
Deep Learning

Eric Ewing

CSCI 1470

Tuesday, 9/16

Day 5: Classification and Hyperparameters

Yosemite Valley

HW 3: Beras

Will come out today! (conceptual component due in 1 week,
programming in 2 weeks)

Implement neural network with numpy (i.e., weight layers,
activations, loss functions) and training (i.e., gradient tape for
backprop and optimizers)

Unlimited submissions during the first week, limited to 15
submissions in week 2. (Additional submissions will still be graded,
but test results won’t be visible)

Beras Companion Guide

Linked in handout, set of
companion notes that contain
additional explanation of
functions and classes.

Recap: Neural Networks (MLPs)

Each neuron is the weighted sum of inputs, a bias, and an activation function

Gradient Descent

Recap

Train models with
gradient descent

Find gradient using
backpropagation and
compute graphs

Why should you care about compute graphs?
(This is much more of a common issue in pytorch than tensorflow)

Why should you care about compute graphs?

Running loss’ compute
graph will contain the

compute graph of loss!

(This is much more of a common issue in pytorch than tensorflow)

Why should you care about compute graphs?

Running loss’ compute
graph will contain the

compute graph of loss!

The memory required to
store running_loss will only

ever increase!

(This is much more of a common issue in pytorch than tensorflow)

DL Frameworks

• Main current frameworks are Tensorflow, Pytorch, and Jax
• TF and torch are becoming increasingly similar in style and

performance
• Jax is new and different

https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/

Tensorflow

Tensorflow

- Developed and maintained by Google

Tensorflow

- Developed and maintained by Google
- In addition to autodiff features it also provides:

- Many common functions (i.e., Softmax, Sigmoid, Cross Entropy, etc.)
- An easy way to train models (Keras)
- Strong support for hardware acceleration (i.e., if you have a GPU, TF will

figure out how to use it)

Tensorflow

- Developed and maintained by Google
- In addition to autodiff features it also provides:

- Many common functions (i.e., Softmax, Sigmoid, Cross Entropy, etc.)
- An easy way to train models (Keras)
- Strong support for hardware acceleration (i.e., if you have a GPU, TF will

figure out how to use it)

- “Easier to deploy to production” (has been the general consensus
previously, but other frameworks have caught up)

Tensorflow

- Developed and maintained by Google
- In addition to autodiff features it also provides:

- Many common functions (i.e., Softmax, Sigmoid, Cross Entropy, etc.)
- An easy way to train models (Keras)
- Strong support for hardware acceleration (i.e., if you have a GPU, TF will

figure out how to use it)

- “Easier to deploy to production” (has been the general consensus
previously, but other frameworks have caught up)

- TF lite for on device applications (e.g., phones)

Pytorch

Pytorch

• Developed by Facebook AI (now Meta)

Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community

Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community
• “More flexible” and easier to write custom backward passes

Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community
• “More flexible” and easier to write custom backward passes
• No Gradient Tape, each tensor (matrix/vector) is “trainable” or not.

If a tensor is trainable then all operations on it are tracked.

Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community
• “More flexible” and easier to write custom backward passes
• No Gradient Tape, each tensor (matrix/vector) is “trainable” or not.

If a tensor is trainable then all operations on it are tracked.
• Slightly more work to use GPUs or other hardware

Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community
• “More flexible” and easier to write custom backward passes
• No Gradient Tape, each tensor (matrix/vector) is “trainable” or not.

If a tensor is trainable then all operations on it are tracked.
• Slightly more work to use GPUs or other hardware
• Harder to track stats

• (I still use TF’s tensorboard stat tracker when using Pytorch)

Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community
• “More flexible” and easier to write custom backward passes
• No Gradient Tape, each tensor (matrix/vector) is “trainable” or not.

