Deep Learning

Day 5: Classification and Hyperparameters

L LR
N %‘ i *
4 "‘%“‘IT,‘ 'l —
is ' '
_:;

E'ric EWlng

Tuesday, 9/16

. A
o A .
;ﬁ : r
-, o <% 7
BT . b

d

Yosemite Valley

HW 3: Beras

Will come out today! (conceptual component due in 1 week,
programming in 2 weeks)

Implement neural network with numpy (i.e., weight layers,
activations, loss functions) and training (i.e., gradient tape for
backprop and optimizers)

Unlimited submissions during the first week, limited to 15
submissions in week 2. (Additional submissions will still be graded,
but test results won’t be visible)

Beras Companion Guide

Linked in handout, set of
companion notes that contain
additional explanation of
functions and classes.

m

OW 9z OW

L

or 0z Ox

Downstream
gradients

Local
gradients

v

N

Upstream
gradient

Recap: Neural Networks (MLPs)

hidden layver 1 hidden layver 2 hidden layer 3

input layer

ﬁ
?,5:' F..l- 'F""{*‘ﬁ‘ "i q\ﬂ

s
Ve ;Iﬂ‘ N
ﬁ, - 3

l'"' ..u".'r

Each neuron is the weighted sum of inputs, a bias, and an activation function

“Classic” Supervised Learning in Machine Learning

Input: X Target: Y

Gradient Descent

Recap

Train models with
gradient descent

Find gradient using
backpropagation and
compute graphs

Computation Graph

e=(a+b)-(b+1)

Why should you care about compute graphs?

(This is much more of acommon issue in pytorch than tensorflow)

def train_with_memory_leak():
running_loss = 0.0
for epoch in range(100):
for i, (inputs, targets) in enumerate(loader):

optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()

running_loss += loss

if 1 % 10 == 9:

print(f'Loss: {running_loss / 10}"')

running_loss = 0.0

Why should you care about compute graphs?

(This is much more of acommon issue in pytorch than tensorflow)

def train_with_memory_leak():

running_loss = 0.0

for epoch in range(100):
for i, (inputs, targets) in enumerate(loader):

optimizer.zero_grad()
outputs = model(inputs)

loss = criterion(outputs, targets)

Running loss’ compute loss.backward()

graph will contain the
compute graph of loss!

optimizer.step()

running_loss += loss

1iF 1% 189 == 9
print(f'Loss: {running_loss / 10}"')

running_loss = 0.0

Why should you care about compute graphs?

(This is much more of acommon issue in pytorch than tensorflow)

def train_with_memory_leak():
running_loss = 0.0
for epoch in range(100):
for i, (inputs, targets) in enumerate(loader):
optimizer.zero_grad()
outputs = model(inputs)

loss = criterion(outputs, targets)

Running loss’ compute 105§ : ?aCkwa rd()
graph will contain the optimizer.step()
compute graph of loss!

running_loss += loss

The memory required to if 1 % 10 == 9:
store running_loss will only print(f'Loss: {running_loss / 10}"')
ever increase! running_loss = 0.0

DL Frameworks © pyTorch Tenl,‘mow

* Main current frameworks are Tensorflow, Pytorch, and Jax

* TF and torch are becoming increasingly similar in style and
performance

e Jax is new and different

Percentage of Repositories by Framework B other [PyTorch [TensorFlow Number of Job Postings by Framework
100% 20000

75%
50%

10000

Tensor Flow [PyTorch

FPercentage
Mumber of Postings

25%

2000
0%
Jan 2018 Jan 2019 Jan 2020 Jan 2021
0

Linkedin ZipRecruiter Indeed

Repository creation date
https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/

Tensorflow

Tensorflow

- Developed and maintained by Google

Tensorflow

- Developed and maintained by Google

- In addition to autodiff features it also provides:
- Many common functions (i.e., Softmax, Sigmoid, Cross Entropy, etc.)
- An easy way to train models (Keras)

- Strong support for hardware acceleration (i.e., if you have a GPU, TF will
figure out how to use it)

Tensorflow

- Developed and maintained by Google

- In addition to autodiff features it also provides:
- Many common functions (i.e., Softmax, Sigmoid, Cross Entropy, etc.)
- An easy way to train models (Keras)

- Strong support for hardware acceleration (i.e., if you have a GPU, TF will
figure out how to use it)

- “Easier to deploy to production” (has been the general consensus
previously, but other frameworks have caught up)

Tensorflow

- Developed and maintained by Google

- In addition to autodiff features it also provides:
- Many common functions (i.e., Softmax, Sigmoid, Cross Entropy, etc.)
- An easy way to train models (Keras)

- Strong support for hardware acceleration (i.e., if you have a GPU, TF will
figure out how to use it)

- “Easier to deploy to production” (has been the general consensus
previously, but other frameworks have caught up)

- TF lite for on device applications (e.g., phones)

Pytorch

Pytorch

* Developed by Facebook Al (how Meta)

Pytorch

* Developed by Facebook Al (how Meta)
* More common in the research and academic community

Pytorch

* Developed by Facebook Al (how Meta)
* More common in the research and academic community
* “More flexible” and easier to write custom backward passes

Pytorch

* Developed by Facebook Al (how Meta)
* More common in the research and academic community
* “More flexible” and easier to write custom backward passes

* No Gradient Tape, each tensor (matrix/vector) is “trainable” or not.
If a tensor is trainable then all operations on it are tracked.

Pytorch

* Developed by Facebook Al (how Meta)
* More common in the research and academic community
* “More flexible” and easier to write custom backward passes

* No Gradient Tape, each tensor (matrix/vector) is “trainable” or not.
If a tensor is trainable then all operations on it are tracked.

* Slightly more work to use GPUs or other hardware

Pytorch

* Developed by Facebook Al (how Meta)
* More common in the research and academic community
* “More flexible” and easier to write custom backward passes

* No Gradient Tape, each tensor (matrix/vector) is “trainable” or not.
If a tensor is trainable then all operations on it are tracked.

* Slightly more work to use GPUs or other hardware

* Harder to track stats
* (I stilluse TF’s tensorboard stat tracker when using Pytorch)

Pytorch

* Developed by Facebook Al (how Meta)
* More common in the research and academic community
* “More flexible” and easier to write custom backward passes

* No Gradient Tape, each tensor (matrix/vector) is “trainable” or not.
If a tensor is trainable then all operations on it are tracked.

