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Review: Multi-Layer Perceptrons

Perceptrons are linear classifiers,
separating classes based on input
features with a linear separator WL @
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features to perceptrons to @ ©)
represent more complex functions 0 )




Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

R : A "g'---..op_posite direction
Repeat 2 until convergence o P



Vector Calculus

e Partial Derivative: the derivative of a with
respect to one of its inputs

* Example: f(x,w,b) =wx + b

. : 1 1 . a
* The partial derivative with respect to w s #

* How to compute: Treat all other variables as constants and
differentiate with respect to that variable

of 0 i, i,
%_%(wx+b) —%(WX)-F%(ID) = X



Gradients

Gradient: the vector of partial derivatives
Vector “points” in direction of increasing f values.

of of
ow' b

Vf =

flx,w,b) =wx+b

_ Of of of
Vie = 15,35 9%




Gradients

The gradient field <2x-4 ,2y+2 > of the function f=x?- 4x + 7+ 2y.
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Jacobians

* Gradients are for functions with multiple inputs and one output
* Hidden layers in our neural networks have multiple outputs
* The Jacobian matrix is the matrix of all partial derivatives

Input Variables:
[Xl, X2, ...,xn]
Oh . 04 ]
8.’131 8$n

f:R* - R™

Output Variables: ) " )
Lf1 f2r - fn] Ofm  Ofm
L 6551 amn .




Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

JRRE : A "g'---..op_posite direction
Repeat 2 until convergence s “\33;}:{.

For N iterations oruntil A8 < e:
é — 0 — C(Vfg



Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until conve rgence gl “:::‘;}:{.

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

Gradient of what?




Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until conve rgence gl “:::‘;}:{.

For N iterations oruntil A8 < e:

e 550N

Gradient of what?

Why is this negative?




Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until conve rgence gl “:::‘;}:{.

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

AN

Why is this negative?

Gradient of what?

Wait, this isn’t even the best 6




Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until conve rgence gl “:::‘;}:{.

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

2l e, R
I _1 _2

Learning Rate a € [0,1]



Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until conve rgence gl “:::‘;}:{.

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

I Why do we need a learning rate? =
Learning Rate a € [0,1]




Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until convergence oo “:,3_‘,;}}

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

I Why do we need a learning rate? =
Learning Rate a € [0,1]

Derivatives/Gradients only hold locally




Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until convergence oo “:,3_‘,;}}

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.




Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until convergence l g8 ‘:’
Understanding gradient descent is the single most X

important concept in all of Deep Learning. Most decisions | L
s

in DL are made for reasons related to gradients.
For N iterations oruntil A8 < €:

§<—9—an9

Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.




Gradients

Gradients are important for gradient descent...
How can we actually find them?

1. Numeric Differentiation

2. Symbolic Differentiation

3. Automatic Differentiation



Computer-based Derivatives

~ Numeric differentiation

A f(x+Ax)—f(x)
dx Ax
* Pick a small step size Ax

* Also called “finite differences”




Computer-based Derivatives

Ax = 0.5

<
I
Ll

~ Numeric differentiation

L A4f  fOe+A0)—f(x)
dx Ax
* Pick a small step size Ax

 Also called “Finite differences”
* Easy to implement
« Arbitrarily inaccurate/unstable




Symbolic Differentiation

‘ d/dx (2x + 3x*2 + x (6 - 2))

Your computer performs algebra on symbols

Jfo Extended Keyboard £ Upload
Returns exact answers

Hard to implement, inefficient N
Only handles static expressions (no loops) Derivative:

d |
—|.2x+3x2+x(6—2)}=6(x+1)

dx \ d /

= 2
=P (6x + 3x~)



Symbolic Differentiation

- d/dx (2x + 3x*2 + X (6 - 2))

Your computer performs algebra on symbols

Returns exact answers

Hard to implement, inefficient
Only handles static expressions (no loops)

While abs(x) >5:
X=Xx/2

Jfo Extended Keyboard £ Upload

Derivative:

d |
—(2x+3x* +x(6-2))=6(x+1)

dx \ d /

= 2
=P (6x + 3x~)



Automatic Differentiation

Build a “compute graph” that tracks all operations during execution
of a program

Automatically compute desired derivatives



Tensorflow
TensorFlow

One of the three main neural network frameworks in Python

Gradient tape: main method of auto-differentiation



Tensorflow
TensorFlow

One of the three main neural network frameworks in Python

Gradient tape: main method of auto-differentiation

While gradient tape is active:

1. Record all operations involving tracked tensorflow variables
2. Each operation stores the result of the operation and “parent” tensors

After lossis calculated (i.e., all operations are done), tape.gradient(loss, model.trainable_parameters) will
return the gradient for all parameters in the model



Chain rule

If f and g are both differentiable and F(x) is the composite function defined
by F(x) = flg(x)) then F is differentiable and F’ is given by the product

F'(x) =f"(g(x)) g’(x)
: !