If a tensor is trainable then all operations on it are tracked.
• Slightly more work to use GPUs or other hardware
• Harder to track stats

• (I still use TF’s tensorboard stat tracker when using Pytorch)
• Easier to learn and use than tensorflow

• Better error reporting, training code is harder to write but easier to debug

Jax

Jax

• Also developed by Google…

Jax

• Also developed by Google…
• Very new compared to Pytorch and Tensorflow

Jax

• Also developed by Google…
• Very new compared to Pytorch and Tensorflow
• Much Faster

Jax

• Also developed by Google…
• Very new compared to Pytorch and Tensorflow
• Much Faster
• Takes advantage of Just In Time (JIT) compiling to speed up

execution

Jax

• Also developed by Google…
• Very new compared to Pytorch and Tensorflow
• Much Faster
• Takes advantage of Just In Time (JIT) compiling to speed up

execution
• Functional programming paradigm

Improving Gradient Descent

Improving Gradient Descent

Computing the full gradient for a large dataset takes a very long
time and it often will not fit in memory, slowing it down even further

Improving Gradient Descent

Computing the full gradient for a large dataset takes a very long
time and it often will not fit in memory, slowing it down even further

Solution: Approximate the gradient by sampling a selection of
examples (i.e., a batch). Run a gradient descent step with that batch

Stochastic Gradient Descent

For N epochs:
 sample a batch B from dataset X
 compute predictions and loss function
 compute gradient
 update weights with small step in direction of negative grad.

Stochastic Gradient Descent

For N epochs:
 sample a batch B from dataset X
 compute predictions and loss function
 compute gradient
 update weights with small step in direction of negative grad.

Training is non-deterministic because batches are sampled randomly from dataset

Stochastic Gradient Descent

For N epochs:
 sample a batch B from dataset X
 compute predictions and loss function
 compute gradient
 update weights with small step in direction of negative grad.

Training is non-deterministic because batches are sampled randomly from dataset

Why does this work? The expectation of the gradient is equal to the gradient itself!

Further Improvements

If gradient descent is like a ball rolling
down a hill… What is that ball’s mass?

SGD can be further improved by
adding momentum term

AdaM: SGD + Adaptive Momentum
Generally recommended as the best performing and easiest to use optimizer!

Classification

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Proposed Loss Function: 𝐿 = 1 −
𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Proposed Loss Function: 𝐿 = 1 −
𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛

The Issue: most of the time, the gradient of this loss function is ∇L𝜃 = 0

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Proposed Loss Function: 𝐿 = 1 −
𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛

The Issue: most of the time, the gradient of this loss function is ∇L𝜃 = 0

Gradient is only non-zero when changing a 𝜃 has an impact on output predictions

0 gradient everywhere except x=0
X=0 is not differentiable, but it does have a sub-gradient

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Proposed Loss Function: 𝐿 = 1 −
𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛

The Issue: most of the time, the gradient of this loss function is ∇L𝜃 = 0

Gradient is only non-zero when changing a 𝜃 has an impact on output predictions

0 gradient everywhere except x=0
X=0 is not differentiable, but it does have a sub-gradient

We cannot use classification as a loss
function because it is incompatible with

gradient descent. Understanding Gradients
is key to understanding all decisions

related to neural networks!

What is a reasonable loss function to use?

• Accuracy is a “hard” function
• Hard to take meaningful derivatives of

• Other examples:
• Max vs. Softmax

• Ranking vs Softrank

• Sign function (i.e., perceptron activation) vs. Softsign

• Argmax

What is a reasonable loss function to use?

• Accuracy is a “hard” function
• Hard to take meaningful derivatives of

• Other examples:
• Max vs. Softmax

• Ranking vs Softrank

• Sign function (i.e., perceptron activation) vs. Softsign

• Argmax

My (somewhat) old research

Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

Defined for two probability
distributions, P and Q

Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

Defined for two probability
distributions, P and Q

Think of Q as what we predict and
P as the ground truth Probabilities

Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

Defined for two probability
distributions, P and Q

Think of Q as what we predict and
P as the ground truth Probabilities

When P(x) is high, Q(x) should
also be high… (Log(1) = 0)

One-Hot Vectors Revisited

One-Hot Vectors Revisited

Can be
interpreted as a

probability!

Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

“Ground truth” Probability (i.e.,
label)

Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

“Ground truth” Probability (i.e.,
label)

Predicted probabilities

Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

“Ground truth” Probability (i.e.,
label)

Predicted probabilities

Binary Cross Entropy

KL Divergence

Cross Entropy (CE)

Binary Cross Entropy

KL Divergence

Cross Entropy (CE) ”Categorical Cross Entropy”

Binary Cross Entropy

KL Divergence

Cross Entropy (CE) ”Categorical Cross Entropy”

For Binary problems “Binary
Cross Entropy” (BCE)

Cross Entropy Examples

Random choice between two categories (one sample):
y = [1, 0], ŷ = [0.5, 0.5]

CE(y, ŷ) = −[1, 0] ⋅ log([0.5, 0.5]) = 0.693

Cross Entropy Examples

Random choice between two categories (one sample):
y = [1, 0], ŷ = [0.5, 0.5]

CE(y, ŷ) = −[1, 0] ⋅ log([0.5, 0.5]) = 0.693

Random choice between 10 categories (one sample):
y = [1, 0, …], ŷ = [0.1, 0.1, …]

CE(y, ŷ) = −[1, 0] ⋅ log([0.1, 0.1, …]) = 2.3

Cross Entropy Examples

Random choice between two categories (one sample):
y = [1, 0], ŷ = [0.5, 0.5]

CE(y, ŷ) = −[1, 0] ⋅ log([0.5, 0.5]) = 0.693

Random choice between 10 categories (one sample):
y = [1, 0, …], ŷ = [0.1, 0.1, …]

CE(y, ŷ) = −[1, 0] ⋅ log([0.1, 0.1, …]) = 2.3

Random choice between 100 categories (one sample):
y = [1, 0, …], ŷ = [0.01, 0.01, …]

CE(y, ŷ) = −[1, 0, …] ⋅ log([0.01, 0.01, …]) = 4.6

Cross Entropy Examples

Random choice between two categories (one sample):
y = [1, 0], ŷ = [0.5, 0.5]

CE(y, ŷ) = −[1, 0] ⋅ log([0.5, 0.5]) = 0.693

True class is higher output (one sample):
y = [1, 0], ŷ = [0.75, 0.25]

CE(y, ŷ) =? ? ?

True class is lower output (one sample):
y = [1, 0], ŷ = [0.25, 0.75]

CE(y, ŷ) =? ? ?

Cross Entropy Examples

Random choice between two categories (one sample):
y = [1, 0], ŷ = [0.5, 0.5]

CE(y, ŷ) = −[1, 0] ⋅ log([0.5, 0.5]) = 0.693

True class is higher output (one sample):
y = [1, 0], ŷ = [0.75, 0.25]

CE(y, ŷ) =? ? ?

True class is lower output (one sample):
y = [1, 0], ŷ = [0.25, 0.75]

CE(y, ŷ) =? ? ?

0.28

Cross Entropy Examples

Random choice between two categories (one sample):
y = [1, 0], ŷ = [0.5, 0.5]

CE(y, ŷ) = −[1, 0] ⋅ log([0.5, 0.5]) = 0.693

True class is higher output (one sample):
y = [1, 0], ŷ = [0.75, 0.25]

CE(y, ŷ) =? ? ?

True class is lower output (one sample):
y = [1, 0], ŷ = [0.25, 0.75]

CE(y, ŷ) =? ? ?

0.28

1.3

Derivative of Cross Entropy

Derivative of Cross Entropy

What is this? (vector, scalar,
matrix)

Derivative of Cross Entropy

What is this? (vector, scalar,
matrix)

What is this? (vector, scalar,
matrix)

Derivative of Cross Entropy

What is this? (vector, scalar,
matrix)

What is this? (vector, scalar,
matrix)

What is this? (vector, scalar,
matrix)

Derivative of Cross Entropy

Probability of predicting
correct label for example i

Probabilities

• If we have probabilities, we can use Cross Entropy

• How do we get probabilities?

