
Deep Learning

Eric Ewing
CSCI 1470

Tuesday, 9/16

Day 4: Backprop

The Grand Cayon



Review: Multi-Layer Perceptrons

Perceptrons are linear classifiers, 
separating classes based on input 
features with a linear separator

Multi-layer perceptrons learn input 
features to perceptrons to 
represent more complex functions
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Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the 

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in 
opposite direction



Vector Calculus

• Partial Derivative: the derivative of a multi-variable function with 
respect to one of its inputs

• Example: 𝑓 𝑥, 𝑤, 𝑏 = 𝑤𝑥 + 𝑏

• The partial derivative with respect to w is 𝜕𝑓

𝜕𝑤

• How to compute: Treat all other variables as constants and 
differentiate with respect to that variable
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Gradients

Gradient: the vector of partial derivatives

Vector “points” in direction of increasing f  values.

∇𝑓 = [
𝜕𝑓

𝜕𝑤
,
𝜕𝑓

𝜕𝑏
, … ]

𝑓 𝑥, 𝑤, 𝑏 = 𝑤𝑥 + 𝑏

∇𝑓𝜃 = [
𝜕𝑓

𝜕𝑤
,
𝜕𝑓

𝜕𝑏
,
𝜕𝑓

𝜕𝑥
]



Gradients



Jacobians

• Gradients are for functions with multiple inputs and one output
• Hidden layers in our neural networks have multiple outputs
• The Jacobian matrix is the matrix of all partial derivatives

𝑓: ℝ𝑛 → ℝ𝑚

Output Variables:
[𝑓1, 𝑓2, … 𝑓𝑚]

Input Variables:
[𝑥1, 𝑥2, … , 𝑥𝑛]



Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the 

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in 
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃
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Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the 

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in 
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient of what?

Why is this negative?
Wait, this isn’t even the best 𝜃
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Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the 

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in 
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Learning Rate 𝛼 ∈ [0,1]

Why do we need a learning rate?

Derivatives/Gradients only hold locally
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Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the 

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in 
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.

Understanding gradient descent is the single most 
important concept in all of Deep Learning. Most decisions 

in DL are made for reasons related to gradients.



Gradients

Gradients are important for gradient descent…
How can we actually find them?
1. Numeric Differentiation
2. Symbolic Differentiation
3. Automatic Differentiation







Symbolic Differentiation

Your computer performs algebra on symbols

Returns exact answers

Hard to implement, inefficient
Only handles static expressions (no loops)



Symbolic Differentiation

Your computer performs algebra on symbols

Returns exact answers

Hard to implement, inefficient
Only handles static expressions (no loops)

While abs(x) >5:
    x = x / 2 



Automatic Differentiation

Build a “compute graph” that tracks all operations during execution 
of a program

Automatically compute desired derivatives



Tensorflow

One of the three main neural network frameworks in Python

Gradient tape: main method of auto-differentiation



Tensorflow

One of the three main neural network frameworks in Python

Gradient tape: main method of auto-differentiation

While gradient tape is active:
1. Record all operations involving tracked tensorflow variables
2. Each operation stores the result of the operation and “parent” tensors

After loss is calculated (i.e., all operations are done), tape.gradient(loss, model.trainable_parameters) will 
return the gradient for all parameters in the model





For each node, gradient tape tracks the operation and input variables
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For each node, gradient tape tracks the operation and input variables

How to compute derivatives of e with respect to each input?

Want de

da
, de

db

1. Run compute graph in “forward direction”
 Compute e by executing each operation
2. Run compute graph in “reverse direction”

 Compute derivatives at each node
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Order of Backward Pass

Where should we start our backward pass? Which order should we 
calculate derivatives in?

Start at output nodes (nodes with no children in forward compute 
graph), then move to parents, then parents’ parents, and so on.



Order of Backward Pass

Where should we start our backward pass? Which order should we 
calculate derivatives in?

Start at output nodes (nodes with no children in forward compute 
graph), then move to parents, then parents’ parents, and so on.