* Slightly more work to use GPUs or other hardware

* Harder to track stats
* (I stilluse TF’s tensorboard stat tracker when using Pytorch)

* Easier to learn and use than tensorflow
* Better error reporting, training code is harder to write but easier to debug

Jax

Jax

* Also developed by Google...

Jax

* Also developed by Google...
* Very new compared to Pytorch and Tensorflow

Jax

* Also developed by Google...

* Very new compared to Pytorch and Tensorflow
* Much Faster

Jax

* Also developed by Google...

* Very new compared to Pytorch and Tensorflow
* Much Faster

* Takes advantage of Just In Time (JIT) compiling to speed up
execution

Jax

* Also developed by Google...
* Very new compared to Pytorch and Tensorflow
* Much Faster

* Takes advantage of Just In Time (JIT) compiling to speed up
execution

* Functional programming paradigm

Improving Gradient Descent

Improving Gradient Descent

Computing the full gradient for a large dataset takes a very long
time and it often will not fit in memory, slowing it down even further

Improving Gradient Descent

Computing the full gradient for a large dataset takes a very long
time and it often will not fit in memory, slowing it down even further

Solution: Approximate the gradient by sampling a selection of
examples (i.e., a batch). Run a gradient descent step with that batch

Stochastic Gradient Descent

For N epochs:
sample a batch B from dataset X
compute predictions and loss function

compute gradient
update weights with small step in direction of negative grad.

Stochastic Gradient Descent

For N epochs:
sample a batch B from dataset X
compute predictions and loss function

compute gradient
update weights with small step in direction of negative grad.

Training is non-deterministic because batches are sampled randomly from dataset

Stochastic Gradient Descent

For N epochs:
sample a batch B from dataset X
compute predictions and loss function

compute gradient
update weights with small step in direction of negative grad.

Training is non-deterministic because batches are sampled randomly from dataset

Why does this work? The expectation of the gradient is equal to the gradient itself!

What size should the batch be?

Small batch size: Large batch size:
Fast, jittery updates Slower, stable updates
Batch Size: 1 Batch Size: 100

l 20
20 -

151
15 1

g E 101
10 1

5- 3

C" D' MM‘.# o A e i
ilj 160 2100 3['!'0 4150 Slf'JCl 66'0 6 160 250 360 460 560 EIEJO
Batch Batch

- Empirically, modern optimizers can handle larger batch size well
« Try to pick the largest batch size you can fit on your GPU!

Further Improvements

If gradient descent is like a ball rolling
down a hill... What is that ball’s mass?

SGD can be further improved by
adding momentum term

" SGD without momentum SGD with momentum

Aw := aAw — nVQ;(w)

w:i=w+ Aw

AdaM: SGD + Adaptive Momentum

Generally recommended as the best performing and easiest to use optimizer!

Require: o: Stepsize

. . . - MNIST Multilayer Neural Network + dropout
Require: 1, 3> € [0,1): Exponential decay rates for the moment estimates 107 @ ' '

. — AdaGrad
Require: f(6): Stochastic objective function with parameters 6 _ RMasprrzp
Require: 6j: Initial parameter vector — SGDNesterov

st 11 st AdaDelta
mo < 0 (Initialize 1°** moment vector) ~ adam

vo < 0 (Initialize 2™ moment vector)
t < 0 (Imitialize timestep)
while 0; not converged do

training cost

.

t<—t+1
9t < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)
myg < B1-my_1+ (1 — B1) - g+ (Update biased first moment estimate) 107

Vg < Bo-v_1 + (1= Bo) - gf (Update biased second raw moment estimate)
my < my/(1 — B%) (Compute bias-corrected first moment estimate)
vt + vt /(1 — B5) (Compute bias-corrected second raw moment estimate)
Oy < 0r_1 — - my/ (\/%Tt + €) (Update parameters)
end while
return 6; (Resulting parameters)

A L 1
0 50 100 150 200
iterations over entire dataset

Classification

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Need Loss function to be small for best model, not large.

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Need Loss function to be small for best model, not large.

Correct

Proposed Loss Function: L =1 — ~

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Need Loss function to be small for best model, not large.

Correct

Proposed Loss Function: L =1 — ~

The Issue: most of the time, the gradient of this loss functionisVLg = 0

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Need Loss function to be small for best model, not large.

Correct

Proposed Loss Function: L =1 — ~

The Issue: most of the time, the gradient of this loss functionisVLg = 0

Gradient is only non-zero when changing a 8 has an impact on output predictions

Unit step (threshold)

1

B (0if 0>x
JO=11if x= 0

0 gradient everywhere except x=0
] - X=0is not differentiable, but it does have a sub-gradient

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Need Loss function to be small for best model, not large.

Correct

Proposed Loss Function: L =1 — ~

The Issue: most of the time, the gradient of this loss functionisVLg = 0

Gradient is only non-zero when changing a 8 has an impact on output predictions

We cannot use classification as a loss

Unit step (threshold) function because itis incompatible with
gradient descent. Understanding Gradients
0if 05 x is key to understanding all decisions

f(x)=1 | related to neural networks!
1if x=0

1

0 gradient everywhere except x=0
] - X=0is not differentiable, but it does have a sub-gradient

Whatis areasonable loss function touse?

* Accuracy is a “hard” function
* Hard to take meaningful derivatives of

* Other examples:
* Max vs. Softmax
* Ranking vs Softrank
e Sign function (i.e., perceptron activation) vs. Softsign
* Argmax

Whatis areasonable loss function touse?

* Accuracy is a “hard” function
* Hard to take meaningful derivatives of

* Other examples:
* Max vs. Softmax
* Ranking vs Softrank
e Sign function (i.e., perceptron activation) vs. Softsign
* Argmax

My (somewhat) old research

Kullback-Leibler divergence

* One type of statistical distance
* Distance between two probability distributions

Kullback-Leibler divergence

* One type of statistical distance
* Distance between two probability distributions

Defined for two probability
distributions, P and Q

D(P | Q) =Y P(x) log(g("”)

I reX

Kullback-Leibler divergence

* One type of statistical distance
* Distance between two probability distributions

Defined for two probability
distributions, P and Q

Di(P | Q) =Y P(a) log(g(ﬁ)

I reX

Think of Q as what we predict and
P as the ground truth Probabilities

Kullback-Leibler divergence

* One type of statistical distance
* Distance between two probability distributions

When P(x) is high, Q(x) should

Defined for two probability
also be high... (Log(1) = 0)

distributions, P and Q

Dy (P WI ?) =) P(z) log(28)

Think of Q as what we predict and
P as the ground truth Probabilities

One-Hot Vectors Revisited

datagy.io

Biscoe _9 1 0 0

Torgensen 0 0 1

Dream 0 1 0

One-Hot Vectors Revisited

datagy.io

Biscoe =3P 1 0 0

Torgensen 0 0 1

Dream 0 1 0 T~ Can be

interpreted as a
probability!