Option #1: Normalize outputs (i.e.,
divide by their total)

Option #2: Use another function
(i.e., softmax)

Softmax Function

Source: https://www.singlestore.com/blog/a-guide-to-softmax-activation-function/

http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/

What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [1, 2]. For a second image, the
network outputs [10, 20].

What will be the predicted probabilities with normalization?

What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [1, 2]. For a second image, the
network outputs [10, 20].

What will be the predicted probabilities with normalization?

[1/3, 2/3] for both examples

What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [1, 2]. For a second image, the
network outputs [10, 20].

What will be the predicted probabilities with Softmax?

What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [1, 2]. For a second image, the
network outputs [10, 20].

What will be the predicted probabilities with Softmax?

[0.26, 0.73] for [1, 2]
[0.00005, 0.99995] for [10, 20]

What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image,
the network outputs [20, 30].

What will be the predicted probabilities with Normalization?

Add 10 to each output

What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image,
the network outputs [20, 30].

What will be the predicted probabilities with Normalization?

[0.47, 0.53] for [11, 12]
[0.4, 0.6] for [20, 30]

Add 10 to each output

What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image,
the network outputs [20, 30].

What will be the predicted probabilities with Softmax?

Add 10 to each output

What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image,
the network outputs [20, 30].

What will be the predicted probabilities with Softmax?

Add 10 to each output

[0.26, 0.73] for [11, 12]
[0.00005, 0.99995] for [20, 30]

Exactly the same as [1, 2] and [10, 20]

What’s the difference?

What’s the difference?

Normalization is sensitive to additive changes, but not multiplicative
changes

What’s the difference?

Normalization is sensitive to additive changes, but not multiplicative
changes

Softmax is sensitive to multiplicative changes, but not additive

What’s the difference?

• Normalization is sensitive to additive changes, but not multiplicative
changes

• Softmax is sensitive to multiplicative changes, but not additive

Softmax also has other advantages:

What’s the difference?

• Normalization is sensitive to additive changes, but not multiplicative
changes

• Softmax is sensitive to multiplicative changes, but not additive

Softmax also has other advantages:

• - Tends to handle smaller probabilities better (less float underflow)

What’s the difference?

Normalization is sensitive to additive changes, but not multiplicative
changes

Softmax is sensitive to multiplicative changes, but not additive

Softmax also has other advantages:

- Tends to handle smaller probabilities better (less float underflow)
- Remember that log in our loss function? Remember the 𝑒𝑧 in softmax?

Our loss function becomes ~linear for our neuron outputs z

What’s the difference?

Normalization is sensitive to additive changes, but not multiplicative
changes

Softmax is sensitive to multiplicative changes, but not additive

Softmax also has other advantages:

- Tends to handle smaller probabilities better (less float underflow)
- Remember that log in our loss function? Remember the 𝑒𝑧 in softmax?

Our loss function becomes ~linear for our neuron outputs z

- Maybe has issues with overflow… (outputs can become inf or NaN)

Derivative of Softmax

Want to know: 𝑑𝑎

𝑑𝑧

Derivative of Softmax

Want to know: 𝑑𝑎

𝑑𝑧

What is this? (vector, scalar,
matrix)

Derivative of Softmax

Want to know: 𝑑𝑎

𝑑𝑧

𝑑𝑧a and z are both vectors, therefore 𝑑𝑎 is a Jacobian matrix

Derivative of Softmax

Want to know: 𝑑𝑎

𝑑𝑧

𝜕𝑧𝑗
What is 𝜕𝑎𝑖 ?

Derivative of Softmax

Want to know: 𝑑𝑎

𝑑𝑧

𝜕𝑧𝑗
What is 𝜕𝑎𝑖 ?

Quotient rule!

Derivative of Softmax

Want to know:
𝑑𝑎

𝑑𝑧

𝜕𝑧𝑗
What is

𝜕𝑎𝑖 ?

If 𝑖 == 𝑗, then
𝜕𝑎 𝑖

𝜕𝑧𝑖
𝑖= 𝑎 ⋅ 1 − 𝑎𝑖

If 𝑖! = 𝑗, then
𝜕𝑎 𝑖

𝜕𝑧𝑗
= −𝑎 ⋅ 𝑎𝑖 𝑗

Hyperparameter Tuning

Hyperparameters

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

Hidden Layer Output Layer

What do you (the programmer) have control
of when training neural networks?