Image source: https://guides.codepath.com/compsci/Topological-Sort 

Fully-correct order: Topological order of reverse graph!

For HW 3, running Breadth-First-Search order is sufficient

https://guides.codepath.com/compsci/Topological-Sort
https://guides.codepath.com/compsci/Topological-Sort
https://guides.codepath.com/compsci/Topological-Sort


Want to find dL

dθ
, where θ is the set of trainable parameters (w, b)







By Expansion:
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Important: We will often need the value of the function to find derivatives through the chain rule
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𝑤, 𝑏: weights and biases
𝑧: Intermediate Value
𝑎: Value after activation function
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Our numbering system isn’t doing us any favors!
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𝑤𝑖,𝑜𝑢𝑡
𝑙  is the weight associated with layer 𝑙, 

input 𝑖, and output 𝑜𝑢𝑡.

𝑊 𝑙 =

𝑤1,1
𝑙

⋯ 𝑤1,out
𝑙

⋮ ⋱ ⋮

𝑤in,1
𝑙

⋯ 𝑤in,out
𝑙

𝑏(𝑙) =
𝑏1

𝑙

…

𝑏𝑜𝑢𝑡
𝑙

𝑧 1 = 𝑊 1 𝑥 + 𝑏 1  or 𝑧 1 = 𝑥𝑊 1 + 𝑏 1 ?

Shapes:
𝑊: in x out
b: out x 1
x: 1 x in

𝑧 1 = 𝑥𝑊 1 + 𝑏 1

𝑎 1 = 𝑅𝑒𝐿𝑈(𝑧 1 )

ReLU performed on each element of 𝑧 1  

xT =

𝑥1

…
𝑥𝑖



Backpropagation

Output, 𝑧 2  = 𝑅𝑒𝐿𝑈 𝑥𝑊 1 + 𝑏 1 𝑊 2 + 𝑏 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output



Backpropagation

Output, 𝑧 2  = 𝑅𝑒𝐿𝑈 𝑥𝑊 1 + 𝑏 1 𝑊 2 + 𝑏 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

For a single example, suppose we 
get an output of 10, when the 
ground truth was 7.



Backpropagation

Output, 𝑧 2  = 𝑅𝑒𝐿𝑈 𝑥𝑊 1 + 𝑏 1 𝑊 2 + 𝑏 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

For a single example, suppose we 
get an output of 10, when the 
ground truth was 7.

What is the mean squared error?



Backpropagation

Output, 𝑧 2  = 𝑅𝑒𝐿𝑈 𝑥𝑊 1 + 𝑏 1 𝑊 2 + 𝑏 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

For a single example, suppose we 
get an output of 10, when the 
ground truth was 7.

What is the mean squared error?

𝐿 =
∑𝑖=1

𝑛 (𝑧 2 − 𝑦 𝑖 )^2

𝑛



Backpropagation

Output, 𝑧 2  = 𝑅𝑒𝐿𝑈 𝑥𝑊 1 + 𝑏 1 𝑊 2 + 𝑏 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

For a single example, suppose we 
get an output of 10, when the 
ground truth was 7.

What is the mean squared error?

𝐿 =
∑𝑖=1

𝑛 (𝑧 2 − 𝑦 𝑖 )^2

𝑛

𝐿 = 𝑧 2 − 𝑦
2



Backpropagation

Output, 𝑧 2  = 𝑅𝑒𝐿𝑈 𝑥𝑊 1 + 𝑏 1 𝑊 2 + 𝑏 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

For a single example, suppose we 
get an output of 10, when the 
ground truth was 7.

What is the mean squared error?

𝐿 =
∑𝑖=1

𝑛 (𝑧 2 − 𝑦 𝑖 )^2

𝑛

𝐿 = 𝑧 2 − 𝑦
2

𝐿 = 10 − 7 2

𝐿 = 9



Backpropagation

Output, 𝑧 2  = 𝑅𝑒𝐿𝑈 𝑥𝑊 1 + 𝑏 1 𝑊 2 + 𝑏 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

For a single example, suppose we 
get an output of 10, when the 
ground truth was 7.