Differentiate Differentiate
outer function inner function

Courtesy: https://www.onlinemathlearning.com/chain-rule.html



Computation Graph

e=(@a+b)-(b+1) e = cxd

Foreach node, gradient tape tracks the operation and input variables / \

de dedc de_dedd_l_dedc_
da_dcda_d db  dddb dcdb

c +d



Computation Graph

e=(@a+b)-(b+1) e = cxd

Foreach node, gradient tape tracks the operation and input variables / \
How to compute derivatives of e with respect to each input?

de de
Want da’ db

de dedc de_dedd_l_dedc_
da_dcda_d db  dddb dcdb

c +d



Computation Graph

e=(@a+b)-(b+1) e = cxd

Foreach node, gradient tape tracks the operation and input variables / \
How to compute derivatives of e with respect to each input?

de de
1. Run compute graph in “forward direction”
Compute e by executing each operation

2. Run compute graphin “reverse direction”
Compute derivatives at each node de dedc de dedd dedc

B deda- 9 @b ddab Tacdr

c +d



Computation Graph

e=(@a+b)-(b+1) e—-c*d
e—06

Foreach node, gradient tape tracks the operation and input variables / '\\
How to compute derivatives of e with respect to each input?

de de
Wan td_ ' b
/ dc'\\ //'
. . : db

1. Run compute graph in “forward direction” -

Compute e by executing each operation
2. Run compute graphin “reverse direction”

Compute derivatives at each node de dedc de dedd dedc

a9 @b~ adab Tdcdp

=c +d



Order of Backward Pass

Where should we start our backward pass? Which order should we
calculate derivatives in?

Start at output nodes (nodes with no children in forward compute
graph), then move to parents, then parents’ parents, and so on.



Order of Backward Pass

Where should we start our backward pass? Which order should we
calculate derivatives in?

Start at output nodes (nodes with no children in forward compute
graph), then move to parents, then parents’ parents, and so on.

Topologically
sorted graph

Fully-correct order: Topological order of reverse graph! o
B SEB b o
For HW 3, ing Breadth-First-S h orderi fficient 0 " éb
or running Brea irst-Search order is sufficien o o o ° @ @ @
OO
ttps://gui

th.com/com /T logical-Sort

Unsorted graph

Image source: h



https://guides.codepath.com/compsci/Topological-Sort
https://guides.codepath.com/compsci/Topological-Sort
https://guides.codepath.com/compsci/Topological-Sort

input

lj = ij'k X + bj

Il =wx +b

linear layer

L=(y-1)?

loss



Looking at composite function!




Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*



Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

By Expansion:



Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

By Expansion: IF(x) = 4x* + 4x2 + 1|




Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

By Expansion: IF(x) = 4x* + 4x2 + 1|

By Chain rule:



Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

dF
— = 16x3 + 8x

By Expansion: IF(x) = 4x* + 4x% + 1 -
X

By Chain rule:



Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

By Expansion: IF(x) = 4x* + 4x° + 1 3—F = 16x3 + 8x
X
By Chain rule:
dF _ dF df dg

dx  df dedx




Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

By Expansion: IF(x) = 4x* + 4x° + 1 3—F = 16x3 + 8x
X
By Chain rule:
dF _ dF df dg dF

dx  df dedx




Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

By Expansion: IF(x) = 4x* + 4x° + 1 3—F = 16x3 + 8x
X
By Chain rule:
dF _ dF df dg

dF ‘ df—z = 4x?% + 2 ‘
de g(x) = 4x

dx  df dedx




Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

By Expansion: IF(x) = 4x* + 4x° + 1 3—F = 16x3 + 8x
X
By Chain rule:
dF dF dfdg dF ‘ df , 12 4 2 ‘ dg A
e - — -— = = — = 4X
T Gl din gy ‘8 =




Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

By Expansion: IF(x) = 4x* + 4x* + 1 3—F = 16x3 + 8x
X
By Chain rule:
dF dF dfdg dF ‘ df _ 12 4 2 ‘ B _ o ¥ iaies
—_—— —_—= — = — = 4X -— = X X
dx _ df dg dx dg 280 = 4x i dx




Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

By Expansion: IF(x) = 4x* + 4x* + 1 3—F = 16x3 + 8x
X
By Chain rule:
dF dF dfdg daF_ ‘ df _ 12 4 2 ‘ B _ o ¥ iaies
—_—— —_—= — = — = 4X -— = X X
dx _ df dg dx dg 280 = 4x i dx

/

I Important: We will often need the value of the function to find derivatives through the chain rule I




Each layer
computes tl.ae
The Chain Rule (for Differentiation) sradients Wi

variables and
passes the result

ﬂ _ar . ag backwards

¢ Given arbitrary function: f(g(x)) =

dx dg dx

dx dg

Backpropagation

(or backward pass)

i 1 8(x) | f(g()




Backpropagation

Simple Neural Network with 1 hidden layer,

Notation:
w, b: weights and biases Assume activation function in hidden layer is
Z: Intermediate Value ReLU: (max(0, x))

a: Value after activation function

Y — Output

bz 10

Layer 1 Layer 2



Backpropagation

Simple Neural Network with 1 hidden layer,

Notation:
w, b: weights and biases Assume activation function in hidden layer is
Z: Intermediate Value ReLU: (max(0, x))

a: Value after activation function

Layer 1:

Z1 = W1X1 + WyXy + W3X3 + WyXy + by
a, = relu(z,)

Zy = Ws5X1 + WeXy + WoXx3 + WgXy + by
a, = relu(z,)

Y — Output

bz 10

Layer 1 Layer 2



Backpropagation

Notation:

w, b: weights and biases

Z: Intermediate Value

a: Value after activation function

Layer 1:

Z1 = W1X1 + WyXy + W3X3 + WyXy + by
a, = relu(z,)

Zy = Ws5X1 + WeXy + WoXx3 + WgXy + by
a, = relu(z,)

Z3 = WqQ4q + W10a> + b3

No activation function on final output

(assume we are performing a
regression task that can have any

output value)

Simple Neural Network with 1 hidden layer,
Assume activation function in hidden layeris

ReLU: (max(0, x))

Layer 1

10

Y. — Output

Layer 2



Backpropagation

Simple Neural Network with 1 hidden layer,

Notation:
w, b: weights and biases Assume activation function in hidden layer is
Z: Intermediate Value ReLU: (max(0, x))

a: Value after activation function

Layer 1:

Z1 = W1X1 + WyXy + W3X3 + WyXy + by
a, = relu(z,)

Zy = Ws5X1 + WeXy + WoXx3 + WgXy + by
a, = relu(z,)

Y. — Output

Z3 = Woay + Wioaz + by Our numbering system isn’t doing us any favors!
No activation function on final output |W8 /

(assume we are performing a Layer 1 Layer 2

regression task that can have any
output value)



Backpropagation

Relabel weights based on layer number,
input number, and output number.

(1) b(1)
Wi(’f))ut is the weight associated with layer [, @ )
input i, and output out. = y \ b1(2)
2
@‘ ) w7
@ ‘ ‘ Y. — Output
‘ (1) (1) Wz(zl)
EX\o
)
by € )
b =1 ..
) (D
bout 2

X1
XT =1 ...
Xi



Backpropagation

Relabel weights based on layer number,
input number, and output number.

)
Wi,out

input i, and output out.

) )
W11 o Wy out
w® =
(z) (z)
1n1 1n out |
p®
b(l) —
(l)
bout
x! =

is the weight associated with layer [,

(1)
(1)
(1)

(1)
(1)
(1)

(1)

by>
W11
2
(2)
Wo1

— Output




Backpropagation

Relabel weights based on layer number,
input number, and output number.

)
Wi,out

input i, and output out.

Q) Q)
W11 o Wy out
w® =
(z) (z)
1n1 1n out |
p{
b(l) —
(l)
bout
x! =

is the weight associated with layer [,

;@

=WDx + bW or zD = xWw @ 4 pD?

€Y,
(1)
(1)

(1)
(1)
(1)

(1)

by>
W11
2
(2)
Wo1

— Output




Backpropagation

Relabel weights based on layer number,
input number, and output number.

