Day 5: Classification and Hyperparameters

Thu rSday,. 9/

v d = Y g
- ‘%". . w

— 3 A -
—— ~ . -~

Recap: MLPs

Input: X Target: Y

1. Compute Error/Loss on training set

2. Run Backprop and SGD

3. Repeat until convergence

4. If performance on validation setis
acceptable, terminate, else try new
hyperparameters

Hyperparameters

The parameters of a Neural
Network are what is trained (e.g.,
weights and biases).

The hyperparameters of a

b Neural Network are the
parameters that you have
D \ b control of that control that
We | training.
> Y [— Output
b Ws

Data Preprocessing

Data Preprocessing

Normalization: Shift each feature to be of a similar scale

Data Preprocessing
Normalization: Shift each feature to be of a similar scale

o x—min(x)
Apply: X' = min(x)—-max(x)
feature to lie within [0, 1].

to every feature in dataset, shifting each

Data Preprocessing

Normalization: Shift each feature to be of a similar scale

x—min(x)

Apply: x" =

min(x)—max(x)
feature to lie within [0, 1].

Before normalization: different Distance A: 10 inches
features can be different scales, Distance B: 25inches
different units, etc. Distance C: 40 inches
After normalization: Each feature Normalized Features:

has same impact on model [0, 0.5, 1]

to every feature in dataset, shifting each

Distance A: 1000 inches
Distance B: 2500 inches
Distance C: 4000 inches

Normalized Features:
[0, 0.5, 1]

Data Preprocessing
Normalization: Shift each feature to be of a similar scale

x-mint®)__ v, every feature in dataset, shifting each

Apply: X' = min(x)—max(x)
feature to lie within [0, 1].

Before normalization: different Gradient Descent converges faster when working with normalized data!
features can be different scales,
different units, etc. loffe, Sergey; Christian Szegedy (2015). "Batch Normalization: Accelerating

Deep Network Training by Reducing Internal Covariate Shift".
After normalization: Each feature
has same impact on model

Network Initialization

What if we begin with all
parameters setto 0?

W5 v
> Y [— Output

Network Initialization

What if we begin with all
parameters setto 0?

All neurons would have the same
value, gradients would be the

y \ b same.

W5 \ 4
> Y [— Output

Network Initialization

W5 \ 4
=| Y., — Output

Network Initialization

Idea #1: Uniform random weights between -1 and 1
(works fine)

W5 \ 4
=| Y. — Output

Network Initialization

ldea #1: Uniform random weights between -1 and 1
(works fine)

b But... what if there are many many weights in a layer?
The scale of the output can grow, variance of output

increases
W5 v
=| Y. — Output

Network Initialization

Idea #1: Uniform random weights between -1 and 1
(works fine)

But... what if there are many many weights in a layer?
The scale of the output can grow.

Ws - |dea #2: Xavier (Glorot) initialization:
Y. — Output

Network Initialization

Idea #1: Uniform random weights between -1 and 1
(works fine)

But... what if there are many many weights in a layer?
The scale of the output can grow.

/

|dea #2: Xavier (Glorot) initialization:

Y. — Output

Uniform: Initialize each weight uniformly at random in
. 6
b Ws the range [-x, x] with x =
Nin+Nout

R

Variance of arandom variable in fixed
2

range [-X, X] is % (easy to derive from

definition of variance)

Network Initialization

Idea #1: Uniform random weights between -1 and 1
(works fine)

But... what if there are many many weights in a layer?
The scale of the output can grow.

/

|dea #2: Xavier (Glorot) initialization:

Y. — Output

Uniform: Initialize each weight uniformly at random in
. 6
b Ws the range [-x, x]withx = [———
Nin+Nout

Z /
Normal: Initialize each

weight with mean 0 and
Variance of arandom variable in fixed - 2
5 standard deviation g = [———
Nin+tNout

range [-X, X] is % (easy to derive from

definition of variance)

Network Initialization

Idea #1: Uniform random weights between -1 and 1
(works fine)

b But... what if there are many many weights in a layer?
The scale of the output can grow.

Ws - |dea #2: Xavier (Glorot) initialization:
Y. — Output - : : :
Uniform: Initialize each weight uniformly at random in
b Ws the range [-x, x] with x = /;
Nin+Nout
)

Normal: Initialize each weight with mean 0 and
: : . , 2
Keeps variance of z and gradients of |standard deviationo = |————
Nin+Nout

weights the same for each layer at
initialization.

Understanding the difficulty of training deep feedforward neural networks. Xavier Glorot, Yoshua Bengio

Hidden Layers

* How deep (# hidden layers) should your network be?
* How wide (# neurons in a layer) should your network be?

. hidden laver 1 hidden layver 2 hidden layver 3
input layer

- a‘. .
ANz Qe

M Tl :.f""
L i o Y &
NS @7 @
N
W Ny

f
)0
”

1y
)

o
2
Lo

b
P

i
[
%

i

-

]
D

P AL
PN

e A

Q)

oy

]

T
,

"‘.

Zrerg i s g v g Wy g "-‘.--.

e Sa Ao o, e e o 7 r.-'--."',#:- o e

e e T g N e e W A
el g B s I ok et W :
@ 2NN g st
. ey o ey ::.I":- e ..:1_::1- :.:. _.:i""-l';:ji 5 - h‘-‘:i"r"‘:":;-'
@ W et el
TSN\ R e & e
e Wy s e it
W ZaEa W =\

Hidden Layers

* How deep (# hidden layers) should your network be?
* How wide (# neurons in a layer) should your network be?

. hidden laver 1 hidden layver 2 hidden layver 3
input layer

. —_— A S A S
Flowrcomp ex S the prob sm you are R SR S A) AN
trying to solve? SN @SV @\ 7 AN
O e e

¥ e g R e b trgs arilfoge 3 4, o
N -*_.-r.-:: i ot S .'E.. v, A -..r:. R
antees @iy sy e @Sy e SRR
i S0 et ;

ey

il
®

X
50,
o
i
. ‘u’ﬂ‘
‘a
I
.
-llll-

F

0

P e :
A, AR ‘;:,‘_" o z ik = . . i s
Sy A :t'j"‘ _,ﬁg_‘:.ﬂ:"p;}f;;rﬁ‘.

W e “-
wh
2N

SO SaN
SN Y SN 7

R T g
i e

R

'J"‘x

Hidden Layers

* How deep (# hidden layers) should your network be?
* How wide (# neurons in a layer) should your network be?

. hidden laver 1 hidden laver 2 hidden layer 3
input layer

How complex is the problem you are
trying to solve?

Process of (informed) trial and error.
How do you know if one hyper- mw

parameter setting is better than f < ,f;- %ﬁm,
\:Q,r ::.

another? CF :’ﬁ“*

How to use the Validation Set

Loss

(In theory)

The Learning Curves

training

Epochs

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA1ODYO

How to use the Validation Set

Loss

(In theory)

The Learning Curves

training

Epochs

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA1ODYO

How to use the Validation Set

(In theory)

The Learning Curves

Loss

Model starts
overfitting

training

Epochs

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA1ODYO

How to use the Validation Set

(In theory)

Early Stopping Algorithm
1. Track training loss and validation loss

2. If validation loss starts to increase, terminate
The Learning Curves

Loss

Model starts
overfitting

training

Epochs

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA1ODYO

How to use the Validation Set

(In theory)

Early Stopping Algorithm
1. Track training loss and validation loss

2. If validation loss starts to increase, terminate
The Learning Curves

What if your validation loss is much higher

Loss than training loss?

