Easier to use
- Better optimization

- AMD makes GPUs for graphics, NVIDIA makes GPUs for AI

AMD GPUs are 
competitive for 
gaming and graphics, 
why not for AI?

(With a benchmarking tool made by AMD)



Issues with MLPs

1. Resource Intensive
2. Difficult to incorporate certain types of information
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(24, 5)
(13, 2)

(4, 0)
(21, 11)

Image is transformed to 
vector of pixels

…

What would happen if 
we permuted the 

ordering of the pixels?

Will the training of the 
neural network differ?

No! MLPs do not use spatial 
information, it does not 

matter which order the pixels 
are fed in so long as it is the 

same ordering for every input



MLPs and Spatial Reasoning

https://medium.com/towards-data-science/creating-a-multilayer-perceptron-mlp-classifier-model-to-identify-handwritten-digits-9bac1b16fe10

(24, 5)
(13, 2)

(4, 0)
(21, 11)

Image is transformed to 
vector of pixels

…
Isn’t this actually a hard 

problem that we are 
trying to learn?







→
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MLPs (also called fully-connected networks) have weights from 
every pixel to every neuron

How can we change a fully-
connected network to 

account for spatial 
information?

Fully Connected

… …

Not Fully-Connected



MLPs and Spatial Reasoning

Patches: Pixels close to each other



Advantages of Not Fully Connected Layers

• Fewer weights → Faster?
• The outputs of neurons are 

“features” for local “patches”
• Incorporates spatial 

information (pixels that are 
close together matter)

… …

Not Fully-Connected
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Disadvantages of Not Fully Connected Layers

• What happens if the image is 
Translated?

• The patches on the right side 
were never trained with 5’s in 
that side.

Even though we include spatial information, we still don’t 
have spatial reasoning. (Can’t recognize a shifted 5 is still a 5)

What if we used the 
same weights for each 

patch? (Weight Sharing)

























Handmade Kernels and Filters

Source: Wikipedia



What Comes Next?

Can we learn a filter for our images rather than “hand crafting” one?
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