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HW 3: Beras

Will come out today! (conceptual component due in 1 week, 
programming in 2 weeks)

Implement neural network with numpy (i.e., weight layers, 
activations, loss functions) and training (i.e., gradient tape for 
backprop and optimizers)

Unlimited submissions during the first week, limited to 15 
submissions in week 2. (Additional submissions will still be graded, 
but test results won’t be visible)



Beras Companion Guide

Linked in handout, set of 
companion notes that contain 
additional explanation of 
functions and classes.



Recap: Neural Networks (MLPs)

Each neuron is the weighted sum of inputs, a bias, and an activation function



Gradient Descent



Recap

Train models with 
gradient descent

Find gradient using 
backpropagation and 
compute graphs
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Why should you care about compute graphs?

Running loss’ compute 
graph will contain the 

compute graph of loss!

The memory required to 
store running_loss will only 

ever increase! 

(This is much more of a common issue in pytorch than tensorflow)



DL Frameworks

• Main current frameworks are Tensorflow, Pytorch, and Jax
• TF and torch are becoming increasingly similar in style and 

performance
• Jax is new and different

https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/
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Tensorflow

- Developed and maintained by Google
- In addition to autodiff features it also provides:

- Many common functions (i.e., Softmax, Sigmoid, Cross Entropy, etc.)
- An easy way to train models (Keras)
- Strong support for hardware acceleration (i.e., if you have a GPU, TF will 

figure out how to use it)

- “Easier to deploy to production” (has been the general consensus 
previously, but other frameworks have caught up)

- TF lite for on device applications (e.g., phones)
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Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community
• “More flexible” and easier to write custom backward passes
• No Gradient Tape, each tensor (matrix/vector) is “trainable” or not. 

If a tensor is trainable then all operations on it are tracked.
• Slightly more work to use GPUs or other hardware
• Harder to track stats

• (I still use TF’s tensorboard stat tracker when using Pytorch)
• Easier to learn and use than tensorflow

• Better error reporting, training code is harder to write but easier to debug
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Jax

• Also developed by Google…
• Very new compared to Pytorch and Tensorflow
• Much Faster
• Takes advantage of Just In Time (JIT) compiling to speed up 

execution
• Functional programming paradigm



Improving Gradient Descent



Improving Gradient Descent

Computing the full gradient for a large dataset takes a very long 
time and it often will not fit in memory, slowing it down even further



Improving Gradient Descent

Computing the full gradient for a large dataset takes a very long 
time and it often will not fit in memory, slowing it down even further

Solution: Approximate the gradient by sampling a selection of 
examples (i.e., a batch). Run a gradient descent step with that batch
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Stochastic Gradient Descent

For N epochs:
 sample a batch B from dataset X
 compute predictions and loss function
 compute gradient
 update weights with small step in direction of negative grad.

Training is non-deterministic because batches are sampled randomly from dataset

Why does this work? The expectation of the gradient is equal to the gradient itself!





Further Improvements

If gradient descent is like a ball rolling 
down a hill… What is that ball’s mass?

SGD can be further improved by 
adding momentum term



AdaM: SGD + Adaptive Momentum
Generally recommended as the best performing and easiest to use optimizer!
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Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Proposed Loss Function: 𝐿 = 1 −
# 𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛

The Issue: most of the time, the gradient of this loss function is ∇L𝜃 = 0

Gradient is only non-zero when changing a 𝜃 has an impact on output predictions

0 gradient everywhere except x=0
X=0 is not differentiable, but it does have a sub-gradient

We cannot use classification as a loss 
function because it is incompatible with 

gradient descent. Understanding Gradients 
is key to understanding all decisions 

related to neural networks!
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• Other examples:
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• Argmax



What is a reasonable loss function to use?