Model starts
overfitting

training

Epochs

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA1ODYO

How to use the Validation Set

(In theory)

Early Stopping Algorithm
1. Track training loss and validation loss

2. If validation loss starts to increase, terminate
The Learning Curves

What if your validation loss is much higher

Loss than training loss?

Model.st.arts Your model has overfit, try
overfitting reducing its size

training

Epochs

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA1ODYO

How to use the Validation Set

(In theory)

Early Stopping Algorithm
1. Track training loss and validation loss

2. If validation loss starts to increase, terminate
The Learning Curves

What if your validation loss is much higher
than training loss?

Loss
Model.st.arts Your model has overfit, try
overfitting reducing its size
training
What if your validation loss and training loss
Epochs are both high?

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA1ODYO

How to use the Validation Set

(In theory)

Early Stopping Algorithm
1. Track training loss and validation loss

_ 2. Ifvalidation loss starts to increase, terminate
The Learning Curves

What if your validation loss is much higher
than training loss?

Loss
Model.st.arts Your model has overfit, try
overfitting reducing its size
training
What if your validation loss and training loss
Epochs are both high?

Your model has underfit,
try increasing its size

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA1ODYO

|s adding more width or depth better?

|s adding more width or depth better?

4« C&CI1470

CSCl11470 Deep Learning

Section SO01, CRN 26629
Spring 2025

Theoretical Approaches to Understanding Depth

Proofs:

- Are there functions that deep networks can represent better than
shallow networks (with similar numbers of neurons)?

Conceptual Understanding:
- Neural Networks and Manifolds for representation learning

Benefits of depth in neural networks

“For any positive integer k, there exist neural networks with ©(k?3) layers, ©(1)
nodes per layer, and O(1) distinct parameters which can not be approximated
by networks with O(k) layers unless they are exponentially large — they must

possess Q(2%) nodes.”

Matus Telgarsky “Benefits of depth in neural networks”, JMLR

Benefits of depth in neural networks

“For any positive integer k, there exist neural networks with ©(k?3) layers, ©(1)
nodes per layer, and O(1) distinct parameters which can not be approximated
by networks with O(k) layers unless they are exponentially large — they must

possess Q(2%) nodes.”

There exist functions that

shallow networks cannot

represent as efficiently as
deep networks

Matus Telgarsky “Benefits of depth in neural networks”, JMLR

Benefits of depth in neural networks

“For any positive integer k, there exist neural networks with ©(k?3) layers, ©(1)
nodes per layer, and O(1) distinct parameters which can not be approximated
by networks with O(k) layers unless they are exponentially large — they must

possess Q(2%)

nodes.”

There exist functions that

shallow networks cannot

represent as efficiently as
deep networks

Matus Telgarsky “Benefits of depth in neural networks”, JMLR

How well does theory match real
world applications? Are these
functions pathological?

Depth-Width Tradeoffs in Approximating Natural Functions with
Neural Networks

Itay Safran Ohad Shamir
Weizmann Institute of Science Weizmann Institute of Science
itay.safran@weizmann.ac.il ohad.shamir@weizmann.ac.1il

With the same number of total parameters, deep networks can learn more complex functions.

Recall that NNs are compositions of functions for which we are learning parameters:

Fa(i(j))

It’s better (in general) to have more functions composed than itis to have more complex functions

* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how
many weights are there total?

. hidden layver 1 hidden laver 2 hidden layer 3
input layer

\

NS rn 7 @ENNSgolz: N

L T,
S A

@)

"
-1

)
b

Jl

i

oy
@)

i

L]

b

X
W

¥]
W
L
i
b
-
"'a

o
s
_*|=

[,
R

e T
o
.il#ﬁ.; PR A

"ﬂ o
G

P
I

O A
sl B EN
= A 1 s P Rl o A
o SN e A
s SN TS S
Sy '- o l:::?r “'_::I__

)

aqe,‘!-.
=

s
!

it
R

* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how

many weights are there total?

. hidden layver 1 hidden laver 2 hidden layer 3
input layer

-,
N W L NN

g T, E.ﬂ:
2 ¥ e)
e :
o

- it R
i :a{h-...m@
Ferrr N W

*

o et
¥,

i

S f

A R ‘lﬂ-}r
T, iy
. -|| P,.

W1 = RlOXlO
m/2 € RlOXlO
W3 € RlOXlO
W4_ € RlOX4
Total = 340

A S R o l,.".,.‘,';,.- e 1) . -
AR ;"'Eﬁ": i:"""l:‘."l* 3 .:.H,r- K

o :ii!"-'_";-'!l::.- e W o -'_"_a""l'.i; e W _
BT e R T A T

T T
o e
= s T 2 B
R i) e’ o
o iy T e
i AR
e o -3 E -

" x i 2
o W= ,,:.wy 72
S SN

5 w‘*&ﬁ? ﬁ
g eyl e F o
e\ W &ﬁﬁ‘l_,};/
i] e

* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how
many weights are there total?

* What if we double the width of each hidden layer?

. hidden layver 1 hidden laver 2 hidden layer 3
input layer

3 : .

e SR el

2 QEN
@=3 P e

B e e o
S g ""\:t‘;l*...::'_
L S o 3

@ =9 ‘*‘%‘hy
..- e - ’ - _'_:_,,._____ ":;_ E ﬂ:

* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how

many weights are there total? W, € ngng
W, € R<%%

« What if we double the width of each hidden layer? W, € R20%20
W4, € RZOX4
Total =1080

. hidden layver 1 hidden laver 2 hidden layer 3
input layer

= 0 == o\
ST AR PN

o =i ri'!A::.. A J r_:;
Sl QN
e S Ry i S

VT e SN e

Ly

Ly N W
e @ s

o
S50 o%
% ek, : :ii;;-"l"".':
s <
T g T
s el e Pt L
N AR CARE
S SR
b, AR B o e
et
PN

* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how
many weights are there total?

* What if we double the depth?

hidden layver 1 hidden laver 2 hidden layer 3

A%E‘?éﬁ{ E;%.&:} output layer

’ : s Ry
Z O %:sfé.““'@} =

input layer

D

% 2 2
S v AN W
L X L) Jr'
o . -‘%!;:E::: 5
e oy ey —H
= NS
-
i g v
S A
; o W= in E:';-.";"Ii#ar-:::ﬁ-
e e gt T (LA TR ; 3
SR S g = @
e o OGN P 7 2
oy Sl o, 0 Rty g #F] RN ; }
SN oSN
R T A 7,
oy R ':::‘,""-f

S f

* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how
many weights are there total?

* What if we double the depth?

input layer

hidden layer 1

hidden layver 2 hidde

-—- r r* = ‘-.“-‘-
e ’*‘}ﬂt nﬁ’
.ﬂ.‘. h.\"h"l.l

n layer 3

W1 = RlOXlO
W2 € RlOXlO
W3 =]RlOXlO
W4_ = RlOXlO
W5 = RlOXlO
W6 € RlOXlO
W7 € RlOX‘l-
Total = 640

The Manifold Hypothesis

The Manifold Hypothesis

Manifold: A space that appears locally like Euclidean space

The Manifold Hypothesis

Manifold: A space that appears locally like Euclidean space

Locally, the surface of the earth appears
like a flat plane in R?, while the earth
itself is a sphere(-ish) in R3

The Manifold Hypothesis

Manifold: A space that appears locally like Euclidean space

Locally, the surface of the earth appears
like a flat plane in R?, while the earth
itself is a sphere(-ish) in R3

Hypothesis: real-world high-dimensional data lies on low-dimensional
manifolds embedded within the high-dimensional space.

