The Grand Cayon

-‘\\
.}
.
8 < .

~

LR

Eric Ewing

Review: Multi-Layer Perceptrons

Perceptrons are linear classifiers,
separating classes based on input
features with a linear separator WL @

) A z
y b
@ ¥ \ (2) 1
‘ 0 1
_ . @ ‘ , Y |— Output
Multi-layer perceptrons learn input ‘)) @

features to perceptrons to @ ©)
represent more complex functions 0)

Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

R : A "g'---..op_posite direction
Repeat 2 until convergence o P

Vector Calculus

e Partial Derivative: the derivative of a with
respect to one of its inputs

* Example: f(x,w,b) =wx + b

. : 1 1 . a
* The partial derivative with respect to w s #

* How to compute: Treat all other variables as constants and
differentiate with respect to that variable

of 0 i, i,
%_%(wx+b) —%(WX)-F%(ID) = X

Gradients

Gradient: the vector of partial derivatives
Vector “points” in direction of increasing f values.

of of
ow' b

Vf =

flx,w,b) =wx+b

_ Of of of
Vie = 15,35 9%

Gradients

The gradient field <2x-4 ,2y+2 > of the function f=x?- 4x + 7+ 2y.
-5

&\\XQQ%

SARNY

A A R RN
RO XX
S, SN R N N
[, S SR SR S
- - - — -
e e e S el
hl/A/A// > W
P Y v
A BN

-2 0

.
P

’ e

-~

. .. N

Jacobians

* Gradients are for functions with multiple inputs and one output
* Hidden layers in our neural networks have multiple outputs
* The Jacobian matrix is the matrix of all partial derivatives

Input Variables:
[Xl, X2, ...,xn]
Oh . 04]
8.’131 8$n

f:R* - R™

Output Variables:) ")
Lf1 f2r - fn] Ofm Ofm
L 6551 amn .

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

JRRE : A "g'---..op_posite direction
Repeat 2 until convergence s “\33;}:{.

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until conve rgence gl “:::‘;}:{.

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

Gradient of what?

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until conve rgence gl “:::‘;}:{.

For N iterations oruntil A8 < e:

e 550N

Gradient of what?

Why is this negative?

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until conve rgence gl “:::‘;}:{.

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

AN

Why is this negative?

Gradient of what?

Wait, this isn’t even the best 6

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until conve rgence gl “:::‘;}:{.

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

2l e, R
I _1 _2

Learning Rate a € [0,1]

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until conve rgence gl “:::‘;}:{.

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

I Why do we need a learning rate? =
Learning Rate a € [0,1]

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until convergence oo “:,3_‘,;}}

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

I Why do we need a learning rate? =
Learning Rate a € [0,1]

Derivatives/Gradients only hold locally

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until convergence oo “:,3_‘,;}}

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until convergence l g8 ‘:’
Understanding gradient descent is the single most X

important concept in all of Deep Learning. Most decisions | L
s

in DL are made for reasons related to gradients.
For N iterations oruntil A8 < €:

§<—9—an9

Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.

Gradients

Gradients are important for gradient descent...
How can we actually find them?

1. Numeric Differentiation

2. Symbolic Differentiation

3. Automatic Differentiation

Computer-based Derivatives

~ Numeric differentiation

A f(x+Ax)—f(x)
dx Ax
* Pick a small step size Ax

* Also called “finite differences”

Computer-based Derivatives

Ax = 0.5

<
I
Ll

~ Numeric differentiation

L A4f fOe+A0)—f(x)
dx Ax
* Pick a small step size Ax

 Also called “Finite differences”
* Easy to implement
« Arbitrarily inaccurate/unstable

Symbolic Differentiation

‘ d/dx (2x + 3x*2 + x (6 - 2))

Your computer performs algebra on symbols

Jfo Extended Keyboard £ Upload
Returns exact answers

Hard to implement, inefficient N
Only handles static expressions (no loops) Derivative:

d |
—|.2x+3x2+x(6—2)}=6(x+1)

dx \ d /

= 2
=P (6x + 3x~)

Symbolic Differentiation

- d/dx (2x + 3x*2 + X (6 - 2))

Your computer performs algebra on symbols

Returns exact answers

Hard to implement, inefficient
Only handles static expressions (no loops)

While abs(x) >5:
X=Xx/2

Jfo Extended Keyboard £ Upload

Derivative:

d |
—(2x+3x* +x(6-2))=6(x+1)

dx \ d /

= 2
=P (6x + 3x~)

Automatic Differentiation

Build a “compute graph” that tracks all operations during execution
of a program

Automatically compute desired derivatives

Tensorflow
TensorFlow

One of the three main neural network frameworks in Python

Gradient tape: main method of auto-differentiation

Tensorflow
TensorFlow

One of the three main neural network frameworks in Python

Gradient tape: main method of auto-differentiation

While gradient tape is active:

1. Record all operations involving tracked tensorflow variables
2. Each operation stores the result of the operation and “parent” tensors

After lossis calculated (i.e., all operations are done), tape.gradient(loss, model.trainable_parameters) will
return the gradient for all parameters in the model

Chain rule

If f and g are both differentiable and F(x) is the composite function defined
by F(x) = flg(x)) then F is differentiable and F’ is given by the product

F'(x) =f"(g(x)) g’(x)
: !

Differentiate Differentiate
outer function inner function

Courtesy: https://www.onlinemathlearning.com/chain-rule.html

Computation Graph

e=(@a+b)-(b+1) e = cxd

Foreach node, gradient tape tracks the operation and input variables / \

de dedc de_dedd_l_dedc_
da_dcda_d db dddb dcdb

c +d

Computation Graph

e=(@a+b)-(b+1) e = cxd

Foreach node, gradient tape tracks the operation and input variables / \
How to compute derivatives of e with respect to each input?

de de
Want da’ db

de dedc de_dedd_l_dedc_
da_dcda_d db dddb dcdb

c +d

Computation Graph

e=(@a+b)-(b+1) e = cxd

Foreach node, gradient tape tracks the operation and input variables / \
How to compute derivatives of e with respect to each input?

de de
1. Run compute graph in “forward direction”
Compute e by executing each operation

2. Run compute graphin “reverse direction”
Compute derivatives at each node de dedc de dedd dedc

B deda- 9 @b ddab Tacdr

c +d

Computation Graph

e=(@a+b)-(b+1) e—-c*d
e—06

Foreach node, gradient tape tracks the operation and input variables / '\\
How to compute derivatives of e with respect to each input?

de de
Wan td_ ' b
/ dc'\\ //'
. . : db

1. Run compute graph in “forward direction” -

Compute e by executing each operation
2. Run compute graphin “reverse direction”

Compute derivatives at each node de dedc de dedd dedc

a9 @b~ adab Tdcdp

=c +d

Order of Backward Pass

Where should we start our backward pass? Which order should we
calculate derivatives in?