• Accuracy is a “hard” function
• Hard to take meaningful derivatives of

• Other examples:
• Max vs. Softmax

• Ranking vs Softrank

• Sign function (i.e., perceptron activation) vs. Softsign

• Argmax

My (somewhat) old research
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Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

Defined for two probability 
distributions, P and Q

Think of Q as what we predict and 
P as the ground truth Probabilities

When P(x) is high, Q(x) should
also be high… (Log(1) = 0)



One-Hot Vectors Revisited



One-Hot Vectors Revisited

Can be 
interpreted as a 

probability!
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• One type of statistical distance
• Distance between two probability distributions

“Ground truth” Probability (i.e.,
label)

Predicted probabilities
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Binary Cross Entropy

KL Divergence

Cross Entropy (CE) ”Categorical Cross Entropy”

For Binary problems “Binary 
Cross Entropy” (BCE)



Cross Entropy Examples

Random choice between two categories (one sample):
y = [1, 0], ŷ = [0.5, 0.5]
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Random choice between 100 categories (one sample):
y = [1, 0, … ], ŷ = [0.01, 0.01, … ]

CE(y, ŷ) = −[1, 0, … ]  ⋅ log([0.01, 0.01, … ]) = 4.6
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Cross Entropy Examples

Random choice between two categories (one sample):
y = [1, 0], ŷ = [0.5, 0.5]

CE(y, ŷ) = −[1, 0]  ⋅ log([0.5, 0.5]) = 0.693

True class is higher output (one sample):
y = [1, 0], ŷ = [0.75, 0.25]

CE(y, ŷ) =? ? ?

True class is lower output (one sample):
y = [1, 0], ŷ = [0.25, 0.75]

CE(y, ŷ) =? ? ?

0.28

1.3
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What is this? (vector, scalar, 
matrix)



Derivative of Cross Entropy

Probability of predicting 
correct label for example i



Probabilities

• If we have probabilities, we can use Cross Entropy

• How do we get probabilities?

Option #1: Normalize outputs (i.e., 
divide by their total)

Option #2: Use another function 
(i.e., softmax)



Softmax Function

Source: https://www.singlestore.com/blog/a-guide-to-softmax-activation-function/

http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
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What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image, 
the network outputs [20, 30].

What will be the predicted probabilities with Softmax?

Add 10 to each output

[0.26, 0.73] for [11, 12]
[0.00005, 0.99995] for [20, 30]

Exactly the same as [1, 2] and [10, 20]
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What’s the difference?

Normalization is sensitive to additive changes, but not multiplicative 
changes

Softmax is sensitive to multiplicative changes, but not additive 

Softmax also has other advantages:

- Tends to handle smaller probabilities better (less float underflow)
- Remember that log in our loss function? Remember the 𝑒𝑧 in softmax?

Our loss function becomes ~linear for our neuron outputs z

- Maybe has issues with overflow… (outputs can become inf or NaN)
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Derivative of Softmax

Want to know: 𝑑𝑎

𝑑𝑧

𝑑𝑧a and z are both vectors, therefore 𝑑𝑎 is a Jacobian matrix
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Derivative of Softmax

Want to know: 𝑑𝑎

𝑑𝑧

𝜕𝑧𝑗
What is 𝜕𝑎𝑖 ?

Quotient rule!



Derivative of Softmax

Want to know:
𝑑𝑎

𝑑𝑧

𝜕𝑧𝑗
What is

𝜕𝑎𝑖 ?

If 𝑖 == 𝑗, then
𝜕𝑎 𝑖

𝜕𝑧𝑖
𝑖= 𝑎 ⋅ 1 − 𝑎𝑖

If 𝑖! = 𝑗, then
𝜕𝑎 𝑖

𝜕𝑧𝑗
= −𝑎 ⋅ 𝑎𝑖 𝑗
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Hyperparameters

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

Hidden Layer Output Layer

What do you (the programmer) have control 
of when training neural networks?

?

?

?

- Network Initialization
- Hidden Layer Size
- Number of hidden layers
- Activation Functions
- Optimizer (SGD, Adam, RMSProp)
- Batch Size
- Learning rate
- Number of Epochs



Hyperparameters

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

The parameters of a Neural 
Network are what is trained (e.g., 
weights and biases).

The hyperparameters of a 
Neural Network are the 
parameters that you have 
control of that control that 
training.
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Network Initialization

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

What if we begin with all 
parameters set to 0?

All neurons would have the same 
value, gradients would be the same.
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(works fine)
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Network Initialization

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

Idea #1: Uniform random weights between -1 and 1 
(works fine)
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Idea #1: Uniform random weights between -1 and 1 
(works fine)

But… what if there are many many weights in a layer? 
The scale of the output can grow.