Hyperparameters

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

Hidden Layer Output Layer

What do you (the programmer) have control
of when training neural networks?

?

Hyperparameters

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

Hidden Layer Output Layer

What do you (the programmer) have control
of when training neural networks?

?

?

Hyperparameters

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

Hidden Layer Output Layer

What do you (the programmer) have control
of when training neural networks?

?

?

?

Hyperparameters

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

Hidden Layer Output Layer

What do you (the programmer) have control
of when training neural networks?

?

?

?

- Network Initialization
- Hidden Layer Size
- Number of hidden layers
- Activation Functions
- Optimizer (SGD, Adam, RMSProp)
- Batch Size
- Learning rate
- Number of Epochs

Hyperparameters

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

The parameters of a Neural
Network are what is trained (e.g.,
weights and biases).

The hyperparameters of a
Neural Network are the
parameters that you have
control of that control that
training.

Network Initialization

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

What if we begin with all
parameters set to 0?

Network Initialization

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

What if we begin with all
parameters set to 0?

All neurons would have the same
value, gradients would be the same.

Network Initialization

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

Variance of a random variable in fixed

range [-x, x] is 𝑥
2

3
 (easy to derive from

definition of variance)

Network Initialization

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

Idea #1: Uniform random weights between -1 and 1
(works fine)

Variance of a random variable in fixed

range [-x, x] is 𝑥
2

3
 (easy to derive from

definition of variance)

Network Initialization

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

Idea #1: Uniform random weights between -1 and 1
(works fine)

But… what if there are many many weights in a layer?
The scale of the output can grow.

Variance of a random variable in fixed

range [-x, x] is 𝑥
2

3
 (easy to derive from

definition of variance)

Network Initialization

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

Idea #1: Uniform random weights between -1 and 1
(works fine)

But… what if there are many many weights in a layer?
The scale of the output can grow.

Idea #2: Xavier (Glorot) initialization:

Variance of a random variable in fixed

range [-x, x] is 𝑥
2

3
 (easy to derive from

definition of variance)

Network Initialization

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

Idea #1: Uniform random weights between -1 and 1
(works fine)

But… what if there are many many weights in a layer?
The scale of the output can grow.

Idea #2: Xavier (Glorot) initialization:
Uniform: Initialize each weight uniformly at random in
the range [-x, x] with x = 6

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡

Variance of a random variable in fixed

range [-x, x] is 𝑥
2

3
 (easy to derive from

definition of variance)

Network Initialization

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

Idea #1: Uniform random weights between -1 and 1
(works fine)

But… what if there are many many weights in a layer?
The scale of the output can grow.

Idea #2: Xavier (Glorot) initialization:
Uniform: Initialize each weight uniformly at random in
the range [-x, x] with x = 6

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡

Normal: Initialize each weight with mean 0 and
standard deviation 𝜎 =

2

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡

Variance of a random variable in fixed

range [-x, x] is 𝑥
2

3
 (easy to derive from

definition of variance)

Network Initialization

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

Idea #1: Uniform random weights between -1 and 1
(works fine)

But… what if there are many many weights in a layer?
The scale of the output can grow.

Idea #2: Xavier (Glorot) initialization:
Uniform: Initialize each weight uniformly at random in
the range [-x, x] with x = 6

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡

Normal: Initialize each weight with mean 0 and
standard deviation 𝜎 =

2

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡
Keeps variance of z and gradients of
weights the same for each layer at

initialization.

Understanding the difficulty of training deep feedforward neural networks. Xavier Glorot, Yoshua Bengio

Hidden Layers

• How deep (# hidden layers) should your network be?
• How wide (# neurons in a layer) should your network be?

Hidden Layers

• How deep (# hidden layers) should your network be?
• How wide (# neurons in a layer) should your network be?

How complex is the problem you are
trying to solve?