Start at output nodes (nodes with no children in forward compute
graph), then move to parents, then parents’ parents, and so on.

Order of Backward Pass

Where should we start our backward pass? Which order should we
calculate derivatives in?

Start at output nodes (nodes with no children in forward compute
graph), then move to parents, then parents’ parents, and so on.

Topologically
sorted graph

Fully-correct order: Topological order of reverse graph! o
B SEB b o
For HW 3, ing Breadth-First-S h orderi fficient 0 " éb
or running Brea irst-Search order is sufficien o o o ° @ @ @
OO
ttps://gui

th.com/com /T logical-Sort

Unsorted graph

Image source: h

https://guides.codepath.com/compsci/Topological-Sort
https://guides.codepath.com/compsci/Topological-Sort
https://guides.codepath.com/compsci/Topological-Sort

input

lj = ij'k X + bj

Il =wx +b

linear layer

L=(y-1)?

loss

Looking at composite function!

Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

By Expansion:

Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

By Expansion: IF(x) = 4x* + 4x2 + 1|

Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

By Expansion: IF(x) = 4x* + 4x2 + 1|

By Chain rule:

Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

dF
— = 16x3 + 8x

By Expansion: IF(x) = 4x* + 4x% + 1 -
X

By Chain rule:

Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

By Expansion: IF(x) = 4x* + 4x° + 1 3—F = 16x3 + 8x
X
By Chain rule:
dF _ dF df dg

dx df dedx

Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

By Expansion: IF(x) = 4x* + 4x° + 1 3—F = 16x3 + 8x
X
By Chain rule:
dF _ dF df dg dF

dx df dedx

Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

By Expansion: IF(x) = 4x* + 4x° + 1 3—F = 16x3 + 8x
X
By Chain rule:
dF _ dF df dg

dF ‘ df—z = 4x?% + 2 ‘
de g(x) = 4x

dx df dedx

Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

By Expansion: IF(x) = 4x* + 4x° + 1 3—F = 16x3 + 8x
X
By Chain rule:
dF dF dfdg dF ‘ df , 12 4 2 ‘ dg A
e - — -— = = — = 4X
T Gl din gy ‘8 =

Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

By Expansion: IF(x) = 4x* + 4x* + 1 3—F = 16x3 + 8x
X
By Chain rule:
dF dF dfdg dF ‘ df _ 12 4 2 ‘ B _ o ¥ iaies
—_—— —_—= — = — = 4X -— = X X
dx _ df dg dx dg 280 = 4x i dx

Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

By Expansion: IF(x) = 4x* + 4x* + 1 3—F = 16x3 + 8x
X
By Chain rule:
dF dF dfdg daF_ ‘ df _ 12 4 2 ‘ B _ o ¥ iaies
—_—— —_—= — = — = 4X -— = X X
dx _ df dg dx dg 280 = 4x i dx

/

I Important: We will often need the value of the function to find derivatives through the chain rule I

Each layer
computes tl.ae
The Chain Rule (for Differentiation) sradients Wi

variables and
passes the result

ﬂ _ar . ag backwards

¢ Given arbitrary function: f(g(x)) =

dx dg dx

dx dg

Backpropagation

(or backward pass)

i 1 8(x) | f(g()

Backpropagation

Simple Neural Network with 1 hidden layer,

Notation:
w, b: weights and biases Assume activation function in hidden layer is
Z: Intermediate Value ReLU: (max(0, x))

a: Value after activation function

Y — Output

bz 10

Layer 1 Layer 2

Backpropagation

Simple Neural Network with 1 hidden layer,

Notation:
w, b: weights and biases Assume activation function in hidden layer is
Z: Intermediate Value ReLU: (max(0, x))

a: Value after activation function

Layer 1:

Z1 = W1X1 + WyXy + W3X3 + WyXy + by
a, = relu(z,)

Zy = Ws5X1 + WeXy + WoXx3 + WgXy + by
a, = relu(z,)

Y — Output

bz 10

Layer 1 Layer 2

Backpropagation

Notation:

w, b: weights and biases

Z: Intermediate Value

a: Value after activation function

Layer 1:

Z1 = W1X1 + WyXy + W3X3 + WyXy + by
a, = relu(z,)

Zy = Ws5X1 + WeXy + WoXx3 + WgXy + by
a, = relu(z,)

Z3 = WqQ4q + W10a> + b3

No activation function on final output

(assume we are performing a
regression task that can have any

output value)

Simple Neural Network with 1 hidden layer,
Assume activation function in hidden layeris

ReLU: (max(0, x))

Layer 1

10

Y. — Output

Layer 2

Backpropagation

Simple Neural Network with 1 hidden layer,

Notation:
w, b: weights and biases Assume activation function in hidden layer is
Z: Intermediate Value ReLU: (max(0, x))

a: Value after activation function

Layer 1:

Z1 = W1X1 + WyXy + W3X3 + WyXy + by
a, = relu(z,)

Zy = Ws5X1 + WeXy + WoXx3 + WgXy + by
a, = relu(z,)

Y. — Output

Z3 = Woay + Wioaz + by Our numbering system isn’t doing us any favors!
No activation function on final output |W8 /

(assume we are performing a Layer 1 Layer 2

regression task that can have any
output value)

Backpropagation

Relabel weights based on layer number,
input number, and output number.

(1) b(1)
Wi(’f))ut is the weight associated with layer [, @)
input i, and output out. = y \ b1(2)
2
@‘) w7
@ ‘ ‘ Y. — Output
‘ (1) (1) Wz(zl)
EX\o
)
by €)
b =1 ..
) (D
bout 2

X1
XT =1 ...
Xi

Backpropagation

Relabel weights based on layer number,
input number, and output number.

)
Wi,out

input i, and output out.

))
W11 o Wy out
w® =
(z) (z)
1n1 1n out |
p®
b(l) —
(l)
bout
x! =

is the weight associated with layer [,

(1)
(1)
(1)

(1)
(1)
(1)

(1)

by>
W11
2
(2)
Wo1

— Output

Backpropagation

Relabel weights based on layer number,
input number, and output number.

)
Wi,out

input i, and output out.

Q) Q)
W11 o Wy out
w® =
(z) (z)
1n1 1n out |
p{
b(l) —
(l)
bout
x! =

is the weight associated with layer [,

;@

=WDx + bW or zD = xWw @ 4 pD?