Idea #2: Xavier (Glorot) initialization:
Uniform: Initialize each weight uniformly at random in 
the range [-x, x] with x = 6

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡

Normal: Initialize each weight with mean 0 and 
standard deviation 𝜎 =

2

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡
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∑

𝑏

Output

Idea #1: Uniform random weights between -1 and 1 
(works fine)

But… what if there are many many weights in a layer? 
The scale of the output can grow.

Idea #2: Xavier (Glorot) initialization:
Uniform: Initialize each weight uniformly at random in 
the range [-x, x] with x = 6

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡

Normal: Initialize each weight with mean 0 and 
standard deviation 𝜎 =

2

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡
Keeps variance of z and gradients of 
weights the same for each layer at 

initialization.

Understanding the difficulty of training deep feedforward neural networks. Xavier Glorot, Yoshua Bengio
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Hidden Layers

• How deep (# hidden layers) should your network be?
• How wide (# neurons in a layer) should your network be?

How complex is the problem you are 
trying to solve?

Process of (informed) trial and error.
How do you know if one hyper-

parameter setting is better than 
another?
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How to use the Validation Set

(In theory)

https://wandb.ai/mostafaibrahim17/ml-articles/reports/A-Deep-Dive-Into-Learning-Curves-in-Machine-Learning--Vmlldzo0NjA1ODY0

Model starts 
overfitting

Early Stopping Algorithm
1. Track training loss and validation loss
2. If validation loss starts to increase, terminate

What if your validation loss is much higher 
than training loss?

Your model has overfit, try 
reducing its size

What if your validation loss and training loss 
are both high?

Your model has underfit, 
try increasing its size
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With the same number of total parameters, deep networks can learn more complex functions.

Recall that NNs are compositions of functions for which we are learning parameters:

𝑓(𝑔(ℎ 𝑖 𝑗 𝑥

It’s better (in general) to have more functions composed than it is to have more complex functions
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𝑊4 ∈ ℝ10×4

Total = 340
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• If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how 
many weights are there total?

• What if we double the width of each hidden layer?
𝑊1 ∈ ℝ10×20

𝑊2 ∈ ℝ20×20

𝑊3 ∈ ℝ20×20

𝑊4 ∈ ℝ20×4

Total =1080



• If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how 
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• If there are 10 inputs, 3 layers of 10 neurons, and 4 outputs, how 
many weights are there total?

• What if we double the depth? of each hidden layer? 𝑊1 ∈ ℝ10×10

𝑊2 ∈ ℝ10×10

𝑊3 ∈ ℝ10×10

𝑊4 ∈ ℝ10×10

𝑊5 ∈ ℝ10×10

𝑊6 ∈ ℝ10×10

𝑊7 ∈ ℝ10×4

Total = 640
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Overparameterization

Overparametization: Using more 
parameters than necessary for a ML 
problem.

~10,000 parameters in network

Most of the time, networks use many 
more parameters than necessary.

In general, it’s impossible to know 
the fewest amount of parameters 
that could solve a problem.



Overparameterization

~10,000 parameters in network

(This paper doesn’t use SGD or 
backprop, but another optimization 
method)
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Overparameterization

https://serokell.io/blog/bias-variance-tradeoff

Bias-Variance Tradeoff 
(Traditional Understanding)

If you are overfitting, reduce model complexity 
(smaller width/fewer layers). If underfitting, add 

more model complexity.

(We will cover other techniques for managing 
overfitting next week)
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Optimizers

• SGD, SGD + Momentum, SGD + Adaptive Momentum (Adam), 
RMSProp,… the list is ever growing

• How do you choose between them?

• Just use Adam.
• The only downside is that it might work so well that you end up overfitting.
• Suggested initial learning rate of 3e-4



Batch Size and Learning Rate

Having too small a batch or too high a learning rate can cause 
variance in training/validation loss – symptoms often look similar
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General Tips

- Don’t change too much at once.
- Keep track of parameters you’ve tested and track their 

performance
- Don’t just randomly guess parameters, apply critical thinking, 

come up with a hypothesis and test your hypothesis.
(Use the scientific method)
Andrej Karpathy: A recipe for training neural networks 
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