The Manifold Hypothesis

Manifold: A space that appears locally like Euclidean space

Locally, the surface of the earth appears
like a flat plane in R?, while the earth
itself is a sphere(-ish) in R3

Hypothesis: real-world high-dimensional data lies on low-dimensional
manifolds embedded within the high-dimensional space.

Even though we may have d features in your data, it may require
many fewer features to fully represent.

MNIST and Manifolds

Viktor Toth and Lauri Parkkonen “Autoencoding sensory substitution”, 2019

MNIST and Manifolds

Hypothesis: real-world high-dimensional data lies on
low-dimensional manifolds embedded within the high-
dimensional space.

Viktor Toth and Lauri Parkkonen “Autoencoding sensory substitution”, 2019

MNIST and Manifolds

Hypothesis: real-world high-dimensional data lies on
low-dimensional manifolds embedded within the high-

dimensional space.

MNIST images are 28x28 or 784 pixels total.

Viktor Toth and Lauri Parkkonen “Autoencoding sensory substitution”, 2019

MNIST and Manifolds

Hypothesis: real-world high-dimensional data lies on
low-dimensional manifolds embedded within the high-
dimensional space.

MNIST images are 28x28 or 784 pixels total.
If we restrict our pixels to only being black or white (0

or 1), then there are 278%* possible images we can
create.

Viktor Toth and Lauri Parkkonen “Autoencoding sensory substitution”, 2019

MNIST and Manifolds

Hypothesis: real-world high-dimensional data lies on
low-dimensional manifolds embedded within the high-
dimensional space.

MNIST images are 28x28 or 784 pixels total.
If we restrict our pixels to only being black or white (0
or 1), then there are 278%* possible images we can

create.

How many of these images are digits?

Viktor Toth and Lauri Parkkonen “Autoencoding sensory substitution”, 2019

MNIST and Manifolds

Hypothesis: real-world high-dimensional data lies on
low-dimensional manifolds embedded within the high-
dimensional space.

MNIST images are 28x28 or 784 pixels total.

If we restrict our pixels to only being black or white (0
or 1), then there are 278%* possible images we can
create.

How many of these images are digits?

Our high-dimensional data is very sparse in high

dimensions, perhaps there is a lower dimensional
space where it can be better represented.

Viktor Toth and Lauri Parkkonen “Autoencoding sensory substitution”, 2019

MNIST and Manifolds

bbb lOOOOOOOOOOVOVOS
Qaeboao222C00000000002
48422222228565600000002
Hypothesis: real-world high-dimensional data lies on 44222222335556006652
low-dimensional manifolds embedded within the high- 94a42222233338858665852
: : 99428323223 333355855557
dimensional space. 99993333333333555557
9999993333333 8585s85s857r7
MNIST images are 28x28 or 784 pixels total. 7999999333333 3888587r77
7999999888333 88¢8¢858757
If we restrict our pixels to only being black or white (0 3 3 3 g g g g g g g g g 2 g : z :;5_;
784 TR
or 1), then there are 27°* possible images we can 7999999888666666¢66s5s
create. 7999999988666666¢6¢¢5vs
7994999993868 6666¢6¢6¢¢s
How many of these images are digits? 7999499999988 08¢6¢¢¢E¢¢<£ s
79999971739V 0006 ¢¢€¢€¢€4/
Our high-dimensional data is very sparse in high 77997711y b BT
dimensions, perhaps there is a lower dimensional 7777171 7 ryyvvvberrrrs/
7222223112320 00 02 0 22

space where it can be better represented.

A learned manifold of MNIST
Viktor Toth and Lauri Parkkonen “Autoencoding sensory substitution”, 2019

Deep Networks and Representation Learning

Neural network for binary classification

Output Layer

Hidden Layer
Input Layer

Hidden Layer

Deep Networks and Representation Learning

Layer has inputs and
Neural network for binary classification one output that maps

inputs to [0, 1]

Output Leyer

Hidden Layer
Input Layer

Deep Networks and Representation Learning

Layer has inputs and
Neural network for binary classification one output that maps

inputs to [0, 1]

Looks a lot like a
perceptron...

Output Leyer

Hidden Layer

Input Layer

Perceptrons are Linear Separators

—> Output

2006

“Embedding” Layer

Neural network for binarjy classification

\ 4

Hidden Layer
Input Layer

“Embedding” Layer

If the network can achieve 100%
accuracy and the final layer is a linear
Neural network for binarjy classification separator (ala a perceptron), what does
. thatimply about the embedding layer?

Hidden Layer

Input Layer

Meural network for binar

“Embeddi

ng” Layer

y classification

A\

Input Layer

Hidden Layer

y

If the network can achieve 100%
accuracy and the final layer is a linear
separator (ala a perceptron), what does
that imply about the embedding layer?

Neural Networks are learning to
transform data into new learned
“features” in the embedding layer. In the
case of classification, the NN tries to
learn linearly separable features.

A Linear Transformation applied
to (X, y) coordinates

0.5

05

1 1 1 1
-1 -0.5 0 0.5 1

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

A Linear Transformation applied A series of linear transformations
to (X, y) coordinates (4) applied to (x, y) coordinates to
separate a spiral

1_ _I T T T] l B
0.5 — 0.5 | // .\\
/ N\
/
7
/ J
4] 0 / /
[/
/f
/
0.5 0.5 \\\n ’j/
\ N—
\
-1 o)) = -1 [: - -
-1 -0.5 0 0.5 1 1 -0.5 0 0.5

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Manifold Hypothesis

Data may be hard to classify in its original
form, but a series of transformations can

transform it to a representation where
classification is easy.

Neural Networks may be knot
“untanglers”

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

What “Shape” Should your Network Be?

What “Shape” Should your Network Be?

Each layer is same size

What “Shape” Should your Network Be?

Each layer is same size

Start with

largest layer End with

smallest layer

What “Shape” Should your Network Be?

Each layer is same size

Start with

largest layer End with

smallest layer

What “Shape” Should your Network Be?

Each layer is same size

Start with

largest layer End with

smallest layer

I Autoencoder I

What “Shape” Should your Network Be?

Each layer is same size

Start with

largest layer End with

smallest layer

U-net-style?

I Autoencoder I .

So How Many Layers/How Large Should the be?

* Finalembedding needs to be expressive enough to represent your
data in meaningful learned features

* Layer(s) before your embedding layer should be complex enough
to transform your data into the embedding features.

* You are unlikely to need more than three sequential hidden linear
layers for most common tasks

Overparameterization

Overparametization: Using more
parameters than necessaryfora ML
problem.

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou

Daan Wierstra Martin Riedmiller
DeepMind Technologies

{vlad,koray,david,alex.graves,ioannis,daan,martin.riedmiller} @ deepmind.com

~10,000 parameters in network

Overparameterization

Overparametization: Using more
parameters than necessaryfora ML
problem.

Most of the time, networks use many
more parameters than necessary.

In general, it’s impossible to know the
fewest amount of parameters that
could solve a problem.