Kullback-Leibler divergence

* One type of statistical distance
* Distance between two probability distributions

Kullback-Leibler divergence

* One type of statistical distance
* Distance between two probability distributions

“Ground truth” Probability (i.e.,
label)

D(P | Q) =Y P(x) log(g("”)

reX

Kullback-Leibler divergence

* One type of statistical distance
* Distance between two probability distributions

“Ground truth” Probability (i.e.,
label)

Di(P | Q) =Y P(a) log(g(ﬁ)

I reX

Predicted probabilities

Kullback-Leibler divergence

* One type of statistical distance
* Distance between two probability distributions

“Ground truth” Probability (i.e.,
label)

D (P | ?» =¥ P log(gim;)

Predicted probabilities

Binary Cross Entropy

KL Divergence

Diu(P | Q) =Y P(z) log(giw;)

reX £

Cross Entropy (CE)

CEG.9) =~) yilog,

Binary Cross Entropy

KL Divergence

Dki(P || Q) = ZP log(Qw

2

Cross Entropy (CE)

reX &

CEG.9) =~) yilog,

”Categorical Cross Entropy”

Binary Cross Entropy

KL Divergence

Cross Entropy (CE)

CE.9) =~) yilog,

2

T
Dy (P || Q) = J:EZXP log(Q(z

”Categorical Cross Entropy”

For Binary problems “Binary
Cross Entropy” (BCE)

Cross Entropy Examples CE(y,9) = _2 y; log 9;

Random choice between two categories (one sample):
y =11,0],y = [0.5,0.5]
CE(y,¥) = —[1,0] -log(]0.5,0.5]) = 0.693

Cross Entropy Examples CE(y,9) = _2 y; log 9;

Random choice between two categories (one sample):
y =11,0],y = [0.5,0.5]
CE(y,¥) = —[1,0] -log(]0.5,0.5]) = 0.693

Random choice between 10 categories (one sample):
y=11,0,..],y=10.1,0.1, ...]
CE(y,¥) = —[1,0] -log(]0.1,0.1,...]) = 2.3

Cross Entropy Examples CE(y,9) = _2 y; log 9;

Random choice between two categories (one sample):
y =11,0],y = [0.5,0.5]
CE(y,¥) = —[1,0] -log(]0.5,0.5]) = 0.693

Random choice between 10 categories (one sample):
y=11,0,..],y=10.1,0.1, ...]
CE(y,¥) = —[1,0] -log(]0.1,0.1,...]) = 2.3

Random choice between 100 categories (one sample):
y=11,0,..],y =10.01,0.01, ...]
CE(y,¥) = —|[1,0,...] -10g([0.01,0.01,...]) = 4.6

Cross Entropy Examples

Random choice between two categories (one sample):
y =11,0],y = [0.5,0.5]
CE(y,¥) = —[1,0] -log(]0.5,0.5]) = 0.693

True class is higher output (one sample):
y =11,0],y = [0.75,0.25]
CE(y,y) =777

True class is lower output (one sample):
y =1[1,0],y = [0.25,0.75]
CE(y,y) =777

Cross Entropy Examples

Random choice between two categories (one sample):
y =11,0],y = [0.5,0.5]
CE(y,¥) = —[1,0] -log(]0.5,0.5]) = 0.693

True class is higher output (one sample):

y = [1, O],y = [075, 025] 0.28

CE(y,y) =777

True class is lower output (one sample):
y =1[1,0],y = [0.25,0.75]
CE(y,y) =777

Cross Entropy Examples

Random choice between two categories (one sample):

y = [1,0],¥ = [0.5,0.5]

CE(y,$) = —[1,0] -log([0.5,0.5]) = 0.693

True class is higher output (one sample):
y =11,0],y = [0.75,0.25]
CE(y,y) =777

True class is lower output (one sample):
y =1[1,0],y = [0.25,0.75]
CE(y,y) =777

0.28

1.3

Derivative of Cross Entropy

dL d z": -
l

Derivative of Cross Entropy

dL d z": -
l

/

What is this? (vector, scalar,
matrix)

Derivative of Cross Entropy

dL dz": -

/

What is this? (vector, scalar,
matrix)

What is this? (vector, scalar,
matrix)

Derivative of Cross Entropy

dL

What is this? (vector, scalar,
matrix)

n
d

E oo U
dy yl Ogyl\

|

What is this? (vector, scalar,
matrix)

What is this? (vector, scalar,
matrix)

Derivative of Cross Entropy

dL d z": -
dy_ dﬁ . Vi Ogyl
l

n
dL B 2 1
dy ~ D

Probability of predicting
correct label for example i

Probabilities

* If we have probabilities, we can use Cross Entropy

* How do we get probabilities?

Option #1: Normalize outputs (i.e.,
divide by their total)

Option #2: Use another function
(i.e., softmax)

Softmax Function

Output Softmax

layer activation function Probabilities

1.3 0.02

a1 e~ 0.90

2.2 | — w1 0.05
S e

0.7 =1 0.01

By 0.02

Source: https://www.singlestore.com/blog/a-guide-to-softmax-activation-function/

http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/

What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [1, 2]. For a second image, the
network outputs [10, 20].

What will be the predicted probabilities with normalization?

What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [1, 2]. For a second image, the
network outputs [10, 20].

What will be the predicted probabilities with normalization?

[1/3, 2/3] for both examples

What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [1, 2]. For a second image, the
network outputs [10, 20].

What will be the predicted probabilities with Softmax?

What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [1, 2]. For a second image, the
network outputs [10, 20].

What will be the predicted probabilities with Softmax?

[0.26, 0.73] for [1, 2]
[0.00005, 0.99995] for [10, 20]

What’s the difference?

Add 10 to each output

Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image,
the network outputs [20, 30].

What will be the predicted probabilities with Normalization?

What’s the difference?

Add 10 to each output

Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image,
the network outputs [20, 30].

What will be the predicted probabilities with Normalization?

[0.47, 0.53] for [11, 12]
[0.4, 0.6] for [20, 30]

What’s the difference?

Add 10 to each output

Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image,
the network outputs [20, 30].

What will be the predicted probabilities with Softmax?

What’s the difference?