)
Wi,out

input i, and output out.

Q) Q)
W11 o Wy out
w® =
(z) (z)
1n1 1n out |
p{
b(l) —
(l)
bout
x! =

is the weight associated with layer [,

;@

=WDx + bW or zD = xWw @ 4 pD?

Shapes:
W:in x out
b: outx 1
x:1Xxin

1

€Y) b(1)

(D =

D b

€ AN ) 1

@ W11

/ Y — Output

T bE

(D

€ 2

(D




Backpropagation

Relabel weights based on layer number,
input number, and output number.

)
Wi,out

input i, and output out.

) )
W11 o Wy out
w® =
(z) (z)
1n1 1n out |
p®
b(l) —
(l)
bout
x! =

is the weight associated with layer [,

z®D = WwOx 4+ pD or z = xw @ 4 pD?

L, — @ 4 p@
= ReLU(zV)

e

(1)
(1)
(1)

(D
(D
(D
g

(D

Z\(Z)

Shapes:
W:inxout
b:outx 1
X:1xin

by>

W11
7
2

Y — Output




Backpropagation

Relabel weights based on layer number,
input number, and output number.

)
Wi,out

input i, and output out.

) )
W11 o Wy out
w® =
(z) (z)
1n1 1n out |
p®
b(l) —
(l)
bout
x! =

is the weight associated with layer [,

;@

=WDx + bW or zD = xWw @ 4 pD?

RelLU performed on each element of z(D

(1)
@)
@
()

D = @ 4 p®

e

(1)
(1)
(D
0
(D
(D
(D
g

(D

2

= ReLU(zV)

Shapes:
W:inxout
b:outx 1
X:1xin

by>

\ (2)

Y — Output




Backpropagation

Output, z(2) = ReLU(xW(l) + b(l))W(Z) + p2

1
(1) b(l)

G X D L

@) 715 \Wm: 1%

‘ ) am

@ ‘ : Y. — Output
‘ (D (1D W2(21)

O\\re

€ )
©




Backpropagation

Output, z(2) = ReLU(xW(l) + b(l))W(Z) + p2

For a single example, suppose we D ®
get an output of 10, when the b
ground truth was 7. @ (1)

e

oV e \ ;
@ ‘ : Y. — Output
O\

€ )
©




Backpropagation

Output, z(2) = ReLU(xW(l) + b(l))W(Z) + p2

For a single example, suppose we D
get an output of 10, when the

ground truth was 7. @ ¥ p2

2
@ @ \W(Z) 1
(1) 1.1
What is the mean squared error? @“ 4 Y. [—— Output
SN2y
O\\#e

© )
€

(D




Backpropagation

Output, z(2) = ReLU(xW(l) + b(l))W(Z) + p2

For a single example, suppose we (1)

(D
get an output of 10, when the = b
ground truth was 7. @ (1) 5 b(z)
1
O 7
(D
What is the mean squared error? @“ : ) Output
Z’l}_l(z(Z) _ y(i))/\z &Y (D W2(21)
L==7""", @\
@/ 2
(1)




Backpropagation

Output, z(2) = ReLU(xW(l) + b(l))W(Z) + p2

For a single example, suppose we (1)

(1)
get an output of 10, when the b
ground truth was 7. @ (1) 5 b(z)
]
O 7
(1)
What is the mean squared error? @“ : ) Output
Z’lﬂzl(z(Z) _ y(i))/\z (1) (1) W2(21)
L= " @\
L=(z® —y)* @]/ 2
(1)




Backpropagation

Output, z(2) = ReLU(xW(l) + b(l))W(Z) + p2

For a single example, suppose we (1)

(1)
get an output of 10, when the = b
ground truth was 7. @ 5 b(z)
1
O i
(D
What is the mean squared error? @“ 4 - D Output
Z’l}_l(z(Z) _ y(i))/\z (1) (D Wo7
L== n @ (D
L=(z® —y)* @]/ 2
L=(10-7)? D
L=9 /




Backpropagation

Output, z(2) = ReLU(xW(l) + b(l))W(Z) + p2

For a single example, suppose we (1)

(1)
get an output of 10, when the = b
ground truth was 7. @ 5 b(z)
1
O i
(D
What is the mean squared error? @“ 4 - D Output
Z’l}_l(z(Z) _ y(i))/\z (1) (D Wo7
L== n @ (D
L=(z® —y)* @]/ 2
L=(10-7)? D
L=9 /
What is —2=?