What is the mean squared error?

What is 𝑑𝐿

𝑑𝑏 2 ?

𝐿 =
∑𝑖=1

𝑛 (𝑧 2 − 𝑦 𝑖 )^2

𝑛

𝐿 = 𝑧 2 − 𝑦
2

𝐿 = 10 − 7 2

𝐿 = 9



Backpropagation

Output, 𝑧 2  = 𝑅𝑒𝐿𝑈 𝑥𝑊 1 + 𝑏 1 𝑊 2 + 𝑏 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

For a single example, suppose we 
get an output of 10, when the 
ground truth was 7.

What is the mean squared error?

What is 𝑑𝐿

𝑑𝑏 2 ? 𝑑𝐿

𝑑𝑏 2
=

𝑑𝐿

𝑑𝑧 2
⋅

𝑑𝑧 2

𝑑𝑏 2
= 2(𝑧 2 − 𝑦) ⋅ 1 = 6

𝐿 =
∑𝑖=1

𝑛 (𝑧 2 − 𝑦 𝑖 )^2

𝑛

𝐿 = 𝑧 2 − 𝑦
2

𝐿 = 10 − 7 2

𝐿 = 9



Backpropagation

Output, 𝑧 2  = 𝑅𝑒𝐿𝑈 𝑥𝑊 1 + 𝑏 1 𝑊 2 + 𝑏 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

What is 𝑑𝐿

𝑑𝑤1,1
1 ?

For a single example, suppose we 
get an output of 10, when the 
ground truth was 7.

What is the mean squared error?

What is 𝑑𝐿

𝑑𝑏 2 ? 𝑑𝐿

𝑑𝑏 2
=

𝑑𝐿

𝑑𝑧 2
⋅

𝑑𝑧 2

𝑑𝑏 2
= 2(𝑧 2 − 𝑦) ⋅ 1 = 6

𝐿 =
∑𝑖=1

𝑛 (𝑧 2 − 𝑦 𝑖 )^2

𝑛

𝐿 = 𝑧 2 − 𝑦
2

𝐿 = 10 − 7 2

𝐿 = 9



Backpropagation

Output, 𝑧 2  = 𝑅𝑒𝐿𝑈 𝑥𝑊 1 + 𝑏 1 𝑊 2 + 𝑏 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

What is 𝑑𝐿

𝑑𝑤1,1
1 ?

For a single example, suppose we 
get an output of 10, when the 
ground truth was 7.

What is the mean squared error?