Add 10 to each output

Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image,
the network outputs [20, 30].

What will be the predicted probabilities with Softmax?

[0.26, 0.73] for [11, 12]
[0.00005, 0.99995] for [20, 30]
Exactly the same as [1, 2] and [10, 20]

What’s the difference?

What's the difference?

Normalization is sensitive to additive changes, but not multiplicative
changes

What’s the difference?

Normalization is sensitive to additive changes, but not multiplicative
changes

Softmax is sensitive to multiplicative changes, but not additive

What’s the difference?

* Normalization is sensitive to additive changes, but not multiplicative
changes

* Softmaxis sensitive to multiplicative changes, but not additive

Softmax also has other advantages:

What’s the difference?

* Normalization is sensitive to additive changes, but not multiplicative
changes

* Softmaxis sensitive to multiplicative changes, but not additive

Softmax also has other advantages:

* - Tends to handle smaller probabilities better (less float underflow)

What’s the difference?

Normalization is sensitive to additive changes, but not multiplicative
changes

Softmax is sensitive to multiplicative changes, but not additive

Softmax also has other advantages:

- Tends to handle smaller probabilities better (less float underflow)

- Remember that log in our loss function? Remember the eZ in softmax?
Our loss function becomes ~linear for our neuron outputs z

What’s the difference?

Normalization is sensitive to additive changes, but not multiplicative
changes

Softmax is sensitive to multiplicative changes, but not additive

Softmax also has other advantages:

- Tends to handle smaller probabilities better (less float underflow)

- Remember that log in our loss function? Remember the eZ in softmax?
Our loss function becomes ~linear for our neuron outputs z

- Maybe has issues with overflow... (outputs can become inf or NaN)

Derivative of Softmax

Want to know: da

dz

Derivative of Softmax

Want to know: da

/2

What is this? (vector, scalar,
matrix)

Derivative of Softmax

Want to know: da

dz

da . .
a and z are both vectors, therefore 'j; is a Jacobian matrix

Derivative of Softmax

Want to know: da
dz

What is 2% ?

0z

Derivative of Softmax

Want to know: da
dz

What is

aai
0z

?

Quotient rule!

Derivative of Softmax

Want to know: da
dz

C das
What is 2L ?
Oz]-

If i == j, then Z_Ziiz a; - (1—a;)

. . da;
| = = —q. - a
If i! = j, then 72, a; - q

Hyperparameter Tuning

Hyperparameters

What do you (the programmer) have control
of when training neural networks?

W5 v
> Y. [Output

Hidden Layer Output Layer

Hyperparameters

What do you (the programmer) have control
of when training neural networks?

W5 v
> Y. [Output

Hidden Layer Output Layer

Hyperparameters

What do you (the programmer) have control
of when training neural networks?

W5 v
> Y. [Output

/

Hidden Layer Output Layer

Hyperparameters

What do you (the programmer) have control
of when training neural networks?

W5 v
> Y. [Output

/

Hidden Layer Output Layer

Hyperparameters

- Network Initialization
- Hidden Layer Size

What do you (the programmer) have control - Nurpbgr of hiddgn layers
of when training neural networks? - Activation Functions
- Optimizer (SGD, Adam, RMSProp)
- Batch Size

- Learningrate
- Number of Epochs

W5 v
> Y. [Output

i
/

Hidden Layer Output Layer

Hyperparameters

The parameters of a Neural
Network are what is trained (e.g.,
weights and biases).

The hyperparameters of a

b Neural Network are the
parameters that you have
D \ b control of that control that
We | training.
> Y. [Output
b Ws

Network Initialization

What if we begin with all
parameters set to 07?

W5 v
> Y. [Output

Network Initialization

What if we begin with all
parameters set to 07?

All neurons would have the same
value, gradients would be the same.

W5 v
> Y. [Output

Network Initialization

Ws v
=| Y — Output
b /IVLS
Z /

Variance of a random variable in fixed
2

range [-X, X] is % (easy to derive from
definition of variance)

Network Initialization

Idea #1: Uniform random weights between -1 and 1
(works fine)

W5 \ 4

=| Y — Output
b /‘Wi
2

Variance of a random variable in fixed
2

range [-X, X] is % (easy to derive from
definition of variance)

Network Initialization

ldea #1: Uniform random weights between -1 and 1
(works fine)

b But... what if there are many many weights in a layer?
The scale of the output can grow.

/

Y — Output

S

Variance of a random variable in fixed
2
range [-X, X] is % (easy to derive from

definition of variance)

Network Initialization

ldea #1: Uniform random weights between -1 and 1
(works fine)

b But... what if there are many many weights in a layer?
The scale of the output can grow.

/

|dea #2: Xavier (Glorot) initialization:
Y — Output

S

Variance of arandom variable in fixed
2

range [-X, X] is % (easy to derive from

definition of variance)

Network Initialization

ldea #1: Uniform random weights between -1 and 1
(works fine)

But... what if there are many many weights in a layer?
The scale of the output can grow.

/

|dea #2: Xavier (Glorot) initialization:

Y — Output

Uniform: Initialize each weight uniformly at random in
. 6
b Ws the range [-x, x] with x =
Nin+Nout

T

Variance of arandom variable in fixed
2

range [-X, X] is % (easy to derive from

definition of variance)

Network Initialization

ldea #1: Uniform random weights between -1 and 1
(works fine)

But... what if there are many many weights in a layer?
The scale of the output can grow.

/

|dea #2: Xavier (Glorot) initialization:

Y — Output

Uniform: Initialize each weight uniformly at random in
. 6
b Ws the range [-x, x]withx = [———
Nin+Nout

Z /
Normal: Initialize each

weight with mean 0 and
Variance of a random variable in fixed - 2
) standard deviation g = [———
Nin+tNout

range [-X, X] is % (easy to derive from

definition of variance)

Network Initialization

ldea #1: Uniform random weights between -1 and 1
(works fine)

b But... what if there are many many weights in a layer?
The scale of the output can grow.

Ws - |dea #2: Xavier (Glorot) initialization:
Y. — Output T : : :
Uniform: Initialize each weight uniformly at random in
b Ws the range [-x, x] with x = /;
Nin+Nout
)

Normal: Initialize each weight with mean 0 and
. : . , 2
Keeps variance of z and gradients of |standard deviationo = |————
Nin+Nout

weights the same for each layer at
initialization.

Understanding the difficulty of training deep feedforward neural networks. Xavier Glorot, Yoshua Bengio

Hidden Layers

* How deep (# hidden layers) should your network be?
* How wide (# neurons in a layer) should your network be?