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou
Daan Wierstra Martin Riedmiller
DeepMind Technologies

{vlad,koray,david,alex.graves,ioannis,daan,martin.riedmiller} @ deepmind.com

~10,000 parameters in network

Overparameterization

PLAYING ATARI WITH S1x NEURONS

Giuseppe Cuccu Julian Togelius Philippe Cudré-Mauroux
eXascale Infolab Game Innovation Lab eXascale Infolab
Department of Computer Science Tandon School of Engineering Department of Computer Science
University of Fribourg, Switzerland New York University, NY, USA University of Fribourg, Switzerland
name.surname@unifr.ch julian@togelius.com name.surname@unifr.ch

ABSTRACT

) , Deep reinforcement learning, applied to vision-based problems like Atari games, maps pixels directly to ac-
(This paper doesn’t use SGD or tions; internally, the deep neural network bears the responsibility of both extracting useful information and
bac kprop, but another optimi zation making decisions based on it. By separating the image processing from decision-making, one could better
understand the complexity of each task, as well as potentially find smaller policy representations that are eas-

m ethod) ier for humans to understand and may generalize better. To this end, we propose a new method for learning
policies and compact state representations separately but simultaneously for policy approximation in reinforce-
ment learning. State representations are generated by an encoder based on two novel algorithms: Increasing
Dictionary Vector Quantization makes the encoder capable of growing its dictionary size over time, to address
new observations as they appear in an open-ended online-learning context; Direct Residuals Sparse Coding
encodes observations by disregarding reconstruction error minimization, and aiming instead for highest infor-
mation inclusion. The encoder autonomously selects observations online to train on, in order to maximize code
sparsity. As the dictionary size increases, the encoder produces increasingly larger inputs for the neural net-
work: this is addressed by a variation of the Exponential Natural Evolution Strategies algorithm which adapts
its probability distribution dimensionality along the run. We test our system on a selection of Atari games using
tiny neural networks of only 6 to 18 neurons (depending on the game’s controls). These are still capable of
achieving results comparable—and occasionally superior—to state-of-the-art techniques which use two orders
of magnitude more neurons.

Overparameterization

Bias-Variance Tradeoff
(Traditional Understanding)

A Farewell to the Bias-Variance Tradeoff?
An Overview of the Theory of Overparameterized Machine Learning

Blag? Yehuda Dar* Vidya Muthukumar’ Richard G. Baraniuk*
Optimal solution
Total error
]
I ;) Variance
!
? Abstract
Underfitting Overfitting The rapid recent progress in machine learning (ML) has raised a number of scientific questions
zone I zone that challenge the longstanding dogma of the field. One of the most important riddles is the good

empirical generalization of overparameterized models. Overparameterized models are excessively
complex with respect to the size of the training dataset, which results in them perfectly fitting
(i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is
traditionally associated with detrimental overfitting, and yet a wide range of interpolating models
— from simple linear models to deep neural networks — have recently been observed to generalize
extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon
has revealed that highly overparameterized models often improve over the best underparameterized
model in test performance.

Understanding learning in this overparameterized regime requires new theory and foundational
Model Complexity empirical studies, even for the simplest case of the linear model. The underpinnings of this under-
standing have been laid in very recent analyses of overparameterized linear regression and related
statistical learning tasks, which resulted in precise analytic characterizations of double descent.
This paper provides a succinct overview of this emerging theory of overparameterized ML (hence-
forth abbreviated as TOPML) that explains these recent findings through a statistical signal pro-
cessing perspective. We emphasize the unique aspects that define the TOPML research area as a
subfield of modern ML theory and outline interesting open questions that remain.

https://serokell.io/blog/bias-variance-tradeoff

Overparameterization

Bias-Variance Tradeoff
(Traditional Understanding)

Bias?
Optimal solution
Total error

) Variance

'
|
I
i

I
Underfitting 1 Overfitting
zone 1 zone

Model Complexity

If you are overfitting, reduce model complexity
(smaller width/fewer layers). If underfitting, add
more model complexity.

https://serokell.io/blog/bias-variance-tradeoff

A Farewell to the Bias-Variance Tradeoff?

An Overview of the Theory of Overparameterized Machine Learning

Yehuda Dar* Vidya Muthukumar’ Richard G. Baraniuk*

Abstract

The rapid recent progress in machine learning (ML) has raised a number of scientific questions
that challenge the longstanding dogma of the field. One of the most important riddles is the good
empirical generalization of overparameterized models. Overparameterized models are excessively
complex with respect to the size of the training dataset, which results in them perfectly fitting
(i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is
traditionally associated with detrimental overfitting, and yet a wide range of interpolating models
— from simple linear models to deep neural networks — have recently been observed to generalize
extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon
has revealed that highly overparameterized models often improve over the best underparameterized
model in test performance.

Understanding learning in this overparameterized regime requires new theory and foundational
empirical studies, even for the simplest case of the linear model. The underpinnings of this under-
standing have been laid in very recent analyses of overparameterized linear regression and related
statistical learning tasks, which resulted in precise analytic characterizations of double descent.
This paper provides a succinct overview of this emerging theory of overparameterized ML (hence-
forth abbreviated as TOPML) that explains these recent findings through a statistical signal pro-
cessing perspective. We emphasize the unique aspects that define the TOPML research area as a
subfield of modern ML theory and outline interesting open questions that remain.

Overparameterization

Bias-Variance Tradeoff
(Traditional Understanding)

Bias?
Optimal solution
Total error

@ Variance

Underfitting
zone |

Overfitting
zone

]
!
!
i
|
1
i

Model Complexity

If you are overfitting, reduce model complexity
(smaller width/fewer layers). If underfitting, add
more model complexity.

https://serokell.io/blog/bias-variance-tradeoff

(We will cover other techniques for managing
overfitting soon)

A Farewell to the Bias-Variance Tradeoff?
An Overview of the Theory of Overparameterized Machine Learning

Yehuda Dar* Vidya Muthukumar’ Richard G. Baraniuk*

Abstract

The rapid recent progress in machine learning (ML) has raised a number of scientific questions
that challenge the longstanding dogma of the field. One of the most important riddles is the good
empirical generalization of overparameterized models. Overparameterized models are excessively
complex with respect to the size of the training dataset, which results in them perfectly fitting
(i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is
traditionally associated with detrimental overfitting, and yet a wide range of interpolating models
— from simple linear models to deep neural networks — have recently been observed to generalize
extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon
has revealed that highly overparameterized models often improve over the best underparameterized
model in test performance.

Understanding learning in this overparameterized regime requires new theory and foundational
empirical studies, even for the simplest case of the linear model. The underpinnings of this under-
standing have been laid in very recent analyses of overparameterized linear regression and related
statistical learning tasks, which resulted in precise analytic characterizations of double descent.
This paper provides a succinct overview of this emerging theory of overparameterized ML (hence-
forth abbreviated as TOPML) that explains these recent findings through a statistical signal pro-
cessing perspective. We emphasize the unique aspects that define the TOPML research area as a
subfield of modern ML theory and outline interesting open questions that remain.

Optimizers

Optimizers

* SGD, SGD + Momentum, SGD + Adaptive Momentum (Adam),
RMSProp,... the list is ever growing

Optimizers

* SGD, SGD + Momentum, SGD + Adaptive Momentum (Adam),
RMSProp,... the list is ever growing

* How do you choose between them?

Optimizers

* SGD, SGD + Momentum, SGD + Adaptive Momentum (Adam),
RMSProp,... the list is ever growing

* How do you choose between them?