€Y,
(1)
(1)

(1)
(1)
(1)

(1)

by>
W11
2
(2)
Wo1

— Output

Backpropagation

Relabel weights based on layer number,
input number, and output number.

)
Wi,out

input i, and output out.

Q) Q)
W11 o Wy out
w® =
(z) (z)
1n1 1n out |
p{
b(l) —
(l)
bout
x! =

is the weight associated with layer [,

;@

=WDx + bW or zD = xWw @ 4 pD?

Shapes:
W:in x out
b: outx 1
x:1Xxin

1

€Y) b(1)

(D =

D b

€ AN) 1

@ W11

/ Y — Output

T bE

(D

€ 2

(D

Backpropagation

Relabel weights based on layer number,
input number, and output number.

)
Wi,out

input i, and output out.

))
W11 o Wy out
w® =
(z) (z)
1n1 1n out |
p®
b(l) —
(l)
bout
x! =

is the weight associated with layer [,

z®D = WwOx 4+ pD or z = xw @ 4 pD?

L, — @ 4 p@
= ReLU(zV)

e

(1)
(1)
(1)

(D
(D
(D
g

(D

Z\(Z)

Shapes:
W:inxout
b:outx 1
X:1xin

by>

W11
7
2

Y — Output

Backpropagation

Relabel weights based on layer number,
input number, and output number.

)
Wi,out

input i, and output out.

))
W11 o Wy out
w® =
(z) (z)
1n1 1n out |
p®
b(l) —
(l)
bout
x! =

is the weight associated with layer [,

;@

=WDx + bW or zD = xWw @ 4 pD?

RelLU performed on each element of z(D

(1)
@)
@
()

D = @ 4 p®

e

(1)
(1)
(D
0
(D
(D
(D
g

(D

2

= ReLU(zV)

Shapes:
W:inxout
b:outx 1
X:1xin

by>

\ (2)

Y — Output

Backpropagation

Output, z(2) = ReLU(xW(l) + b(l))W(Z) + p2

1
(1) b(l)

G X D L

@) 715 \Wm: 1%

‘) am

@ ‘ : Y. — Output
‘ (D (1D W2(21)

O\\re

€)
©

Backpropagation

Output, z(2) = ReLU(xW(l) + b(l))W(Z) + p2

For a single example, suppose we D ®
get an output of 10, when the b
ground truth was 7. @ (1)

e

oV e \ ;
@ ‘ : Y. — Output
O\

€)
©

Backpropagation

Output, z(2) = ReLU(xW(l) + b(l))W(Z) + p2

For a single example, suppose we D
get an output of 10, when the

ground truth was 7. @ ¥ p2

2
@ @ \W(Z) 1
(1) 1.1
What is the mean squared error? @“ 4 Y. [—— Output
SN2y
O\\#e

©)
€

(D

Backpropagation

Output, z(2) = ReLU(xW(l) + b(l))W(Z) + p2

For a single example, suppose we (1)

(D
get an output of 10, when the = b
ground truth was 7. @ (1) 5 b(z)
1
O 7
(D
What is the mean squared error? @“ :) Output
Z’l}_l(z(Z) _ y(i))/\z &Y (D W2(21)
L==7""", @\
@/ 2
(1)

Backpropagation

Output, z(2) = ReLU(xW(l) + b(l))W(Z) + p2

For a single example, suppose we (1)

(1)
get an output of 10, when the b
ground truth was 7. @ (1) 5 b(z)
]
O 7
(1)
What is the mean squared error? @“ :) Output
Z’lﬂzl(z(Z) _ y(i))/\z (1) (1) W2(21)
L= " @\
L=(z® —y)* @]/ 2
(1)

Backpropagation

Output, z(2) = ReLU(xW(l) + b(l))W(Z) + p2

For a single example, suppose we (1)

(1)
get an output of 10, when the = b
ground truth was 7. @ 5 b(z)
1
O i
(D
What is the mean squared error? @“ 4 - D Output
Z’l}_l(z(Z) _ y(i))/\z (1) (D Wo7
L== n @ (D
L=(z® —y)* @]/ 2
L=(10-7)? D
L=9 /

Backpropagation

Output, z(2) = ReLU(xW(l) + b(l))W(Z) + p2

For a single example, suppose we (1)

(1)
get an output of 10, when the = b
ground truth was 7. @ 5 b(z)
1
O i
(D
What is the mean squared error? @“ 4 - D Output
Z’l}_l(z(Z) _ y(i))/\z (1) (D Wo7
L== n @ (D
L=(z® —y)* @]/ 2
L=(10-7)? D
L=9 /
What is —2=?

dp@

Backpropagation

Output, z(2) = ReLU(xW(l) + b(l))W(Z) + p2

For a single example, suppose we (1)

(1)
get an output of 10, when the b
ground truth was 7. @ (1) 5 b(z)
O N
(1)
What is the mean squared error? @“ :) Output
Z’lﬂzl(z(Z) _ y(i))/\z (1) (1) W2(21)
L= " @\
L=(z® —y)* @]/ 2
L =(10-7)? o0
L=9 :
What is 27 dL__ _dL_dz®?

db®@ =20z% -y)-1=6

db®@ ~ 4z@ gp@

Backpropagation

Output, z(2) = ReLU(xW(l) + b(l))W(Z) + p2

For a single example, suppose we (1)

(1)
get an output of 10, when the = b
1
ground truth was 7. @ 5 b1(2)
O i
(D
What is the mean squared error? @“ 4 Y. [—— Output
Z’lﬂzl(z(Z) _ y(i))/\z &Y (D W2(21)
L= n @ (D
L=(z® —y)* @]/ 2
L=(10-7)? D
L=9 /
i AL d. dL dz®
What is ? _ . _ 2 N1 .
ab'? db@ dz2) gp@ 2(z y):1=6 What is dfl)?

dwl'1

Backpropagation

Output, z(2) = ReLU(xW(l) + b(l))W(Z) + p2

For a single example, suppose we D b(l)
get an output of 10, when the
ground truth was 7. @ (1) 5 b(z)
@ €Y \W(Z) 1
0 1.1
What is the mean squared error? @“ :) Output
Z’lﬂzl(z(Z) _ y(i))/\z (D (1) W2(21)
L= " @\
2
L=(z?%—y) €D) 2
L = (10 - 7)? = dL. dL dz@ dal? dz?
L=9 : D~ 3@ ;O O @
. o e dWL1 dz da;” dz; dWL1
What is —=? _ L 5, —
dp® D - 1,0 @ - 2ET —y)1=6 What is —?