Hidden Layers

• How deep (# hidden layers) should your network be?
• How wide (# neurons in a layer) should your network be?

How complex is the problem you are
trying to solve?

Process of (informed) trial and error.
How do you know if one hyper-

parameter setting is better than
another?

How to use the Validation Set

(In theory)

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--Vmlldzo0NjA1ODY0

How to use the Validation Set

(In theory)

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--Vmlldzo0NjA1ODY0

How to use the Validation Set

(In theory)

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--Vmlldzo0NjA1ODY0

Model starts
overfitting

How to use the Validation Set

(In theory)

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--Vmlldzo0NjA1ODY0

Model starts
overfitting

Early Stopping Algorithm
1. Track training loss and validation loss
2. If validation loss starts to increase, terminate

How to use the Validation Set

(In theory)

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--Vmlldzo0NjA1ODY0

Model starts
overfitting

Early Stopping Algorithm
1. Track training loss and validation loss
2. If validation loss starts to increase, terminate

What if your validation loss is much higher
than training loss?

How to use the Validation Set

(In theory)

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--Vmlldzo0NjA1ODY0

Model starts
overfitting

Early Stopping Algorithm
1. Track training loss and validation loss
2. If validation loss starts to increase, terminate

What if your validation loss is much higher
than training loss?

Your model has overfit, try
reducing its size

How to use the Validation Set

(In theory)

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--Vmlldzo0NjA1ODY0

Model starts
overfitting

Early Stopping Algorithm
1. Track training loss and validation loss
2. If validation loss starts to increase, terminate

What if your validation loss is much higher
than training loss?

Your model has overfit, try
reducing its size

What if your validation loss and training loss
are both high?

How to use the Validation Set

(In theory)

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--Vmlldzo0NjA1ODY0

Model starts
overfitting

Early Stopping Algorithm
1. Track training loss and validation loss
2. If validation loss starts to increase, terminate

What if your validation loss is much higher
than training loss?

Your model has overfit, try
reducing its size

What if your validation loss and training loss
are both high?

Your model has underfit,
try increasing its size

Is adding more width or depth better?

Is adding more width or depth better?

With the same number of total parameters, deep networks can learn more complex functions.

Recall that NNs are compositions of functions for which we are learning parameters:

𝑓(𝑔(ℎ 𝑖 𝑗 𝑥

It’s better (in general) to have more functions composed than it is to have more complex functions

• If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how
many weights are there total?

• If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how
many weights are there total? 𝑊1 ∈ ℝ10×10

𝑊2 ∈ ℝ10×10

𝑊3 ∈ ℝ10×10

𝑊4 ∈ ℝ10×4

Total = 340

• If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how
many weights are there total?

• What if we double the width of each hidden layer?

• If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how
many weights are there total?

• What if we double the width of each hidden layer?
𝑊1 ∈ ℝ10×20

𝑊2 ∈ ℝ20×20

𝑊3 ∈ ℝ20×20

𝑊4 ∈ ℝ20×4

Total =1080

• If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how
many weights are there total?

• What if we double the depth? of each hidden layer?

• If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how
many weights are there total?

• What if we double the depth? of each hidden layer? 𝑊1 ∈ ℝ10×10

𝑊2 ∈ ℝ10×10

𝑊3 ∈ ℝ10×10

𝑊4 ∈ ℝ10×10

𝑊5 ∈ ℝ10×10

𝑊6 ∈ ℝ10×10

𝑊7 ∈ ℝ10×4

Total = 640

Overparameterization

Overparametization: Using more
parameters than necessary for a ML
problem.

~10,000 parameters in network

Overparameterization

Overparametization: Using more
parameters than necessary for a ML
problem.

~10,000 parameters in network

Most of the time, networks use many
more parameters than necessary.

In general, it’s impossible to know
the fewest amount of parameters
that could solve a problem.