. hidden laver 1 hidden layver 2 hidden layver 3
input layer

- a‘. .
ANz Qe

M Tl :.f""
L i o Y &
NS @7 @
N
W Ny

f
)0
”

1y
)

o
2
Lo

b
P

i
[
%

i

-

]
D

P AL
PN

e A

Q)

oy

]

T
,

"‘.

Zrerg i s g v g Wy g "-‘.--.

e Sa Ao o, e e o 7 r.-'--."',#:- o e

e e T g N e e W A
el g B s I ok et W :
@ 2NN g st
. ey o ey ::.I":- e ..:1_::1- :.:. _.:i""-l';:ji 5 - h‘-‘:i"r"‘:":;-'
@ W et el
TSN\ R e & e
e Wy s e it
W ZaEa W =\

Hidden Layers

* How deep (# hidden layers) should your network be?
* How wide (# neurons in a layer) should your network be?

. hidden laver 1 hidden layver 2 hidden layver 3
input layer

| — AN A e
How com plex. is the problem you are .% ﬁ}% ?ﬁ%:%% Eﬁ?{;}f&\ output layer
trying to solve? ST @S R AN

@ T e e SN ey

¥ e g R e b trgs arilfoge 3 4, o
N -*_.-r.-:: i ot S .'E.. v, A -..r:. R
antees @iy sy e @Sy e SRR
i S0 et ;

ey

il
®

X
50,
o
i
. ‘u’ﬂ‘
‘a
I
.
-llll-

F

0

P e :
A, AR ‘;:,‘_" o z ik = . . i s
Sy A :t'j"‘ _,ﬁg_‘:.ﬂ:"p;}f;;rﬁ‘.

W e “-
wh
2N

SO SaN
SN Y SN 7

R T g
i e

R

'J"‘x

Hidden Layers

* How deep (# hidden layers) should your network be?
* How wide (# neurons in a layer) should your network be?

. hidden laver 1 hidden laver 2 hidden layer 3
input layer

How complexis the problem you are
trying to solve?

Process of (informed) trial and error.
How do you know if one hyper- mw

parameter setting is better than f < ,f;- %ﬁm,
\Q 7 ::.

another? CF :’ﬁ“*

How to use the Validation Set

Loss

(In theory)

The Learning Curves

training

Epochs

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA10ODYO

How to use the Validation Set

Loss

(In theory)

The Learning Curves

training

Epochs

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA10ODYO

How to use the Validation Set

(In theory)

The Learning Curves

Loss

Model starts
overfitting

training

Epochs

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA10ODYO

How to use the Validation Set

(In theory)

Early Stopping Algorithm
1. Track training loss and validation loss

2. Ifvalidation loss starts to increase, terminate
The Learning Curves

Loss

Model starts
overfitting

training

Epochs

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA10ODYO

How to use the Validation Set

(In theory)

Early Stopping Algorithm
1. Track training loss and validation loss

2. Ifvalidation loss starts to increase, terminate
The Learning Curves

What if your validation loss is much higher

Loss than training loss?

Model starts
overfitting

training

Epochs

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA10ODYO

How to use the Validation Set

(In theory)

Early Stopping Algorithm
1. Track training loss and validation loss

2. Ifvalidation loss starts to increase, terminate
The Learning Curves

What if your validation loss is much higher

Loss than training loss?

Model.st.arts Your model has overfit, try
overfitting reducing its size

training

Epochs

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA10ODYO

How to use the Validation Set

(In theory)

Early Stopping Algorithm
1. Track training loss and validation loss

2. Ifvalidation loss starts to increase, terminate
The Learning Curves

What if your validation loss is much higher
than training loss?

Loss
Model.st.arts Your model has overfit, try
overfitting reducing its size
training
What if your validation loss and training loss
Epochs are both high?

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA10ODYO

How to use the Validation Set

(In theory)

Early Stopping Algorithm
1. Track training loss and validation loss

_ 2. Ifvalidation loss starts to increase, terminate
The Learning Curves

What if your validation loss is much higher
than training loss?

Loss
Model.st.arts Your model has overfit, try
overfitting reducing its size
training
What if your validation loss and training loss
Epochs are both high?

Your model has underfit,
try increasing its size

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--VmlldzoONjA10ODYO

|s adding more width or depth better?

|s adding more width or depth better?

4« C&CI1470

CSCl11470 Deep Learning

Section SO01, CRN 26629
Spring 2025

Depth-Width Tradeoffs in Approximating Natural Functions with
Neural Networks

Itay Safran Ohad Shamir
Weizmann Institute of Science Weizmann Institute of Science
itay.safran@weizmann.ac.il ohad.shamir@weizmann.ac.1il

With the same number of total parameters, deep networks can learn more complex functions.

Recall that NNs are compositions of functions for which we are learning parameters:

Fa(i(j))

It’s better (in general) to have more functions composed than itis to have more complex functions

* |f there are 10 inputs, 3 layers of 10 neurons, and 4 outputs,

many weights are there total?

. hidden laver 1
input layer

hidden layer 2 hidden layer 3

\

7N

T
@)

)
b

Jl

i

oy
@)

i

L]

i
-.'itl"

e T
o
.il#ﬁ.; PR A

"ﬂ o
G

-,

““

N S A A Z A
- ? " h)

W i
S5

b

X
W

¥]
W
L
b
-
"'a

L T,
S A

i3l |
aqe,‘!-.
=
T
!

o

i ﬁ‘l.-'*":irfv: e
SN, T
S\ e

e TR, ST AT
g’:- '?ﬁh.itﬂ?tﬁiﬁéﬁ

X i, 5 A s N T
o .'.'"'.-."I.“. e T i e
R -'l-‘:ﬂ-‘-“:‘ TRy ‘:_‘ ; 1“1:.

X SN 5s
e

how

* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how

many weights are there total?

. hidden layver 1 hidden laver 2 hidden layer 3
input layer

-,
N W L NN

g T, E.ﬂ:
2 ¥ e)
e :
o

- it R
i :a{h-...m@
Ferrr N W

*

o et
¥,

i

S f

A R ‘lﬂ-}r
T, iy
. -|| P,.