* Just use Adam.
* The only downside is that it might work so well that you end up overfitting.
* Suggested initial learning rate of 3e-4

Batch Size and Learning Rate

Having too small a batch or too high a learning rate can cause
variance in training/validation loss — symptoms often look similar

model accuracy Loss
0.875] — train 1.075 A —— train
test validation
0.850 1.050 7
0.825 1.025 4
> 0.800 4 ' 1.000 -
E I|l
g 0.775 1 0.975 -
2 |
0.750 1 0.950 -
0.725 0.925 4
0.700
0.900 A
0.675
T T T T T T T T T 0.875 _
0 25 50 75 100 125 150 175 200

epoch

General Tips

https://karpathy.github.io/2019/04/25/recipe/

General Tips

- Don’t change too much at once.

https://karpathy.github.io/2019/04/25/recipe/

General Tips

- Don’t change too much at once.

- Keep track of parameters you’ve tested and track their
performance

https://karpathy.github.io/2019/04/25/recipe/

General Tips

- Don’t change too much at once.

- Keep track of parameters you’ve tested and track their
performance

- Don’t just randomly guess parameters, apply critical thinking,
come up with a hypothesis and test your hypothesis.

https://karpathy.github.io/2019/04/25/recipe/

General Tips

- Don’t change too much at once.

- Keep track of parameters you’ve tested and track their
performance

- Don’t just randomly guess parameters, apply critical thinking,
come up with a hypothesis and test your hypothesis.

(Use the scientific method)

https://karpathy.github.io/2019/04/25/recipe/

General Tips

- Don’t change too much at once.

- Keep track of parameters you’ve tested and track their
performance

- Don’t just randomly guess parameters, apply critical thinking, /\
7/(come up with a hypothesis and test your hypothesis. 7/(
(Use the scientific method)

https://karpathy.github.io/2019/04/25/recipe/

General Tips

- Don’t change too much at once.

- Keep track of parameters you’ve tested and track their
performance

- Don’t just randomly guess parameters, apply critical thinking, /\
7/(come up with a hypothesis and test your hypothesis. 7/(
(Use the scientific method)

Andrej Karpathy: A recipe for training neural networks
https://karpathy.github.i0/2019/04/25/recipe/

https://karpathy.github.io/2019/04/25/recipe/

AutoML

Neural Architecture Search (NAS)

Changing hyperparameters results in different performance, can we
run an optimization algorithm on our hyperparameters?

Optimizer
Evolutionary al gorithm) Candidat . .
e i e architccre | archiectwres P10 cons:
nforcement leaming generation_| m D—@ - No longer need - Takes avery long time...
<) D:f;)“ﬂ human input - Hyperparameters are discrete
ra\z [%] - Mayfind better and highly dependent (e.g.,
h = hyperparameters width/depth), it’s a really hard
F
Performance evaluator than humans optimization problem...
Training and validation .
Model Parameter sharing Performance
Updatc Surmgﬂ[e modeal Cvaluatiﬂn

oooooo

T LU ol
I;\.\| '_(\‘_X __“|

adx By B

https://www.researchgate.net/publication/353166978_Action_Command_Encoding_for_Surrogate_Assisted_Neural_Architecture_Search

AutoML

Option #1: Grid search

Define a set of possible parameters (i.e., learning rates, width,
depth, etc)

Try every combination of hyperparameters possible, pick setting
with best validation set performance.

AutoML

Option #1: Grid search

Define a set of possible parameters (i.e., learning rates, width,
depth, etc)

Try every combination of hyperparameters possible, pick setting
with best validation set performance.

What are some downsides of grid search?

AutoML

AutoML

Option #2: Bayesian Optimization

AutoML

Option #2: Bayesian Optimization

We believe the performance of hyperparameters that are
close together, should have similar results.

AutoML

Option #2: Bayesian Optimization

We believe the performance of hyperparameters that are
close together, should have similar results.

Define a set of possible parameters (i.e., learning rates, width,
depth, etc)

AutoML

Option #2: Bayesian Optimization

We believe the performance of hyperparameters that are
close together, should have similar results.

Define a set of possible parameters (i.e., learning rates, width,
depth, etc)

Try sets of possible hyperparameters, each with some probability.

AutoML

Option #2: Bayesian Optimization

We believe the performance of hyperparameters that are
close together, should have similar results.

Define a set of possible parameters (i.e., learning rates, width,
depth, etc)

Try sets of possible hyperparameters, each with some probability.

- The probability that you try a specific hyperparameter setting
depends on the performance of nearby hyperparameter settings.

AutoML

Option #2: Bayesian Optimization

We believe the performance of hyperparameters that are
close together, should have similar results.

Define a set of possible parameters (i.e., learning rates, width,
depth, etc)

Try sets of possible hyperparameters, each with some probability.

- The probability that you try a specific hyperparameter setting
depends on the performance of nearby hyperparameter settings.

- Also track uncertainty of hyperparameters (i.e., settings you have
not tried something close to before)

AutoML

Keras tuner is compatible with Tensorflow, Pytorch, and Jax and has
various automatic hyperparameter tuning methods

KerasTuner

C)star 2,871

KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain
points of hyperparameter search. Easily configure your search space with a define-by-run syntax,
then leverage one of the available search algorithms to find the best hyperparameter values for
your models. KerasTuner comes with Bayesian Optimization, Hyperband, and Random Search
algorithms built-in, and is also designed to be easy for researchers to extend in order to experiment

with new search algorithms.

A Brief History of Al with Deep Learning

E First E First E Second E Second E s Third
' Golden Age ! Dark Age ! Golden Age ! Dark Age ; : Golden Age
: L " QR ———, VPR Wy »
Birth : : : : AlexNet
[
of Al Backpropagation SVMs e
1956 ADlg;lglg\!E XOR 1986 1995 1 Transformel
Artificial Turing 1 2 Problem Neoclc;ggr[w)itron 1 RBM :’"’zf{
Neuron Test Perceptron 1969 UAT CNN Initialization GAN GPT-3 4
1943 1950 1957 1989 ys0s 2006 2014 | 2020

V

McCulloch-Pitts Rosenblatt ~ Widrow-Hoff Minsky-Papert Rumelhart, Hinton etal. LeCun Hinton-Ruslan Krizhevsky et al. Vaswani
X1 Inputs Weights Net input Activation OR XOR -~ —
X2 ';l)\,w function function 1 ’ ‘ 1 ’ . () “‘:‘ .5 3 [\..._ -3 , &
X3+ — AL\ ; . »‘S ~ g
Xn “ output \ 1—e{ 2} :?(\‘ > _;%‘t -
10 N\ @Jof® @ I TLSRSomy
0 1 0 1 s —e(i U Sh e

What has happened in the last 15 years?

What has changed?
1. Power and efficiency of compute (GPUSs)
2. Availability of data (the internet)
3. New Architectures (e.g., CNNs, Transformers)

Issues with MLPs

1. Resource Intensive
2. Difficult to incorporate certain types of information

3. (and more)

Issues with MLPs

1. Resource Intensive

GPUs to the rescue!

« Graphics Processing Units

o GPUISI alrle really good at computing mathematical operations in
parallel!

- Matrix multiplication == many independent multiply and add
operations
Easily parallelizable

GPUs are great for this!

Image courtesy: https://global.aorus.com/blog-detail.php?i=878

CPU v/s GPU

output

output

T

Write
back

CPU

]

input

/ ALU Arithmetic logic unit

A

Decode

!