dwl'1

Component-wise derivation

L=(z® - y)z

z3@ = agl)wl(? + agl)wl(?z) +b®@

atV = ReLU(zY)

1 _
Zl = W1,1x1 + Wl’zxz + W1’3X3 + W1,4X4 + b

Component-wise derivation

dL dL dz® da{P dz{V
dwl(Jll) dz(? dagl) dzgl) dwl(’ll)

L=(z® - y)z

z3@ = agl)wl(? + agl)wl%) +b®@

atV = ReLU(zY)

1 _
Zl = W1,1x1 + Wl’zxz + W1’3.X'3 + W1,4X4 + b

Component-wise derivation

dL dL dz® da{P dz{V
dwl(Jll) dz(? dagl) dzgl) dwl(’ll)

L=(z? - y)z /
L@~ 0,@ O @

(2)
a, "w;{ +a,’w;5 +b
' ' 2(z® —y)

atV = ReLU(zY)

1 _
Zl = W1,1x1 + Wl’zxz + W1’3.X'3 + W1,4X4 + b

Component-wise derivation

dL dL dz® da{P dz{V
dw1(,11> dz(? dagl) dzgl) dwl(’ll)

L=(z? - y)2 / ‘
22 = g @ 4 g0,

+ay w5 +b®@ ,
2(z¥ —y) wis

a{M = ReLU(zf”)

1 _
Zl = W1,1x1 + Wl’zxz + W1’3.X'3 + W1,4X4 + b

Component-wise derivation

dL dL dz® da{P dz{V
dw1(,11> dz(? dagl) dzgl) dwl(’ll)

L=(z? - y)2 / ‘ ‘
22 = g @ 4 g0,

+ay w5 +b®@ 1
2(2(2) — y) W1 1 0 |fZ <0
(1) ReLU(zgl)) 1 otherW|se

1 _
Zl = W1,1x1 + Wl’zxz + W1’3.X'3 + W1,4X4 + b

Component-wise derivation

dL dL dz® da{P dz{V
dw1(,11> dz(? dagl) dzgl) dwl(’ll)

L=(2? - y)2 / ‘ ‘ \
22 = g @ 4 g0,

+ay w5 +b®@ 1
2(2(2) — y) W1 1 0 |fZ <0 X1
(1) ReLU(zgl)) 1 otherW|se

1 _
Zl = W1,1x1 + Wl’zxz + W1’3.X'3 + W1,4X4 + b

Component-wise derivation

dL dL dz® da{P dz{V
dw1(,11> dz(? dagl) dzgl) dwl(’ll)

L=(2? - y)2 / ‘ ‘ \
22 = g @ 4 g0,

2(2(2) — y) W1 1 0 |fZ <0 X1
(1) ReLU(zgl)) 1 otherW|se
Zil) = W1,1x1 + Wl’zxz + W1’3X3 + W1,4X4 + b

Matrix Form derivation

Component-wise derivation

L=(z® - y)z
z(?) = agl)wl(? + agl)wl(?z) + b@

atV = ReLU(zY)

dL dL

dz® da{V dzP

dW1(,11> dz®

/

2(z® —y)

1 _
Zl = W1,1x1 + Wl’zxz + W1’3.X'3 + W1,4X4 + b

Matrix Form derivation

dL dL

dagl) dzgl) dwl(’ll)

R

Wfl 0if Z£1)<0, X1
1 otherwise

dz® daP 4z

qw @ dz®@

da dz aw™®

Component-wise derivation

L=(z® - y)z
z(?) = agl)wl(? + agl)wl(?z) + b@

atV = ReLU(zY)

dL dL

dz® da{V dzP

dW1(,11> dz®

/

2(z® —y)

1 _
Zl = W1,1x1 + Wl’zxz + W1’3.X'3 + W1,4X4 + b

Matrix Form derivation

L=(z® - y)z

dL dL

dagl) dzgl) dwl(’ll)

R

Wfl 0if Z£1)<0, X1
1 otherwise

dz® daP 4z

qw @ dz®@

da dz aw™®

Component-wise derivation

L=(z® - y)z
z(?) = agl)wl(? + agl)wl(?z) + b@

atV = ReLU(zY)

dL dL

dz® da{V dzP

dW1(,11> dz®

/

2(z® —y)

1 _
Zl = W1,1x1 + Wl’zxz + W1’3.X'3 + W1,4X4 + b

Matrix Form derivation

L=(z® - y)z
,2 — O ®@ L p@

dL dL

dagl) dzgl) dwl(’ll)

R

Wfl 0if Z£1)<0, X1
1 otherwise

dz® daP 4z

qw @ dz®@

da dz aw™®

Component-wise derivation

L=(z® - y)z
z(?) = agl)wl(? + agl)wl%) + b@

atV = ReLU(zY)

dL dL

dz® da{V dzP

dW1(,11> dz®

/

2(z® —y)

1 _
Zl = W1,1x1 + Wl’zxz + W1’3.X'3 + W1,4X4 + b

Matrix Form derivation

L=(z® — y)z
;@ = QO @ 4 p@

aP = ReLU(Z(l))

dL dL

dagl) dzgl) dwl(’ll)

R

Wfl 0if Z£1)<0, X1
1 otherwise

dz® daP 4z

qw @ dz®@

da dz aw™®

Component-wise derivation

L=(z® - y)z

£ = Py + o wf

atV = ReLU(zY)

dL dL

dz® da{V dzP

dW1(,11> dz®

/

2(z® —y)

1 _
Zl = W1,1x1 + Wl’zxz + W1’3.X'3 + W1,4X4 + b

Matrix Form derivation

L=(z® — y)z

72 = W@ 4 p@
aP = ReLU(Z(l))

2z = xw® 4+ p

dL dL

dagl) dzgl) dwl(’ll)

R

Wfl 0if Z£1)<0, X1
1 otherwise

dz® daP 4z

qw @ dz®@

2(2? —y)

da dz aw™®

Component-wise derivation

dL dL

dz® da{V dzP

dW1(,11> dz®

L=(z? - y)2 /
(1), (2)

_ (1) (2)
z® =a;’w;7 + a5 w3 +b@P >
2(z'% - y)

atV = ReLU(zY)

1 _
Zl = W1,1x1 + Wl’zxz + W1’3.X'3 + W1,4X4 + b

Matrix Form derivation

dagl) dzgl) dwl(’ll)

R

wi, 0if z{V<0,
1 otherwise

dz® daP 4z

dL dL
L= (2@ — y)z qw @ dz®@
;@ = O @ 4L p@ /
2(2? —y)

aP = ReLU(Z(l))