W1 = RlOXlO
m/2 € RlOXlO
W3 € RlOXlO
W4_ € RlOX4
Total = 340

A S R o l,.".,.‘,';,.- e 1) . -
AR ;"'Eﬁ": i:"""l:‘."l* 3 .:.H,r- K

o :ii!"-'_";-'!l::.- e W o -'_"_a""l'.i; e W _
BT e R T A T

T T
o e
= s T 2 B
R i) e’ o
o iy T e
i AR
e o -3 E -

" x i 2
o W= ,,:.wy 72
S SN

5 w‘*&ﬁ? ﬁ
g eyl e F o
e\ W &ﬁﬁ‘l_,};/
i] e

* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how
many weights are there total?

* What if we double the width of each hidden layer?

. hidden layver 1 hidden laver 2 hidden layer 3
input layer

3 : .

e SR el

2 QEN
@=3 P e

B e e o
S g ""\:t‘;l*...::'_
L S o 3

@ =9 ‘*‘%‘hy
..- e - ’ - _'_:_,,._____ ":;_ E ﬂ:

* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how

many weights are there total? W, € ngng
W, € R<%%

« What if we double the width of each hidden layer? W, € R20%20
W4, € RZOX4
Total =1080

. hidden layver 1 hidden laver 2 hidden layer 3
input layer

= 0 == o\
ST AR PN

o =i ri'!A::.. A J r_:;
Sl QN
e S Ry i S

VT e SN e

Ly

Ly N W
e @ s

o
S50 o%
% ek, : :ii;;-"l"".':
s <
T g T
s el e Pt L
N AR CARE
S SR
b, AR B o e
et
PN

* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how
many weights are there total?

* What if we double the depth? of each hidden layer?

. hidden layver 1 hidden laver 2 hidden layer 3
input layer

3 : .

e SR el

2 QEN
@=3 P e

B e e o
S g ""\:t‘;l*...::'_
L S o 3

@ =9 ‘*‘%‘hy
..- e - ’ - _'_:_,,._____ ":;_ E ﬂ:

* If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how

many weights are there total?

* What if we double the depth? of each hidden layer? W, € R10X10
W2 € RlOXlO
W3 € RlOXlO
, hidden layver 1 hidden laver 2 hidden layer 3 W, € RlOX1O
input layer 4
ﬁiﬁ. x__r .\ W6 € RlelO
7 i\“ %F-’f *-:.}‘ ~.output layer W. € RlOX4
"% -0 éﬁ“\&\\‘__ T e
'_. .._-5: “* *!:ﬂ- "l' s #N\ \“‘ . otal = 640
(e OSSN
SRS S S32%
,:;4;

i
| o)
T " |'|'.I.'ﬁ
"i Lo q l
X

Overparameterization

Overparametization: Using more
parameters than necessary for a ML
problem.

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou

Daan Wierstra Martin Riedmiller
DeepMind Technologies

{vlad,koray,david,alex.graves,ioannis,daan,martin.riedmiller} @ deepmind.com

~10,000 parameters in network

Overparameterization

Overparametization: Using more
parameters than necessary for a ML
problem.

Most of the time, networks use many
more parameters than necessary.

In general, it’s impossible to know
the fewest amount of parameters
that could solve a problem.

PLAYING ATARI WITH S1x NEURONS

Giuseppe Cuccu Julian Togelius Philippe Cudré-Mauroux
eXascale Infolab Game Innovation Lab eXascale Infolab
Department of Computer Science Tandon School of Engineering Department of Computer Science
University of Fribourg, Switzerland New York University, NY, USA University of Fribourg, Switzerlar
name.surname@unifr.ch julian@togelius.com name . surname@unifr.ch
ABSTRACT

Deep reinforcement learning, applied to vision-based problems like Atari games, maps pixels directly to ac-
tions; internally, the deep neural network bears the responsibility of both extracting useful information and
making decisions based on it. By separating the image processing from decision-making, one could better
understand the complexity of each task, as well as potentially find smaller policy representations that are eas-
ier for humans to understand and may generalize better. To this end, we propose a new method for learning
policies and compact state representations separately but simultaneously for policy approximation in reinforce-
ment learning. State representations are generated by an encoder based on two novel algorithms: Increasing
Dictionary Vector Quantization makes the encoder capable of growing its dictionary size over time, to address
new observations as they appear in an open-ended online-learning context; Direct Residuals Sparse Coding
encodes observations by disregarding reconstruction error minimization, and aiming instead for highest infor-
mation inclusion. The encoder autonomously selects observations online to train on, in order to maximize code
sparsity. As the dictionary size increases, the encoder produces increasingly larger inputs for the neural net-
work: this is addressed by a variation of the Exponential Natural Evolution Strategies algorithm which adapts
its probability distribution dimensionality along the run. We test our system on a selection of Atari games using
tiny neural networks of only 6 to 18 neurons (depending on the game’s controls). These are still capable of
achieving results comparable—and occasionally superior—to state-of-the-art techniques which use two orders
of magnitude more neurons.

Overparameterization

PLAYING ATARI WITH S1x NEURONS

Giuseppe Cuccu Julian Togelius Philippe Cudré-Mauroux
eXascale Infolab Game Innovation Lab eXascale Infolab
Department of Computer Science Tandon School of Engineering Department of Computer Science
University of Fribourg, Switzerland New York University, NY, USA University of Fribourg, Switzerland
name.surname@unifr.ch julian@togelius.com name.surname@unifr.ch

ABSTRACT

) , Deep reinforcement learning, applied to vision-based problems like Atari games, maps pixels directly to ac-
(This paper doesn’t use SGD or tions; internally, the deep neural network bears the responsibility of both extracting useful information and
backprop, but another optimi zation making decisions based on it. By separating the image processing from decision-making, one could better
understand the complexity of each task, as well as potentially find smaller policy representations that are eas-

m ethod) ier for humans to understand and may generalize better. To this end, we propose a new method for learning
policies and compact state representations separately but simultaneously for policy approximation in reinforce-
ment learning. State representations are generated by an encoder based on two novel algorithms: Increasing
Dictionary Vector Quantization makes the encoder capable of growing its dictionary size over time, to address
new observations as they appear in an open-ended online-learning context; Direct Residuals Sparse Coding
encodes observations by disregarding reconstruction error minimization, and aiming instead for highest infor-
mation inclusion. The encoder autonomously selects observations online to train on, in order to maximize code
sparsity. As the dictionary size increases, the encoder produces increasingly larger inputs for the neural net-
work: this is addressed by a variation of the Exponential Natural Evolution Strategies algorithm which adapts
its probability distribution dimensionality along the run. We test our system on a selection of Atari games using
tiny neural networks of only 6 to 18 neurons (depending on the game’s controls). These are still capable of
achieving results comparable—and occasionally superior—to state-of-the-art techniques which use two orders
of magnitude more neurons.