What is 𝑑𝐿

𝑑𝑏 2 ? 𝑑𝐿

𝑑𝑏 2
=

𝑑𝐿

𝑑𝑧 2
⋅

𝑑𝑧 2

𝑑𝑏 2
= 2(𝑧 2 − 𝑦) ⋅ 1 = 6

𝐿 =
∑𝑖=1

𝑛 (𝑧 2 − 𝑦 𝑖 )^2

𝑛

𝐿 = 𝑧 2 − 𝑦
2

𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

𝐿 = 10 − 7 2

𝐿 = 9



𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

Component-wise derivation



𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

Component-wise derivation



𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

Component-wise derivation



𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

𝑤1,1
2

Component-wise derivation



𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

𝑤1,1
2 0 if 𝑧1

1 <0,
1 otherwise

Component-wise derivation



𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

𝑤1,1
2 0 if 𝑧1

1 <0,
1 otherwise

𝑥1

Component-wise derivation



𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

𝑤1,1
2 0 if 𝑧1

1 <0,
1 otherwise

𝑥1

Component-wise derivation

Matrix Form derivation



𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

𝑤1,1
2 0 if 𝑧1

1 <0,
1 otherwise

𝑥1

Component-wise derivation

Matrix Form derivation
𝑑𝐿

𝑑𝑊
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎
1

⋅
𝑑𝑎

1

𝑑𝑧
1

⋅
𝑑𝑧

1

𝑑𝑊
1



𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

𝑤1,1
2 0 if 𝑧1

1 <0,
1 otherwise

𝑥1

Component-wise derivation

Matrix Form derivation
𝑑𝐿

𝑑𝑊
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎
1

⋅
𝑑𝑎

1

𝑑𝑧
1

⋅
𝑑𝑧

1

𝑑𝑊
1

𝐿 = 𝑧 2 − 𝑦
2



𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

𝑤1,1
2 0 if 𝑧1

1 <0,
1 otherwise

𝑥1
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Shape Help

Consider each step to be a function (which they are). What shapes are 
the input and outputs? Ther derivative of each function must have shape 
ℝin×out, where in and out are the input and output dimensions for that 
function.

The Jacobian of a function with respect to an input matrix in ℝn×d must 
have the shape ℝn×d!

Why? Recall that a derivative/gradient/Jacobian tells you if the function 
will increase/decrease with small changes to input. Each element of the 
Jacobian corresponds to a specific input value.



Multiple Examples

• The previous example took in one example to compute MSE
• The full gradient of the loss function is not determined by one 

example, but multiple examples!

What changes?

X ∈ ℝn×d  instead of x ∈ ℝ1×d 

dL

dz(2)
∈ ℝn×1

Many other Jacobians add a batch dimension for the 
n examples.

How many inputs and outputs does the term have?

Derivative shapes for parameters (weights and 
biases) never change. Why is that expected?
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Compute Graph for a Single Layer

z(l) = W(l)a(l−1) + b(l)

z(l)

dL

dz(l)Local grad: dz(l)

da(l−1)

Local grad: dz(l)

dW(l)

W(l)

a(l−1)

b(l)

Local grad: dz(l)

db(l)

dL

db(l)
=

dL

dz(l)

dz(l)

db(l)

dL

dW(l)
=

dL

dz(l)

dz(l)

dW(l)

dL

da(l−1)
=

dL

dz(l)

dz(l)

da(l−1)

For each node:

 Compose cumulative gradient dL

dz(l) with local gradients
 Pass new cumulative gradient to parent nodes, repeat



That was a lot of math, let’s take a break

Weekly quiz is available on Gradescope!
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Why should you care about compute graphs?

Running loss’ compute 
graph will contain the 

compute graph of loss!

The memory required to 
store running_loss will only 

ever increase! 

(This is much more of a common issue in pytorch than tensorflow)



DL Frameworks

• Main current frameworks are Tensorflow, Pytorch, and Jax
• TF and torch are becoming increasingly similar in style and 

performance
• Jax is new and different

https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/
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Tensorflow

- Developed and maintained by Google
- In addition to autodiff features it also provides:

- Many common functions (i.e., Softmax, Sigmoid, Cross Entropy, etc.)
- An easy way to train models (Keras)
- Strong support for hardware acceleration (i.e., if you have a GPU, TF will 

figure out how to use it)

- “Easier to deploy to production” (has been the general consensus 
previously, but other frameworks have caught up)

- TF lite for on device applications (e.g., phones)
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Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community
• “More flexible” and easier to write custom backward passes
• No Gradient Tape, each tensor (matrix/vector) is “trainable” or not. 

If a tensor is trainable then all operations on it are tracked.
• Slightly more work to use GPUs or other hardware
• Harder to track stats

• (I still use TF’s tensorboard stat tracker when using Pytorch)
• Easier to learn and use than tensorflow

• Better error reporting, training code is harder to write but easier to debug
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Jax

• Also developed by Google…
• Very new compared to Pytorch and Tensorflow
• Much Faster
• Takes advantage of Just In Time (JIT) compiling to speed up 

execution
• Functional programming paradigm
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Improving Gradient Descent

Computing the full gradient for a large dataset takes a very long 
time and it often will not fit in memory, slowing it down even further

Solution: Approximate the gradient by sampling a selection of 
examples (i.e., a batch). Run a gradient descent step with that batch
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Stochastic Gradient Descent

For N epochs:
 sample a batch B from dataset X
 compute predictions and loss function
 compute gradient
 update weights with small step in direction of negative grad.