2z = xw® 4+ p

da dz aw™®

W(Z)T

X1

Component-wise derivation

dL dL

dz® da{V dzP

dW1(,11> dz®

L=(z? - y)2 /
(1), (2)

_ (1) (2)
z® =a;’w;7 + a5 w3 +b@P >
2(z'% - y)

atV = ReLU(zY)

1 _
Zl = W1,1x1 + Wl’zxz + W1’3.X'3 + W1,4X4 + b

Matrix Form derivation

dagl) dzgl) dwl(’ll)

R

wi, 0if z{V<0,
1 otherwise

dz® daP 4z

dL dL
L= (2@ — y)z qw @ dz®@
;@ = O @ 4L p@ /
2(2? —y)

aP = ReLU(Z(l))

2z = xw® 4+ p

da dz aw™®

n

w@T Oif Z§1)<0,
1 otherwise

X1

Component-wise derivation

dL dL dz® da{P dz{V
dw1(,11> dz(? dagl) dzgl) dwl(’ll)

L=(2? - y)2 / ‘ ‘ \
. (@) (1), (2)

(2) — (2)

%% = a7 we Y +aw,S +Db
1 L1 2 1.2 2(2(2) — y) W%,l 0 |f Z£1)<0, X1
agl) = ReLU(zil)) 1 otherwise

1 _
Zl = W1,1x1 + Wl’zxz + W1’3.X'3 + W1,4X4 + b

Matrix Form derivation

d. dL dz® da™ dz
L=(z®-y)’ aw® dz® g™ g, qw®

;@ = O @ 4 p@ / \
2(2? —y)

aP = ReLU(Z(l))

o (1)
(1) _ w@t 0ifz;7<0,
z 7 =xW® +b 1 otherwise

Shape Help

Consider each step to be a function (which they are). What shapes are
the input and outputs? Ther derivative of each function must have shape
RIr*0Ut \where in and out are the input and output dimensions for that

function.

The Jacobian of a function with respect to an input matrix in R™*9 must
have the shape R™*dI

Why? Recall that a derivative/gradient/Jacobian tells you if the function
will increase/decrease with small changes to input. Each element of the
Jacobian corresponds to a specific input value.

Multiple Examples

* The previous example took in one example to compute MSE

* The full gradient of the loss function is not determined by one
example, but multiple examples!

I?
What changes” dL b
dz()
X €]RnXd instead of X € Rle Many other Jacobians add a batch dimension for the
n examples.

How many inputs and outputs does the term have?

Derivative shapes for parameters (weights and
biases) never change. Why is that expected?

Compute Graph for a Single Layer

P

a(l_l)

dz(l)
da(l—l)

Local grad:

;O = Wwh40-D 4 pO

dz(l)
dw® dz®

Local grad: 0

Local grad: 7z

\

b®

Compute Graph for a Single Layer

P

q(0-D 4z dL
Local grad:da(l_l) dz®
7O = Wwhad-1) 4 pd
Local grad: 22 1
ocal grad: ——; - 7D
Localgrad:m

\

b®

Compute Graph for a Single Layer

dL dL dz®

dal-D dz®

\da(l_l) i dz® dal-1
(1-1) 0 dL
. Local grad: dz

;O = Wwh40-D 4 pO

dz(l)

dw® dz®

Local grad: 0

dL dL dz® Local grad:

AWw® ~ 4zO qwd

;O

b®

dL dL dz® |
db® — dz® dpD®

Compute Graph for a Single Layer

d. dL dz®
dal=-b dz® dal-D

(1-1) M dL
a dz
Local grad:—— dz0
7O = Wwhad-1) 4 pd)
dz® >
dL B dL dz® Local grad: dvzv(l) - zD
dWO 4zO gwd Local grad: 0
bD
dL dL dz® |
db® dz® dp®
Foreach node:
L

Compose cumulative gradient

4, With local gradients

Pass new cumulative gradient to parent nodes, repeat

That was a lot of math, let’s take a break

Weekly quiz is available on Gradescope!

Why should you care about compute graphs?

(This is much more of acommon issue in pytorch than tensorflow)

def train_with_memory_leak():
running_loss = 0.0
for epoch in range(100):
for i, (inputs, targets) in enumerate(loader):

optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()

running_loss += loss

if 1 % 10 == 9:

print(f'Loss: {running_loss / 10}"')

running_loss = 0.0

Why should you care about compute graphs?

(This is much more of acommon issue in pytorch than tensorflow)

def train_with_memory_leak():

running_loss = 0.0

for epoch in range(100):
for i, (inputs, targets) in enumerate(loader):

optimizer.zero_grad()
outputs = model(inputs)

loss = criterion(outputs, targets)

Running loss’ compute loss.backward()

graph will contain the
compute graph of loss!

optimizer.step()

running_loss += loss

1iF 1% 189 == 9
print(f'Loss: {running_loss / 10}"')

running_loss = 0.0

Why should you care about compute graphs?

(This is much more of acommon issue in pytorch than tensorflow)

def train_with_memory_leak():
running_loss = 0.0
for epoch in range(100):
for i, (inputs, targets) in enumerate(loader):
optimizer.zero_grad()
outputs = model(inputs)

loss = criterion(outputs, targets)

Running loss’ compute 105§ : ?aCkwa rd()
graph will contain the optimizer.step()
compute graph of loss!

running_loss += loss

The memory required to if 1 % 10 == 9:
store running_loss will only print(f'Loss: {running_loss / 10}"')
ever increase! running_loss = 0.0

DL Frameworks © pyTorch Tenl,‘mow

* Main current frameworks are Tensorflow, Pytorch, and Jax

* TF and torch are becoming increasingly similar in style and
performance

e Jax is new and different

Percentage of Repositories by Framework B other [PyTorch [TensorFlow Number of Job Postings by Framework
100% 20000

75%
50%

10000

Tensor Flow [PyTorch

FPercentage
Mumber of Postings

25%

2000
0%
Jan 2018 Jan 2019 Jan 2020 Jan 2021
0

Linkedin ZipRecruiter Indeed

Repository creation date
https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/

Tensorflow

Tensorflow

- Developed and maintained by Google

Tensorflow

- Developed and maintained by Google

- In addition to autodiff features it also provides:
- Many common functions (i.e., Softmax, Sigmoid, Cross Entropy, etc.)
- An easy way to train models (Keras)

- Strong support for hardware acceleration (i.e., if you have a GPU, TF will
figure out how to use it)