Fetch

T

input

https://dlsys.cs.washington.edu/pdf/lecture5.pdf

the the
instruction and instruction. (Covert
any data from
main memory.

the instruction into
a language the CPU
understands.)

instruction.
(Complete the
instruction)

CPU v/s GPU

GPU: specialized accelerator

output Fetch

output WIite Decode
T back Jaw\ /A /A /AL
CPU AU | [A\ [A [A Jau\ /A /A [Aw
InpuI Decio % Vector operations / ALU\ / ALU\ / ALU\ / ALU\
Fetch (SSE/AVX) /au\ /AW /A [Aw

iniut /au\ /A /A [Aw

Write back

https://dlsys.cs.washington.edu/pdf/lecture5.pdf

GPU-Parallel Acceleration

* User code (kernels) is compiled on the
host (the CPU) and then transferred to the
device (the GPU)

* Kernel is executed as a grid
* Each grid has multiple thread blocks
* Each thread block has multiple warps

A warp is the basic schedule unit in
kernel execution

A warp consists of 32 threads

Compute Unified Device
Architecture is a parallel
computing platform and
application programming

interface (API)

CUDA compute model

s

[Host (Kernel 0)]
A 2
/~ __ Device £\
Grid 0
(_ Block0) (__Biock1) (_Block2) (_ Block3)
(_Block4) (__BlockS§) (_Block6) (_ Block7)

(_Block8) (Block9) (Block10) (Block11)

(“Block12) (Block13) (Block14) (Block15)

N\

14

GPU-Parallel Acceleration

CUDA compute model
8 - \ N
[Host (Kernel 0]]
v
4 Device \
Grid 0
(BlockO) (Block1) (Block2) (Block3)
(Block4) (BlockS) (Blocké) (Block7)
(Block8) (BlockS) (Block10) (Block11)
(Block 12) (Bock13) (_Block1a) (_Block15)

- Programmer decides how they want
to parallelize the computation across
grids and blocks

* Modern deep learning frameworks take
care of this for you

- CUDA compiler figures out how to
schedule these units of computation
on to the physical hardware

15

Any questions?

GPU-Parallel Acceleration r N

CUDA compute model

* Upshot: order of magnitude speedups!

Host (Kernel 0)

v e Example: training CNN on CIFAR-10 dataset
/~__ Device %)
Grid 0
Block1) (Block2) (_ Block3)
Block5) (_ Block6) (_ Block7)
Block9) (_Block10) (__Block11)

B s (BT (e Speed of training,
Device examples/sec

2 X AMD Opteron 6168 440
17-7500U 415
GeForce 940MX 1190
GeForce 1070 6500

rom

(__Block0)
(_Block4)
(__Block8)
(" Block 12

C
(
(
(

»

rrom.

h++rne//man - m /A andrivl ~Aronla /fancnarfl Ar-narfAarmanc +ack_rr
nttps://medium.com/@andriylazorenko/tensorriow-perrormance-test-cp

u-vs-gpu-79fcd39170c

>

kion sao' f fua 2ar raenarsihaada adlniiihlisakin o} Pl nfl =]] Arnralaratine: Tihra S o g i T ki adl franmn NNifEii1ciny \Aaiahdan A ~tir DacaAn- re lrasaing nf le
https://www.researchgate.net/publication/236666656_Accelerating_Fibre_Orientation_Estimation_from_Diffusion_Weighted_Magnetic_Resonance_lmaging_Using_GPUs

AM D G PU s are I Assassin's Creed Valhalla | 2560x1440 | Ultra High | DX12
competitive for

. . AMD Radeon RX 6800 XT 16GB
gaming and graphics,

AMD Radeon RX 6800 16GB

Why not for AI? GeForce RTX 3080 Ti 12GB

GeForce RTX 3090 24GB

\ 4

AMD Radeon RX 6900 XT 16GB

GeForce RTX 3080 10GB

AMD Radeon RX 6750 XT 12GB
AMD Radeon RX 6700 XT 12GB
GeForce RTX 3070 Ti 8GB
GeForce RTX 3070 8GB
GeForce RTX 3060 Ti 8GB

(With a benchmarking tool made by AMD)

AM D G PU s are I Assassin's Creed Valhalla | 2560x1440 | Ultra High | DX12
competitive for

. . AMD Radeon RX 6800 XT 16GB
gaming and graphics,

AMD Radeon RX 6800 16GB

Why not for AI? GeForce RTX 3080 Ti 12GB

GeForce RTX 3090 24GB

\ 4

AMD Radeon RX 6900 XT 16GB

GeForce RTX 3080 10GB

AMD Radeon RX 6750 XT 12GB
AMD Radeon RX 6700 XT 12GB
GeForce RTX 3070 Ti 8GB
GeForce RTX 3070 8GB
GeForce RTX 3060 Ti 8GB

20 40 60 80 100

- CUDA is far better than competitors (AMD) (With a benchmarking tool made by AMD)
- Easiertouse

- Better optimization
- AMD makes GPUs for graphics, NVIDIA makes GPUs for Al

AM D G PU s are Assassin's Creed Valhalla | 2560x1440 | Ultra High | DX12
competitive for

\ 4

AMD Radeon RX 6900 XT 16GB

AMD Radeon RX 6800 XT 16GB

gaming and graphiCS, GeForce RTX 3090 Ti 24GB
why not for Al? e

GeForce RTX 3090 24GB
GeForce RTX 3080 10GB

AMD Radeon RX 6750 XT 12GB
AMD Radeon RX 6700 XT 12GB
GeForce RTX 3070 Ti 8GB

GeForce RTX 3070 8GB

GeForce RTX 3060 Ti 8GB

20 40 60 80 100

- CUDA is far better than competitors (AMD) (With a benchmarking tool made by AMD)
- Easiertouse

- Better optimization
- AMD makes GPUs for graphics, NVIDIA makes GPUs for Al

CUDA is Still a Giant Moat for NVIDIA

Despite everyone's focus on hardware, the software of Al is what protects NVIDIA

n JAMES WANG
g MAR 23, 2024

Issues with MLPs

2. Difficult to incorporate certain types of information

MLPs and Spatial Reasoning

B
'_I“
S
)
)
; \ A 4
/
) - ‘4
);
— —
~ N
‘ SURACSALAY
}
v o'
~ SO
) /
& - X e, >
-) P }
= v W \)
) e
_) R ravey | \
\
o o X \ _/
- Vi ' 8
\
~ , >
I
. / -
}
’
\
>

MLPs and Spatial Reasoning

B
"—I“
.
4 \ —
2 \ »
/
N ’
= ' A
~ N
-y R St T e
¢ }
WK o
~ e
) / D
- & - N AA -
-) P }
. v W M \ }
_)); X
__/ v W) '
\
o o X \ _/
- / \ >
}
~~ ’ # >
g
. / -
}
v M
\
>

Image is transformed to
vector of pixels

MLPs and Spatial Reasoning

(0,00
(1, O) ',_,:“
(2,00 O
(3,0) O \
a — 9L

Image is transformed to
vector of pixels

MLPs and Spatial Reasoning

Image is transformed to
vector of pixels

What would happen if
we permuted the
ordering of the pixels?

MLPs and Spatial Reasoning

Image is transformed to
vector of pixels

What would happen if
we permuted the
ordering of the pixels?

MLPs and Spatial Reasoning

Image is transformed to
vector of pixels

What would happen if
we permuted the
ordering of the pixels?

MLPs and Spatial Reasoning

Image is transformed to
vector of pixels

What would happen if
we permuted the
ordering of the pixels?

Will the training of the
neural network differ?

MLPs and Spatial Reasoning

Image is transformed to
vector of pixels

What would happen if
we permuted the
ordering of the pixels?

Will the training of the
neural network differ?