Overparameterization

~10,000 parameters in network

(This paper doesn’t use SGD or
backprop, but another optimization
method)

Overparameterization

https://serokell.io/blog/bias-variance-tradeoff

Bias-Variance Tradeoff
(Traditional Understanding)

Overparameterization

https://serokell.io/blog/bias-variance-tradeoff

Bias-Variance Tradeoff
(Traditional Understanding)

If you are overfitting, reduce model complexity
(smaller width/fewer layers). If underfitting, add

more model complexity.

Overparameterization

https://serokell.io/blog/bias-variance-tradeoff

Bias-Variance Tradeoff
(Traditional Understanding)

If you are overfitting, reduce model complexity
(smaller width/fewer layers). If underfitting, add

more model complexity.

(We will cover other techniques for managing
overfitting next week)

Optimizers

Optimizers

• SGD, SGD + Momentum, SGD + Adaptive Momentum (Adam),
RMSProp,… the list is ever growing

Optimizers

• SGD, SGD + Momentum, SGD + Adaptive Momentum (Adam),
RMSProp,… the list is ever growing

• How do you choose between them?

Optimizers

• SGD, SGD + Momentum, SGD + Adaptive Momentum (Adam),
RMSProp,… the list is ever growing

• How do you choose between them?

• Just use Adam.
• The only downside is that it might work so well that you end up overfitting.
• Suggested initial learning rate of 3e-4

Batch Size and Learning Rate

Having too small a batch or too high a learning rate can cause
variance in training/validation loss – symptoms often look similar

General Tips

https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/

General Tips

- Don’t change too much at once.

https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/

General Tips

- Don’t change too much at once.
- Keep track of parameters you’ve tested and track their

performance

https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/

General Tips

- Don’t change too much at once.
- Keep track of parameters you’ve tested and track their

performance
- Don’t just randomly guess parameters, apply critical thinking,

come up with a hypothesis and test your hypothesis.

https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/

General Tips

- Don’t change too much at once.
- Keep track of parameters you’ve tested and track their

performance
- Don’t just randomly guess parameters, apply critical thinking,

come up with a hypothesis and test your hypothesis.
(Use the scientific method)

https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/

General Tips

- Don’t change too much at once.
- Keep track of parameters you’ve tested and track their

performance
- Don’t just randomly guess parameters, apply critical thinking,

come up with a hypothesis and test your hypothesis.
(Use the scientific method)

https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/

General Tips

- Don’t change too much at once.
- Keep track of parameters you’ve tested and track their

performance
- Don’t just randomly guess parameters, apply critical thinking,

come up with a hypothesis and test your hypothesis.
(Use the scientific method)
Andrej Karpathy: A recipe for training neural networks
https://karpathy.github.io/2019/04/25/recipe/