Overparameterization

Bias-Variance Tradeoff
(Traditional Understanding)

A Farewell to the Bias-Variance Tradeoff?
An Overview of the Theory of Overparameterized Machine Learning

Blag? Yehuda Dar* Vidya Muthukumar’ Richard G. Baraniuk*
Optimal solution
Total error
]
I ;) Variance
!
? Abstract
Underfitting Overfitting The rapid recent progress in machine learning (ML) has raised a number of scientific questions
zone I zone that challenge the longstanding dogma of the field. One of the most important riddles is the good

empirical generalization of overparameterized models. Overparameterized models are excessively
complex with respect to the size of the training dataset, which results in them perfectly fitting
(i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is
traditionally associated with detrimental overfitting, and yet a wide range of interpolating models
— from simple linear models to deep neural networks — have recently been observed to generalize
extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon
has revealed that highly overparameterized models often improve over the best underparameterized
model in test performance.

Understanding learning in this overparameterized regime requires new theory and foundational
Model Complexity empirical studies, even for the simplest case of the linear model. The underpinnings of this under-
standing have been laid in very recent analyses of overparameterized linear regression and related
statistical learning tasks, which resulted in precise analytic characterizations of double descent.
This paper provides a succinct overview of this emerging theory of overparameterized ML (hence-
forth abbreviated as TOPML) that explains these recent findings through a statistical signal pro-
cessing perspective. We emphasize the unique aspects that define the TOPML research area as a
subfield of modern ML theory and outline interesting open questions that remain.

https://serokell.io/blog/bias-variance-tradeoff

Overparameterization

Bias-Variance Tradeoff
(Traditional Understanding)

Bias?
Optimal solution
Total error

) Variance

'
|
I
i

I
Underfitting 1 Overfitting
zone 1 zone

Model Complexity

If you are overfitting, reduce model complexity
(smaller width/fewer layers). If underfitting, add
more model complexity.

https://serokell.io/blog/bias-variance-tradeoff

A Farewell to the Bias-Variance Tradeoff?

An Overview of the Theory of Overparameterized Machine Learning

Yehuda Dar* Vidya Muthukumar’ Richard G. Baraniuk*

Abstract

The rapid recent progress in machine learning (ML) has raised a number of scientific questions
that challenge the longstanding dogma of the field. One of the most important riddles is the good
empirical generalization of overparameterized models. Overparameterized models are excessively
complex with respect to the size of the training dataset, which results in them perfectly fitting
(i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is
traditionally associated with detrimental overfitting, and yet a wide range of interpolating models
— from simple linear models to deep neural networks — have recently been observed to generalize
extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon
has revealed that highly overparameterized models often improve over the best underparameterized
model in test performance.

Understanding learning in this overparameterized regime requires new theory and foundational
empirical studies, even for the simplest case of the linear model. The underpinnings of this under-
standing have been laid in very recent analyses of overparameterized linear regression and related
statistical learning tasks, which resulted in precise analytic characterizations of double descent.
This paper provides a succinct overview of this emerging theory of overparameterized ML (hence-
forth abbreviated as TOPML) that explains these recent findings through a statistical signal pro-
cessing perspective. We emphasize the unique aspects that define the TOPML research area as a
subfield of modern ML theory and outline interesting open questions that remain.

(We will cover other techniques for managing
overfitting next week)

Overparameterization

Bias-Variance Tradeoff
(Traditional Understanding)

A Farewell to the Bias-Variance Tradeoff?
An Overview of the Theory of Overparameterized Machine Learning

Blag? Yehuda Dar* Vidya Muthukumar’ Richard G. Baraniuk*
Optimal solution
Total error
]
| ® Variance
!
i Abstract
Underfitting i Overfitting ‘ The rapid recent progress in machine learning (ML) has raised a number of scientific questions
zone 1 zone that challenge the longstanding dogma of the field. One of the most important riddles is the good

I [empirical generalization of overparameterized models. Overparameterized models are excessively
|) complex with respect to the size of the training dataset, which results in them perfectly fitting
(i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is
traditionally associated with detrimental overfitting, and yet a wide range of interpolating models
— from simple linear models to deep neural networks — have recently been observed to generalize
extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon
has revealed that highly overparameterized models often improve over the best underparameterized
model in test performance.

Understanding learning in this overparameterized regime requires new theory and foundational
Model Complexity empirical studies, even for the simplest case of the linear model. The underpinnings of this under-
standing have been laid in very recent analyses of overparameterized linear regression and related
statistical learning tasks, which resulted in precise analytic characterizations of double descent.

L 0 This paper provides a succinct overview of this emerging theory of overparameterized ML (hence-
If you are ove rflttl ng’ red uce mOd el‘ com pleXIty forth abbreviated as TOPML) that explains these recent findings through a statistical signal pro-
0 ryct cessing perspective. We emphasize the unique aspects that define the TOPML research area as a

(S ma lle rwi dt h/fewer laye rS) ° If un d € rflttl ng’ a d d subfield of modern ML theory and outline interesting open questions that remain.

more model complexity.

https://serokell.io/blog/bias-variance-tradeoff

Optimizers

Optimizers

* SGD, SGD + Momentum, SGD + Adaptive Momentum (Adam),
RMSProp,... the list is ever growing

Optimizers

* SGD, SGD + Momentum, SGD + Adaptive Momentum (Adam),
RMSProp,... the list is ever growing

* How do you choose between them?

Optimizers

* SGD, SGD + Momentum, SGD + Adaptive Momentum (Adam),
RMSProp,... the list is ever growing

* How do you choose between them?

* Just use Adam.
* The only downside is that it might work so well that you end up overfitting.
* Suggested initial learning rate of 3e-4

Batch Size and Learning Rate

Having too small a batch or too high a learning rate can cause
variance in training/validation loss — symptoms often look similar

model accuracy Loss
0.875] — train 1.075 A —— train
test validation
0.850 1.050 7
0.825 1.025 4
> 0.800 4 ' 1.000 -
E I|l
g 0.775 1 0.975 -
2 |
0.750 1 0.950 -
0.725 0.925 4
0.700
0.900 A
0.675
T T T T T T T T T 0.875 _
0 25 50 75 100 125 150 175 200

epoch

General Tips

https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/

General Tips

- Don’t change too much at once.

https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/

General Tips

- Don’t change too much at once.

- Keep track of parameters you’ve tested and track their
performance

https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/

General Tips

- Don’t change too much at once.