No! MLPs do not use spatial
information, it does not
matter which order the pixels
arefedinsolongasitisthe
same ordering for every input

MLPs and Spatial Reasoning

Image is transformed to
vector of pixels

Isn’t this actually a hard
problem that we are
trying to learn?

Limitations of Full Connections for MNIST

Suppose we've got a well-trained MNIST classiFfier...

12
cFEEEEEEEERE- -

cocHHBEEBEERE = -

#1 encoded as [)

Limitations of Full Connections for MNIST

Suppose we've got a well-trained MNIST classifier...

1

#1 encoded as [)

this pixel gets weight 0.6

0 0) 0 0o 0 0 o0
0 0 0 0o 0 0 o0
0 5 B 0 o 0 0 o0
0 HE B 0 0 0 0 0
cooom m o o oo o ol this pixel gets weight 0.1
0 | A4 0 0 0 0
0 B = 0 ‘ 0 g0 ——)
0 0 0 EH 4 0 o 0 o0 o
0 0 0 B = 0 0 0 0
0 0 0] 0 0] (
0 0 0 Bl 1 0
0 0 0 ? . 1 0
) 0) 0 0 0
) 0) 0 0 0

this pixel gets weight 0.9

Limitations of Full Connections for MNIST

If we shift the digit to the right, then a different set of
weights becomes relevant C— etwork might have
trouble classifying this as a 1...

this pixel gets weight 0.6

—hh.

. | this pixel gets weight 0.1

12
CAEEEEEEEN

EEEERESEES

#1 encoded as [_

Canyou tell thisis a 1? this pixel gets weight 0.9

This would not be a problem for the
human visual system

Our eyes don't look at absolute intensity values... this pixel has a low intensity

-ne

o o this pixel has a high intensity
X T

*

BEEEE RS

#1 encoded as

this pixel has a low intensity

This would not be a problem for the
human visual system

...but rather local differences in intensities this intensity difference is large

= this intensity difference is large
5 G 5

12
‘AEEEEEEEN

#1 encoded as []

this intensity difference is zero

Translational Invariance

~ To make a neural net f robust in this same wayj, it should ideally satisfy
translational invariance: f (T (x)) = f(x), where
« x is the inputimage
« T is a translation (i.e. a horizonal and/or vertical shift)

e i el B o 0os e o =
0 N 0o 0) 0 0 0 0 o0 - » 0
0 _ o o0 n) 0 0 0 0 0 "N o
(B 0o 0 o 0 0o o o0 o0 B o
0 " B = 0o o0 I » 0 o0 0 0 o " B = 0
0 Y i 0o 0 0 o) 0 0 n i 0
“ = o o I R "B °
0 B o o » 0 0 0 0 o " n 0
0 | 0o o » 0 o0 0 0 o) 0
0 " N 0 o) 0 0) 0 0 | 0
C] ol 0 0) 0 0 Y 0 0) m 0
(0 0) 0 0) 0 0 o

Lo ° 0 Lo 0 0) 0 0 04

Fully Connected Nets are not
Translationally Invariant

this pixel gets weight 0.6 this pixel gets weight 0.6

UUUUUUUU

‘ o o this pixel gets weight 0.1

o this pixel gets weight 0.1

A

EEEERERES

T

this pixel gets weight 0.9 this pixel gets weight 0.9

0 0 0
1] 0 1} o 0
0 0 0 (1] 0
0 1] 1] o 0
— 5 8
0 o 0 (1] 0
L0 o 1] (1] 0

Sum of these three: 0.6 - 08+ 0.1-04+09-1 =1.38 Sum of these three: 0.6 -04+0.1-04 +09-0=0.4

Fully Connected Nets are not
Translationally Invariant

this pixel gets weight 0.6

o o o o this pixel gets weight 0.1
0 r: _-)

I
T

this pixel gets weight 0.9

Sum of these three: 0.6 - 08+ 0.1-04+09-1 = 1.38

!

How to make the network
translationally invariant?

this pixel gets weight 0.6

A AEEEEEEEN

EEEERERES

: this pixel gets weight 0.1
; B

this pixel gets weight 0.9

Sum of these three: 0.6 - 0+4+0.1:-0.4 +09-0=0.4

How to make the network

F u I Iy CO NN ecte d N EtS are nOt translationally invariant?

Focus on local

Translationally Invariant differences/patterns

this pixel gets weight 0.6 this pixel gets weight 0.6

6 B o o o o o of(0 1o 0o 0o 0o o0 . B
L,@',] (0o o0 o0 . . . 0o 0 0 0 0 E I | 0o 0 . . .
= o o+ | this pixel gets weight 0.1 i @ & - u * | this pixel gets weight 0.1
5 = 0 0 0 06 0 0 0 i B M)0 :
0 ‘ 1 ——"'"- uuuuuu] i ‘
2 4] 4 0 W i
0 0 0 0 . f.l 0 0 0 0 0 0 0 0 1] 0 [] F }
0 (1] 0 0 . 0 0 0 0 0 0] 0 0 0 . .
LA I -
0 o 0 0 f] ‘] 0o 0 0 0 0 0o 0 0 0 T | |]
this pixel gets weight 0.9 this pixel gets weight 0.9

Sum of these three: 0.6 - 08+ 0.1-04+09-1 =1.38 Sum of these three: 0.6 -04+0.1-04 +09-0=0.4

MLPs and Spatial Reasoning

MLPs (also called fully-connected networks) have weights from
every pixel to every neuron

Fully Connected

O0.0.0 0000000000000
dqoqeqigeqogepepepipipe
OO0 O0OO0O0000O0O0

MLPs and Spatial Reasoning

How can we change a fully-
connected network to
account for spatial
information?

MLPs (also called fully-connected networks) have weights from

every pixel to every neuron

000 0000000000000

Fully Connected

dqoqeqigeqogepepepipipe

OO0 O0OO0O0000O0O0

How can we change a fully-
connected network to

MLPs and Spatial Reasoning account for spatial

information?

MLPs (also called fully-connected networks) have weights from
every pixel to every neuron

a Fully Connected . Not Fully-Connected
Q O

@ [O

Q ® O O O O

Q O O O O

O O O O O

O O O O O

O O O O

O O O = o O ©
O O O O O

O O O ® O O

O O O O O o

O O O ® O O

o & O O

9 O

S O

MLPs and Spatial Reasoning

Patches: Pixels close to each other

Advantages of Not Fully Connected Layers

* Fewer weights — Faster?
* The outputs of neurons are

“features” for local “patches” = NotFully-Connected
. O
* Incorporates spatial o
information (pixels that are - - -
close together matter) O O
O O
O
O ® ©
O O
O O O
O O O
O O O
O O
O
O

Disadvantages of Not Fully Connected Layers

* What happens if the image is
Translated?

* The patches on the right side

were never trained with 5’s in : .
that side. S N S

Disadvantages of Not Fully Connected Layers

* What happens if the image is
Translated?

* The patches on the right side

were never trained with 5’s in j:_'
that side. S

5
]
il e S
il
T
i}

Even though we include spatial information, we still don’t
have spatial reasoning. (Can’t recognize a shifted 5 is stilla 5)

Disadvantages of Not Fully Connected Layers

* What happens if the image is
Translated?