https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/

	Slide 1
	Slide 2: HW 3: Beras
	Slide 3: Beras Companion Guide
	Slide 4: Recap: Neural Networks (MLPs)
	Slide 5
	Slide 6: Recap
	Slide 7: Why should you care about compute graphs?
	Slide 8: Why should you care about compute graphs?
	Slide 9: Why should you care about compute graphs?
	Slide 10: DL Frameworks
	Slide 11: Tensorflow
	Slide 12: Tensorflow
	Slide 13: Tensorflow
	Slide 14: Tensorflow
	Slide 15: Tensorflow
	Slide 16: Pytorch
	Slide 17: Pytorch
	Slide 18: Pytorch
	Slide 19: Pytorch
	Slide 20: Pytorch
	Slide 21: Pytorch
	Slide 22: Pytorch
	Slide 23: Pytorch
	Slide 24: Jax
	Slide 25: Jax
	Slide 26: Jax
	Slide 27: Jax
	Slide 28: Jax
	Slide 29: Jax
	Slide 30: Improving Gradient Descent
	Slide 31: Improving Gradient Descent
	Slide 32: Improving Gradient Descent
	Slide 33: Stochastic Gradient Descent
	Slide 34: Stochastic Gradient Descent
	Slide 35: Stochastic Gradient Descent
	Slide 36
	Slide 37: Further Improvements
	Slide 38: AdaM: SGD + Adaptive Momentum
	Slide 39: Classification
	Slide 40: Classification
	Slide 41: Classification
	Slide 42: Classification
	Slide 43: Classification
	Slide 44: Classification
	Slide 45: Classification
	Slide 46: What is a reasonable loss function to use?
	Slide 47: What is a reasonable loss function to use?
	Slide 48: Kullback–Leibler divergence
	Slide 49: Kullback–Leibler divergence
	Slide 50: Kullback–Leibler divergence
	Slide 51: Kullback–Leibler divergence
	Slide 52: One-Hot Vectors Revisited
	Slide 53: One-Hot Vectors Revisited
	Slide 54: Kullback–Leibler divergence
	Slide 55: Kullback–Leibler divergence
	Slide 56: Kullback–Leibler divergence
	Slide 57: Kullback–Leibler divergence
	Slide 58: Binary Cross Entropy
	Slide 59: Binary Cross Entropy
	Slide 60: Binary Cross Entropy
	Slide 61: Cross Entropy Examples
	Slide 62: Cross Entropy Examples
	Slide 63: Cross Entropy Examples
	Slide 64: Cross Entropy Examples
	Slide 65: Cross Entropy Examples
	Slide 66: Cross Entropy Examples
	Slide 67: Derivative of Cross Entropy
	Slide 68: Derivative of Cross Entropy
	Slide 69: Derivative of Cross Entropy
	Slide 70: Derivative of Cross Entropy
	Slide 71: Derivative of Cross Entropy
	Slide 72: Probabilities
	Slide 73: Softmax Function
	Slide 74: What’s the difference?
	Slide 75: What’s the difference?
	Slide 76: What’s the difference?
	Slide 77: What’s the difference?
	Slide 78: What’s the difference?
	Slide 79: What’s the difference?
	Slide 80: What’s the difference?
	Slide 81: What’s the difference?
	Slide 82: What’s the difference?
	Slide 83: What’s the difference?
	Slide 84: What’s the difference?
	Slide 85: What’s the difference?
	Slide 86: What’s the difference?
	Slide 87: What’s the difference?
	Slide 88: What’s the difference?
	Slide 89: Derivative of Softmax
	Slide 90: Derivative of Softmax
	Slide 91: Derivative of Softmax
	Slide 92: Derivative of Softmax
	Slide 93: Derivative of Softmax
	Slide 94: Derivative of Softmax
	Slide 95: Hyperparameter Tuning
	Slide 96: Hyperparameters
	Slide 97: Hyperparameters
	Slide 98: Hyperparameters
	Slide 99: Hyperparameters
	Slide 100: Hyperparameters
	Slide 101: Hyperparameters
	Slide 102: Network Initialization
	Slide 103: Network Initialization
	Slide 104: Network Initialization
	Slide 105: Network Initialization
	Slide 106: Network Initialization
	Slide 107: Network Initialization
	Slide 108: Network Initialization
	Slide 109: Network Initialization
	Slide 110: Network Initialization
	Slide 111: Hidden Layers
	Slide 112: Hidden Layers
	Slide 113: Hidden Layers
	Slide 114: How to use the Validation Set
	Slide 115: How to use the Validation Set
	Slide 116: How to use the Validation Set
	Slide 117: How to use the Validation Set
	Slide 118: How to use the Validation Set
	Slide 119: How to use the Validation Set
	Slide 120: How to use the Validation Set
	Slide 121: How to use the Validation Set
	Slide 122: Is adding more width or depth better?
	Slide 123: Is adding more width or depth better?
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131: Overparameterization
	Slide 132: Overparameterization
	Slide 133: Overparameterization
	Slide 134: Overparameterization
	Slide 135: Overparameterization
	Slide 136: Overparameterization
	Slide 137: Optimizers
	Slide 138: Optimizers
	Slide 139: Optimizers
	Slide 140: Optimizers
	Slide 141: Batch Size and Learning Rate
	Slide 142: General Tips
	Slide 143: General Tips
	Slide 144: General Tips
	Slide 145: General Tips
	Slide 146: General Tips
	Slide 147: General Tips
	Slide 148: General Tips