Training is non-deterministic because batches are sampled randomly from dataset

Why does this work? The expectation of the gradient is equal to the gradient itself!





Further Improvements

If gradient descent is like a ball rolling 
down a hill… What is that ball’s mass?

SGD can be further improved by 
adding momentum term



AdaM: SGD + Adaptive Momentum
Generally recommended as the best performing and easiest to use optimizer!
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Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Proposed Loss Function: 𝐿 = 1 −
# 𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛

The Issue: most of the time, the gradient of this loss function is ∇L𝜃 = 0

Gradient is only non-zero when changing a 𝜃 has an impact on output predictions

0 gradient everywhere except x=0
X=0 is not differentiable, but it does have a sub-gradient

We cannot use classification as a loss 
function because it is incompatible with 

gradient descent. Understanding Gradients 
is key to understanding all decisions 

related to neural networks!
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• Accuracy is a “hard” function
• Hard to take meaningful derivatives of

• Other examples:
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• Argmax



What is a reasonable loss function to use?

• Accuracy is a “hard” function
• Hard to take meaningful derivatives of

• Other examples:
• Max vs. Softmax

• Ranking vs Softrank

• Sign function (i.e., perceptron activation) vs. Softsign

• Argmax

My (somewhat) old research
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Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

Defined for two probability 
distributions, P and Q

Think of Q as what we predict and 
P as the ground truth Probabilities

When P(x) is high, Q(x) should
also be high… (Log(1) = 0)



One-Hot Vectors Revisited



One-Hot Vectors Revisited

Can be 
interpreted as a 

probability!
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Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

“Ground truth” Probability (i.e.,
label)

Predicted probabilities

P(x) is 1 if x is correct label, 0 
otherwise
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Binary Cross Entropy

KL Divergence

Cross Entropy (CE) ”Categorical Cross Entropy”

For Binary problems “Binary 
Cross Entropy” (BCE)
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What is this? (vector, scalar, 
matrix)

What is this? (vector, scalar, 
matrix)



Derivative of Cross Entropy

Probability of predicting 
correct label for example i



Probabilities

• If we have probabilities, we can use Cross Entropy

• How do we get probabilities?

Option #1: Normalize outputs (i.e., 
divide by their total)

Option #2: Use another function 
(i.e., softmax)



Softmax Function

Source: https://www.singlestore.com/blog/a-guide-to-softmax-activation-function/

http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
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Consider a neural network with 2 outputs.

For one image, the network outputs [1, 2]. For a second image, the 
network outputs [10, 20].

What will be the predicted probabilities with normalization?
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Consider a neural network with 2 outputs.

For one image, the network outputs [1, 2]. For a second image, the 
network outputs [10, 20].

What will be the predicted probabilities with Softmax?

[0.26, 0.73] for [1, 2]
[0.00005, 0.99995] for [10, 20]
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Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image, 
the network outputs [20, 30].

What will be the predicted probabilities with Normalization?

[0.47, 0.53] for [11, 12]
[0.4, 0.6] for [20, 30]

Add 10 to each output
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What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image, 
the network outputs [20, 30].

What will be the predicted probabilities with Softmax?

Add 10 to each output

[0.26, 0.73] for [11, 12]
[0.00005, 0.99995] for [20, 30]

Exactly the same as [1, 2] and [10, 20]
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Our loss function becomes ~linear for our neuron outputs z



What’s the difference?

Normalization is sensitive to additive changes, but not multiplicative 
changes

Softmax is sensitive to multiplicative changes, but not additive 

Softmax also has other advantages:

- Tends to handle smaller probabilities better (less float underflow)
- Remember that log in our loss function? Remember the 𝑒𝑧 in softmax?

Our loss function becomes ~linear for our neuron outputs z

- Maybe has issues with overflow… (outputs can become inf or NaN)
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