* The patches on the right side

were never trained with 5’s in j:' j-j'
that side. S l - S

r : 1 15 M % B3 o 5 0 15 M X

What if we used the
same weights for each
patch? (Weight Sharing)

Even though we include spatial information, we still don’t
have spatial reasoning. (Can’t recognize a shifted 5 is stilla 5)

The Main Building Block: Convolution

Convolution is an operation that takes two inputs:

(1) An image (2D - B/W) (2) A Filter (also called a kernel)
1(1|1
O(0(O
-1|-1|-1

2D array of numbers; could be any values

What Convolution Does (Visually)

image filter/kernel
2013

71110 ol il s
0|2|5]|0 ® [9]9]60
0l5|1]a A\\ -1(-1|-1

(We use this symbol for convolution)
(The verb form is “convolve”)

What Convolution Does (Visually)

o

o

o
= OO | W

What Convolution Does (Visually)

output

2x1 + 0x1 + 1x1 + 7x0
+ 0x0 + 1x0 + Ox-1 +

‘h
‘h
el
‘-

L

-4

What Convolution Does (Visually)

image output

o

o

o
= 1 O[O W

What Convolution Does (Visually)

image output

OO |Nd|DN
o
o
o

What Convolution Does (Visually)

image

0x1

1x1

3x1

1x0

1x0

0x0

output

2x—1

5x—1

Ox—l

OO |

What Convolution Does (Visually)

output
Ox1 + 1x1 + 3x1 + OxO + 1x0
+ Ox0 + 2x-1 + 5x-1 + Ox-1
"7 TN
” ~
- |

What Convolution Does (Visually)

7x1 + 1x1 + 1x1 + Ox0 + 2x0
+ 5x0 + Ox-1 + 5x-1 + 1x-1

- e e e
—--
—
—

output

What Convolution Does (Visually)

image output

1x1 + 1x1 + Ox1 + 2x0 + 5x0 _4 _3
+ 0x0 +5x-1 + 1x-1 + 4x-1

—y, -
h-————ﬂ

What Convolution Does (Visually)

image filter/kernel

output

210]11(3

711]|1]0 all il e

ol25]0]® 2 t° - =
-1(-1|-1 3-8

O(5]|]11|4

Handmade Kernels and Filters

0 O
0 1
0

Identity kernel

1
9

1 1

1 1

1 1
Box blur

=l =1 =l
-1 8 -1
-1 -1 -1
Edge detection
1-
1
256

4
1

0 -1
-1 5

0 -1

]

—1

0_

Sharpen kernel

4 6 4 1]

16 24 16 4
24 36 24 6
16 24 16 4

4 6 4 1)

Gaussian blurr kernel

Operation

Kernel w

Image result g(x,y)

Identity

0 -1 0
—1 4 -1
0 -1 0
Ridge or edge detection |-
-1 -1 -1
-1 8 -1
-1 -1 -1
0 -1 0
Sharpen -1 5 —
0 -1
Box blur

(normalized)

Gaussian blur3 x 3

(approximation)

What Comes Next?

Can we learn a filter for our images rather than “hand crafting” one?

	Slide 1
	Slide 2: Recap: MLPs
	Slide 3: Hyperparameters
	Slide 4: Data Preprocessing
	Slide 5: Data Preprocessing
	Slide 6: Data Preprocessing
	Slide 7: Data Preprocessing
	Slide 8: Data Preprocessing
	Slide 9: Network Initialization
	Slide 10: Network Initialization
	Slide 11: Network Initialization
	Slide 12: Network Initialization
	Slide 13: Network Initialization
	Slide 14: Network Initialization
	Slide 15: Network Initialization
	Slide 16: Network Initialization
	Slide 17: Network Initialization
	Slide 18: Hidden Layers
	Slide 19: Hidden Layers
	Slide 20: Hidden Layers
	Slide 21: How to use the Validation Set
	Slide 22: How to use the Validation Set
	Slide 23: How to use the Validation Set
	Slide 24: How to use the Validation Set
	Slide 25: How to use the Validation Set
	Slide 26: How to use the Validation Set
	Slide 27: How to use the Validation Set
	Slide 28: How to use the Validation Set
	Slide 29: Is adding more width or depth better?
	Slide 30: Is adding more width or depth better?
	Slide 31: Theoretical Approaches to Understanding Depth
	Slide 32: Benefits of depth in neural networks
	Slide 33: Benefits of depth in neural networks
	Slide 34: Benefits of depth in neural networks
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: The Manifold Hypothesis
	Slide 43: The Manifold Hypothesis
	Slide 44: The Manifold Hypothesis
	Slide 45: The Manifold Hypothesis
	Slide 46: The Manifold Hypothesis
	Slide 47: MNIST and Manifolds
	Slide 48: MNIST and Manifolds
	Slide 49: MNIST and Manifolds
	Slide 50: MNIST and Manifolds
	Slide 51: MNIST and Manifolds
	Slide 52: MNIST and Manifolds
	Slide 53: MNIST and Manifolds
	Slide 54: Deep Networks and Representation Learning
	Slide 55: Deep Networks and Representation Learning
	Slide 56: Deep Networks and Representation Learning
	Slide 57: Perceptrons are Linear Separators
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Manifold Hypothesis
	Slide 64: What “Shape” Should your Network Be?
	Slide 65: What “Shape” Should your Network Be?
	Slide 66: What “Shape” Should your Network Be?
	Slide 67: What “Shape” Should your Network Be?
	Slide 68: What “Shape” Should your Network Be?
	Slide 69: What “Shape” Should your Network Be?
	Slide 70: So How Many Layers/How Large Should the be?
	Slide 71: Overparameterization
	Slide 72: Overparameterization
	Slide 73: Overparameterization
	Slide 74: Overparameterization
	Slide 75: Overparameterization
	Slide 76: Overparameterization
	Slide 77: Optimizers
	Slide 78: Optimizers
	Slide 79: Optimizers
	Slide 80: Optimizers
	Slide 81: Batch Size and Learning Rate
	Slide 82: General Tips
	Slide 83: General Tips
	Slide 84: General Tips
	Slide 85: General Tips
	Slide 86: General Tips
	Slide 87: General Tips
	Slide 88: General Tips
	Slide 89: AutoML
	Slide 90: AutoML
	Slide 91: AutoML
	Slide 92: AutoML
	Slide 93: AutoML
	Slide 94: AutoML
	Slide 95: AutoML
	Slide 96: AutoML
	Slide 97: AutoML
	Slide 98: AutoML
	Slide 99: AutoML
	Slide 100
	Slide 101: What has happened in the last 15 years?
	Slide 102: Issues with MLPs
	Slide 103: Issues with MLPs
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113: Issues with MLPs
	Slide 114: MLPs and Spatial Reasoning
	Slide 115: MLPs and Spatial Reasoning
	Slide 116: MLPs and Spatial Reasoning
	Slide 117: MLPs and Spatial Reasoning
	Slide 118: MLPs and Spatial Reasoning
	Slide 119: MLPs and Spatial Reasoning
	Slide 120: MLPs and Spatial Reasoning
	Slide 121: MLPs and Spatial Reasoning
	Slide 122: MLPs and Spatial Reasoning
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132: MLPs and Spatial Reasoning
	Slide 133: MLPs and Spatial Reasoning
	Slide 134: MLPs and Spatial Reasoning
	Slide 135: MLPs and Spatial Reasoning
	Slide 136: Advantages of Not Fully Connected Layers
	Slide 137: Disadvantages of Not Fully Connected Layers
	Slide 138: Disadvantages of Not Fully Connected Layers
	Slide 139: Disadvantages of Not Fully Connected Layers
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151: Handmade Kernels and Filters
	Slide 152: What Comes Next?