Tensorflow

- Developed and maintained by Google

- In addition to autodiff features it also provides:
- Many common functions (i.e., Softmax, Sigmoid, Cross Entropy, etc.)
- An easy way to train models (Keras)

- Strong support for hardware acceleration (i.e., if you have a GPU, TF will
figure out how to use it)

- “Easier to deploy to production” (has been the general consensus
previously, but other frameworks have caught up)

Tensorflow

- Developed and maintained by Google

- In addition to autodiff features it also provides:
- Many common functions (i.e., Softmax, Sigmoid, Cross Entropy, etc.)
- An easy way to train models (Keras)

- Strong support for hardware acceleration (i.e., if you have a GPU, TF will
figure out how to use it)

- “Easier to deploy to production” (has been the general consensus
previously, but other frameworks have caught up)

- TF lite for on device applications (e.g., phones)

Pytorch

Pytorch

* Developed by Facebook Al (how Meta)

Pytorch

* Developed by Facebook Al (how Meta)
* More common in the research and academic community

Pytorch

* Developed by Facebook Al (how Meta)
* More common in the research and academic community
* “More flexible” and easier to write custom backward passes

Pytorch

* Developed by Facebook Al (how Meta)
* More common in the research and academic community
* “More flexible” and easier to write custom backward passes

* No Gradient Tape, each tensor (matrix/vector) is “trainable” or not.
If a tensor is trainable then all operations on it are tracked.

Pytorch

* Developed by Facebook Al (how Meta)
* More common in the research and academic community
* “More flexible” and easier to write custom backward passes

* No Gradient Tape, each tensor (matrix/vector) is “trainable” or not.
If a tensor is trainable then all operations on it are tracked.

* Slightly more work to use GPUs or other hardware

Pytorch

* Developed by Facebook Al (how Meta)
* More common in the research and academic community
* “More flexible” and easier to write custom backward passes

* No Gradient Tape, each tensor (matrix/vector) is “trainable” or not.
If a tensor is trainable then all operations on it are tracked.

* Slightly more work to use GPUs or other hardware

* Harder to track stats
* (I stilluse TF’s tensorboard stat tracker when using Pytorch)

Pytorch

* Developed by Facebook Al (how Meta)
* More common in the research and academic community
* “More flexible” and easier to write custom backward passes

* No Gradient Tape, each tensor (matrix/vector) is “trainable” or not.
If a tensor is trainable then all operations on it are tracked.

* Slightly more work to use GPUs or other hardware

* Harder to track stats
* (I stilluse TF’s tensorboard stat tracker when using Pytorch)

* Easier to learn and use than tensorflow
* Better error reporting, training code is harder to write but easier to debug

Jax

Jax

* Also developed by Google...

Jax

* Also developed by Google...
* Very new compared to Pytorch and Tensorflow

Jax

* Also developed by Google...

* Very new compared to Pytorch and Tensorflow
* Much Faster

Jax

* Also developed by Google...

* Very new compared to Pytorch and Tensorflow
* Much Faster

* Takes advantage of Just In Time (JIT) compiling to speed up
execution

Jax

* Also developed by Google...
* Very new compared to Pytorch and Tensorflow
* Much Faster

* Takes advantage of Just In Time (JIT) compiling to speed up
execution

* Functional programming paradigm

Improving Gradient Descent

Improving Gradient Descent

Computing the full gradient for a large dataset takes a very long
time and it often will not fit in memory, slowing it down even further

Improving Gradient Descent

Computing the full gradient for a large dataset takes a very long
time and it often will not fit in memory, slowing it down even further

Solution: Approximate the gradient by sampling a selection of
examples (i.e., a batch). Run a gradient descent step with that batch

Stochastic Gradient Descent

For N epochs:
sample a batch B from dataset X
compute predictions and loss function

compute gradient
update weights with small step in direction of negative grad.

Stochastic Gradient Descent

For N epochs:
sample a batch B from dataset X
compute predictions and loss function

compute gradient
update weights with small step in direction of negative grad.

Training is non-deterministic because batches are sampled randomly from dataset

Stochastic Gradient Descent

For N epochs:
sample a batch B from dataset X
compute predictions and loss function

compute gradient
update weights with small step in direction of negative grad.

Training is non-deterministic because batches are sampled randomly from dataset

Why does this work? The expectation of the gradient is equal to the gradient itself!

What size should the batch be?

Small batch size: Large batch size:
Fast, jittery updates Slower, stable updates
Batch Size: 1 Batch Size: 100

l 20
20 -

151
15 1

g E 101
10 1

5- 3

C" D' MM‘.# o A e i
ilj 160 2100 3['!'0 4150 Slf'JCl 66'0 6 160 250 360 460 560 EIEJO
Batch Batch

- Empirically, modern optimizers can handle larger batch size well
« Try to pick the largest batch size you can fit on your GPU!

Further Improvements

If gradient descent is like a ball rolling
down a hill... What is that ball’s mass?

SGD can be further improved by
adding momentum term

" SGD without momentum SGD with momentum

Aw := aAw — nVQ;(w)

w:i=w+ Aw

AdaM: SGD + Adaptive Momentum

Generally recommended as the best performing and easiest to use optimizer!

Require: o: Stepsize

. . . - MNIST Multilayer Neural Network + dropout
Require: 1, 3> € [0,1): Exponential decay rates for the moment estimates 107 @ ' '

. — AdaGrad
Require: f(6): Stochastic objective function with parameters 6 _ RMasprrzp
Require: 6j: Initial parameter vector — SGDNesterov

st 11 st AdaDelta
mo < 0 (Initialize 1°** moment vector) ~ adam

vo < 0 (Initialize 2™ moment vector)
t < 0 (Imitialize timestep)
while 0; not converged do

training cost

.

t<—t+1
9t < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)
myg < B1-my_1+ (1 — B1) - g+ (Update biased first moment estimate) 107

Vg < Bo-v_1 + (1= Bo) - gf (Update biased second raw moment estimate)
my < my/(1 — B%) (Compute bias-corrected first moment estimate)
vt + vt /(1 — B5) (Compute bias-corrected second raw moment estimate)
Oy < 0r_1 — - my/ (\/%Tt + €) (Update parameters)
end while
return 6; (Resulting parameters)

A L 1
0 50 100 150 200
iterations over entire dataset

Classification

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Need Loss function to be small for best model, not large.

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Need Loss function to be small for best model, not large.

Correct

Proposed Loss Function: L =1 — ~

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Need Loss function to be small for best model, not large.

Correct

Proposed Loss Function: L =1 — ~

The Issue: most of the time, the gradient of this loss functionisVLg = 0

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Need Loss function to be small for best model, not large.