- Keep track of parameters you’ve tested and track their
performance

- Don’t just randomly guess parameters, apply critical thinking,
come up with a hypothesis and test your hypothesis.

https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/

General Tips

- Don’t change too much at once.

- Keep track of parameters you’ve tested and track their
performance

- Don’t just randomly guess parameters, apply critical thinking,
come up with a hypothesis and test your hypothesis.

(Use the scientific method)

https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/

General Tips

- Don’t change too much at once.

- Keep track of parameters you’ve tested and track their
performance

- Don’t just randomly guess parameters, apply critical thinking, /\
7/(come up with a hypothesis and test your hypothesis. 7/(
(Use the scientific method)

https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/

General Tips

- Don’t change too much at once.

- Keep track of parameters you’ve tested and track their
performance

- Don’t just randomly guess parameters, apply critical thinking, /\
7/(come up with a hypothesis and test your hypothesis. 7/(
(Use the scientific method)

Andrej Karpathy: A recipe for training neural networks
https://karpathy.github.io/2019/04/25/recipe/

https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/

	Slide 1
	Slide 2: HW 3: Beras
	Slide 3: Beras Companion Guide
	Slide 4: Recap: Neural Networks (MLPs)
	Slide 5
	Slide 6: Recap
	Slide 7: Why should you care about compute graphs?
	Slide 8: Why should you care about compute graphs?
	Slide 9: Why should you care about compute graphs?
	Slide 10: DL Frameworks
	Slide 11: Tensorflow
	Slide 12: Tensorflow
	Slide 13: Tensorflow
	Slide 14: Tensorflow
	Slide 15: Tensorflow
	Slide 16: Pytorch
	Slide 17: Pytorch
	Slide 18: Pytorch
	Slide 19: Pytorch
	Slide 20: Pytorch
	Slide 21: Pytorch
	Slide 22: Pytorch
	Slide 23: Pytorch
	Slide 24: Jax
	Slide 25: Jax
	Slide 26: Jax
	Slide 27: Jax
	Slide 28: Jax
	Slide 29: Jax
	Slide 30: Improving Gradient Descent
	Slide 31: Improving Gradient Descent
	Slide 32: Improving Gradient Descent
	Slide 33: Stochastic Gradient Descent
	Slide 34: Stochastic Gradient Descent
	Slide 35: Stochastic Gradient Descent
	Slide 36
	Slide 37: Further Improvements
	Slide 38: AdaM: SGD + Adaptive Momentum
	Slide 39: Classification
	Slide 40: Classification
	Slide 41: Classification
	Slide 42: Classification
	Slide 43: Classification
	Slide 44: Classification
	Slide 45: Classification
	Slide 46: What is a reasonable loss function to use?
	Slide 47: What is a reasonable loss function to use?
	Slide 48: Kullback–Leibler divergence
	Slide 49: Kullback–Leibler divergence
	Slide 50: Kullback–Leibler divergence
	Slide 51: Kullback–Leibler divergence
	Slide 52: One-Hot Vectors Revisited
	Slide 53: One-Hot Vectors Revisited
	Slide 54: Kullback–Leibler divergence
	Slide 55: Kullback–Leibler divergence
	Slide 56: Kullback–Leibler divergence
	Slide 57: Kullback–Leibler divergence
	Slide 58: Binary Cross Entropy
	Slide 59: Binary Cross Entropy
	Slide 60: Binary Cross Entropy
	Slide 61: Cross Entropy Examples
	Slide 62: Cross Entropy Examples
	Slide 63: Cross Entropy Examples
	Slide 64: Cross Entropy Examples
	Slide 65: Cross Entropy Examples
	Slide 66: Cross Entropy Examples
	Slide 67: Derivative of Cross Entropy
	Slide 68: Derivative of Cross Entropy
	Slide 69: Derivative of Cross Entropy
	Slide 70: Derivative of Cross Entropy
	Slide 71: Derivative of Cross Entropy
	Slide 72: Probabilities
	Slide 73: Softmax Function
	Slide 74: What’s the difference?
	Slide 75: What’s the difference?
	Slide 76: What’s the difference?
	Slide 77: What’s the difference?
	Slide 78: What’s the difference?
	Slide 79: What’s the difference?
	Slide 80: What’s the difference?
	Slide 81: What’s the difference?
	Slide 82: What’s the difference?
	Slide 83: What’s the difference?
	Slide 84: What’s the difference?
	Slide 85: What’s the difference?
	Slide 86: What’s the difference?
	Slide 87: What’s the difference?
	Slide 88: What’s the difference?
	Slide 89: Derivative of Softmax
	Slide 90: Derivative of Softmax
	Slide 91: Derivative of Softmax
	Slide 92: Derivative of Softmax
	Slide 93: Derivative of Softmax
	Slide 94: Derivative of Softmax
	Slide 95: Hyperparameter Tuning
	Slide 96: Hyperparameters
	Slide 97: Hyperparameters
	Slide 98: Hyperparameters
	Slide 99: Hyperparameters
	Slide 100: Hyperparameters
	Slide 101: Hyperparameters
	Slide 102: Network Initialization
	Slide 103: Network Initialization
	Slide 104: Network Initialization
	Slide 105: Network Initialization
	Slide 106: Network Initialization
	Slide 107: Network Initialization
	Slide 108: Network Initialization
	Slide 109: Network Initialization
	Slide 110: Network Initialization
	Slide 111: Hidden Layers
	Slide 112: Hidden Layers
	Slide 113: Hidden Layers
	Slide 114: How to use the Validation Set
	Slide 115: How to use the Validation Set
	Slide 116: How to use the Validation Set
	Slide 117: How to use the Validation Set
	Slide 118: How to use the Validation Set
	Slide 119: How to use the Validation Set
	Slide 120: How to use the Validation Set
	Slide 121: How to use the Validation Set
	Slide 122: Is adding more width or depth better?
	Slide 123: Is adding more width or depth better?
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131: Overparameterization
	Slide 132: Overparameterization
	Slide 133: Overparameterization
	Slide 134: Overparameterization
	Slide 135: Overparameterization
	Slide 136: Overparameterization
	Slide 137: Optimizers
	Slide 138: Optimizers
	Slide 139: Optimizers
	Slide 140: Optimizers
	Slide 141: Batch Size and Learning Rate
	Slide 142: General Tips
	Slide 143: General Tips
	Slide 144: General Tips
	Slide 145: General Tips
	Slide 146: General Tips
	Slide 147: General Tips
	Slide 148: General Tips