Correct

Proposed Loss Function: L =1 — ~

The Issue: most of the time, the gradient of this loss functionisVLg = 0

Gradient is only non-zero when changing a 8 has an impact on output predictions

Unit step (threshold)

1

B (0if 0>x
JO=11if x= 0

0 gradient everywhere except x=0
] - X=0is not differentiable, but it does have a sub-gradient

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Need Loss function to be small for best model, not large.

Correct

Proposed Loss Function: L =1 — ~

The Issue: most of the time, the gradient of this loss functionisVLg = 0

Gradient is only non-zero when changing a 8 has an impact on output predictions

We cannot use classification as a loss

Unit step (threshold) function because itis incompatible with
gradient descent. Understanding Gradients
0if 05 x is key to understanding all decisions

f(x)=1 | related to neural networks!
1if x=0

1

0 gradient everywhere except x=0
] - X=0is not differentiable, but it does have a sub-gradient

Whatis areasonable loss function touse?

* Accuracy is a “hard” function
* Hard to take meaningful derivatives of

* Other examples:
* Max vs. Softmax
* Ranking vs Softrank
e Sign function (i.e., perceptron activation) vs. Softsign
* Argmax

Whatis areasonable loss function touse?

* Accuracy is a “hard” function
* Hard to take meaningful derivatives of

* Other examples:
* Max vs. Softmax
* Ranking vs Softrank
e Sign function (i.e., perceptron activation) vs. Softsign
* Argmax

My (somewhat) old research

Kullback-Leibler divergence

* One type of statistical distance
* Distance between two probability distributions

Kullback-Leibler divergence

* One type of statistical distance
* Distance between two probability distributions

Defined for two probability
distributions, P and Q

D(P | Q) =Y P(x) log(g("”)

I reX

Kullback-Leibler divergence

* One type of statistical distance
* Distance between two probability distributions

Defined for two probability
distributions, P and Q

Di(P | Q) =Y P(a) log(g(ﬁ)

I reX

Think of Q as what we predict and
P as the ground truth Probabilities

Kullback-Leibler divergence

* One type of statistical distance
* Distance between two probability distributions

When P(x) is high, Q(x) should

Defined for two probability
also be high... (Log(1) = 0)

distributions, P and Q

Dy (P WI ?) =) P(z) log(28)

Think of Q as what we predict and
P as the ground truth Probabilities

One-Hot Vectors Revisited

datagy.io

Biscoe _9 1 0 0

Torgensen 0 0 1

Dream 0 1 0

One-Hot Vectors Revisited

datagy.io

Biscoe =3P 1 0 0

Torgensen 0 0 1

Dream 0 1 0 T~ Can be

interpreted as a
probability!

Kullback-Leibler divergence

* One type of statistical distance
* Distance between two probability distributions

Kullback-Leibler divergence

* One type of statistical distance
* Distance between two probability distributions

“Ground truth” Probability (i.e.,
label)

D(P | Q) =Y P(x) log(g("”)

reX

Kullback-Leibler divergence

* One type of statistical distance
* Distance between two probability distributions

“Ground truth” Probability (i.e.,
label)

Di(P | Q) =Y P(a) log(g(ﬁ)

I reX

Predicted probabilities

Kullback-Leibler divergence

* One type of statistical distance
* Distance between two probability distributions

P(x)is 1ifxis correct label, O ‘

otherwise

Dy (P | ?) = Y Ple) tog(o)

“Ground truth” Probability (i.e.,
label)

Predicted probabilities

Binary Cross Entropy

KL Divergence

Diu(P | Q) =Y P(z) log(giw;)

reX £

Cross Entropy (CE)

CEG.9) =~) yilog,

Binary Cross Entropy

KL Divergence

Dki(P || Q) = ZP log(Qw

2

Cross Entropy (CE)

reX &

CEG.9) =~) yilog,

”Categorical Cross Entropy”

Binary Cross Entropy

KL Divergence

Cross Entropy (CE)

CE.9) =~) yilog,

2

T
Dy (P || Q) = J:EZXP log(Q(z

”Categorical Cross Entropy”

For Binary problems “Binary
Cross Entropy” (BCE)

Derivative of Cross Entropy

dL d z": -
l

Derivative of Cross Entropy

dL d z": -
l

/

What is this? (vector, scalar,
matrix)

Derivative of Cross Entropy

dL dz": -

/

What is this? (vector, scalar,
matrix)

What is this? (vector, scalar,
matrix)

Derivative of Cross Entropy

dL

What is this? (vector, scalar,
matrix)

n
d

E oo U
dy yl Ogyl\

|

What is this? (vector, scalar,
matrix)

What is this? (vector, scalar,
matrix)

Derivative of Cross Entropy

dL d z": -
dy_ dﬁ . Vi Ogyl
l

n
dL B 2 1
dy ~ D

Probability of predicting
correct label for example i

Probabilities

* If we have probabilities, we can use Cross Entropy

* How do we get probabilities?

Option #1: Normalize outputs (i.e.,
divide by their total)

Option #2: Use another function
(i.e., softmax)

Softmax Function

Output Softmax

layer activation function Probabilities

1.3 0.02

a1 e~ 0.90

2.2 | — w1 0.05
S e

0.7 =1 0.01

By 0.02

Source: https://www.singlestore.com/blog/a-guide-to-softmax-activation-function/

http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/

What'’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [1, 2]. For a second image, the
network outputs [10, 20].

What will be the predicted probabilities with normalization?

What'’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [1, 2]. For a second image, the
network outputs [10, 20].

What will be the predicted probabilities with normalization?

[1/3, 2/3] for both examples

What'’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [1, 2]. For a second image, the
network outputs [10, 20].

What will be the predicted probabilities with Softmax?

What'’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [1, 2]. For a second image, the
network outputs [10, 20].

What will be the predicted probabilities with Softmax?

[0.26, 0.73] for [1, 2]
[0.00005, 0.99995] for [10, 20]

What'’s the difference?

Add 10 to each output

Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image,
the network outputs [20, 30].

What will be the predicted probabilities with Normalization?

What'’s the difference?

Add 10 to each output

Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image,
the network outputs [20, 30].

What will be the predicted probabilities with Normalization?

[0.47, 0.53] for [11, 12]
[0.4, 0.6] for [20, 30]

What'’s the difference?

Add 10 to each output

Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image,
the network outputs [20, 30].

What will be the predicted probabilities with Softmax?

What'’s the difference?

Add 10 to each output

Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image,
the network outputs [20, 30].

What will be the predicted probabilities with Softmax?

[0.26, 0.73] for [11, 12]
[0.00005, 0.99995] for [20, 30]
Exactly the same as [1, 2] and [10, 20]

What'’s the difference?

What’s the difference?

Normalization is sensitive to additive changes, but not multiplicative
changes

What'’s the difference?

Normalization is sensitive to additive changes, but not multiplicative
changes

Softmax is sensitive to multiplicative changes, but not additive

What'’s the difference?

* Normalization is sensitive to additive changes, but not multiplicative
changes

* Softmaxis sensitive to multiplicative changes, but not additive

Softmax also has other advantages:

What'’s the difference?

* Normalization is sensitive to additive changes, but not multiplicative
changes

* Softmaxis sensitive to multiplicative changes, but not additive

Softmax also has other advantages:

* - Tends to handle smaller probabilities better (less float underflow)

What'’s the difference?

Normalization is sensitive to additive changes, but not multiplicative
changes

Softmax is sensitive to multiplicative changes, but not additive

Softmax also has other advantages:

- Tends to handle smaller probabilities better (less float underflow)

- Remember that log in our loss function? Remember the eZ in softmax?
Our loss function becomes ~linear for our neuron outputs z

What'’s the difference?

Normalization is sensitive to additive changes, but not multiplicative
changes

Softmax is sensitive to multiplicative changes, but not additive

Softmax also has other advantages:

- Tends to handle smaller probabilities better (less float underflow)

- Remember that log in our loss function? Remember the eZ in softmax?
Our loss function becomes ~linear for our neuron outputs z

- Maybe has issues with overflow... (outputs can become inf or NaN)

	Slide 1
	Slide 2: Review: Multi-Layer Perceptrons
	Slide 3: Gradient Descent
	Slide 4: Vector Calculus
	Slide 5: Gradients
	Slide 6: Gradients
	Slide 7: Jacobians
	Slide 8: Option 2: Gradient Descent
	Slide 9: Option 2: Gradient Descent
	Slide 10: Option 2: Gradient Descent
	Slide 11: Option 2: Gradient Descent
	Slide 12: Option 2: Gradient Descent
	Slide 13: Option 2: Gradient Descent
	Slide 14: Option 2: Gradient Descent
	Slide 15: Option 2: Gradient Descent
	Slide 16: Option 2: Gradient Descent
	Slide 17: Gradients
	Slide 18
	Slide 19
	Slide 20: Symbolic Differentiation
	Slide 21: Symbolic Differentiation
	Slide 22: Automatic Differentiation
	Slide 23: Tensorflow
	Slide 24: Tensorflow
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Order of Backward Pass
	Slide 31: Order of Backward Pass
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Backpropagation
	Slide 47: Backpropagation
	Slide 48: Backpropagation
	Slide 49: Backpropagation
	Slide 50: Backpropagation
	Slide 51: Backpropagation
	Slide 52: Backpropagation
	Slide 53: Backpropagation
	Slide 54: Backpropagation
	Slide 55: Backpropagation
	Slide 56: Backpropagation
	Slide 57: Backpropagation
	Slide 58: Backpropagation
	Slide 59: Backpropagation
	Slide 60: Backpropagation
	Slide 61: Backpropagation
	Slide 62: Backpropagation
	Slide 63: Backpropagation
	Slide 64: Backpropagation
	Slide 65: Backpropagation
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81: Shape Help
	Slide 82: Multiple Examples
	Slide 83: Compute Graph for a Single Layer
	Slide 84: Compute Graph for a Single Layer
	Slide 85: Compute Graph for a Single Layer
	Slide 86: Compute Graph for a Single Layer
	Slide 87: That was a lot of math, let’s take a break
	Slide 88: Why should you care about compute graphs?
	Slide 89: Why should you care about compute graphs?
	Slide 90: Why should you care about compute graphs?
	Slide 91: DL Frameworks
	Slide 92: Tensorflow
	Slide 93: Tensorflow
	Slide 94: Tensorflow
	Slide 95: Tensorflow
	Slide 96: Tensorflow
	Slide 97: Pytorch
	Slide 98: Pytorch
	Slide 99: Pytorch
	Slide 100: Pytorch
	Slide 101: Pytorch
	Slide 102: Pytorch
	Slide 103: Pytorch
	Slide 104: Pytorch
	Slide 105: Jax
	Slide 106: Jax
	Slide 107: Jax
	Slide 108: Jax
	Slide 109: Jax
	Slide 110: Jax
	Slide 111: Improving Gradient Descent
	Slide 112: Improving Gradient Descent
	Slide 113: Improving Gradient Descent
	Slide 114: Stochastic Gradient Descent
	Slide 115: Stochastic Gradient Descent
	Slide 116: Stochastic Gradient Descent
	Slide 117
	Slide 118: Further Improvements
	Slide 119: AdaM: SGD + Adaptive Momentum
	Slide 120: Classification
	Slide 121: Classification
	Slide 122: Classification
	Slide 123: Classification
	Slide 124: Classification
	Slide 125: Classification
	Slide 126: Classification
	Slide 127: What is a reasonable loss function to use?
	Slide 128: What is a reasonable loss function to use?
	Slide 129: Kullback–Leibler divergence
	Slide 130: Kullback–Leibler divergence
	Slide 131: Kullback–Leibler divergence
	Slide 132: Kullback–Leibler divergence
	Slide 133: One-Hot Vectors Revisited
	Slide 134: One-Hot Vectors Revisited
	Slide 135: Kullback–Leibler divergence
	Slide 136: Kullback–Leibler divergence
	Slide 137: Kullback–Leibler divergence
	Slide 138: Kullback–Leibler divergence
	Slide 139: Binary Cross Entropy
	Slide 140: Binary Cross Entropy
	Slide 141: Binary Cross Entropy
	Slide 142: Derivative of Cross Entropy
	Slide 143: Derivative of Cross Entropy
	Slide 144: Derivative of Cross Entropy
	Slide 145: Derivative of Cross Entropy
	Slide 146: Derivative of Cross Entropy
	Slide 147: Probabilities
	Slide 148: Softmax Function
	Slide 149: What’s the difference?
	Slide 150: What’s the difference?
	Slide 151: What’s the difference?
	Slide 152: What’s the difference?
	Slide 153: What’s the difference?
	Slide 154: What’s the difference?
	Slide 155: What’s the difference?
	Slide 156: What’s the difference?
	Slide 157: What’s the difference?
	Slide 158: What’s the difference?
	Slide 159: What’s the difference?
	Slide 160: What’s the difference?
	Slide 161: What’s the difference?
	Slide 162: What’s the difference?
	Slide 163: What’s the difference?