dp@



Backpropagation

Output, z(2) = ReLU(xW(l) + b(l))W(Z) + p2

For a single example, suppose we (1)

(1)
get an output of 10, when the b
ground truth was 7. @ (1) 5 b(z)
O N
(1)
What is the mean squared error? @“ : ) Output
Z’lﬂzl(z(Z) _ y(i))/\z (1) (1) W2(21)
L= " @\
L=(z® —y)* @]/ 2
L =(10-7)? o0
L=9 :
What is 27 dL__ _dL_dz®?

db®@ =20z% -y)-1=6

db®@ ~ 4z@ gp@



Backpropagation

Output, z(2) = ReLU(xW(l) + b(l))W(Z) + p2

For a single example, suppose we (1)

(1)
get an output of 10, when the = b
1
ground truth was 7. @ 5 b1(2)
O i
(D
What is the mean squared error? @“ 4 Y. [—— Output
Z’lﬂzl(z(Z) _ y(i))/\z &Y (D W2(21)
L= n @ (D
L=(z® —y)* @]/ 2
L=(10-7)? D
L=9 /
i AL d.  dL dz®
What is ? _ . _ 2 N1 .
ab'? db@  dz2) gp@ 2(z y):1=6 What is dfl)?

dwl'1



Backpropagation

Output, z(2) = ReLU(xW(l) + b(l))W(Z) + p2

For a single example, suppose we D b(l)
get an output of 10, when the
ground truth was 7. @ (1) 5 b(z)
@ €Y \W(Z) 1
0 1.1
What is the mean squared error? @“ : ) Output
Z’lﬂzl(z(Z) _ y(i))/\z (D (1) W2(21)
L= " @\
2
L=(z?%—y) €D) 2
L = (10 - 7)? = dL.  dL  dz@ dal? dz?
L=9 : D~ 3@ ;O O @
. o e dWL1 dz da;” dz; dWL1
What is —=? _ L 5, —
dp® D - 1,0 @ - 2ET —y)1=6 What is —?

dwl'1



Component-wise derivation

L=(z® - y)z

z3@ = agl)wl(? + agl)wl(?z) +b®@

atV = ReLU(zY)

1 _
Zl = W1,1x1 + Wl’zxz + W1’3X3 + W1,4X4 + b



Component-wise derivation

dL  dL  dz® da{P dz{V
dwl(Jll) dz(? dagl) dzgl) dwl(’ll)

L=(z® - y)z

z3@ = agl)wl(? + agl)wl%) +b®@

atV = ReLU(zY)

1 _
Zl = W1,1x1 + Wl’zxz + W1’3.X'3 + W1,4X4 + b



Component-wise derivation

dL  dL  dz® da{P dz{V
dwl(Jll) dz(? dagl) dzgl) dwl(’ll)

L=(z? - y)z /
L@~ 0,@ O @

(2)
a, "w;{ +a,’w;5 +b
' ' 2(z® —y)

atV = ReLU(zY)

1 _
Zl = W1,1x1 + Wl’zxz + W1’3.X'3 + W1,4X4 + b



Component-wise derivation

dL  dL  dz® da{P dz{V
dw1(,11> dz(? dagl) dzgl) dwl(’ll)

L=(z? - y)2 / ‘
22 = g @ 4 g0,

+ay w5 +b®@ ,
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L=(z® - y)z
z(?) = agl)wl(? + agl)wl(?z) + b@

atV = ReLU(zY)
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Component-wise derivation
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Component-wise derivation

dL dL
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Matrix Form derivation
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1 otherwise
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Component-wise derivation

dL  dL  dz® da{P dz{V
dw1(,11> dz(? dagl) dzgl) dwl(’ll)

L=(2? - y)2 / ‘ ‘ \
. (@) (1), (2)

(2) — (2)

%% = a7 we Y +aw,S +Db
1 L1 2 1.2 2(2(2) — y) W%,l 0 |f Z£1)<0, X1
agl) = ReLU(zil)) 1 otherwise

1 _
Zl = W1,1x1 + Wl’zxz + W1’3.X'3 + W1,4X4 + b

Matrix Form derivation

d.  dL  dz® da™ dz
L=(z®-y)’ aw®  dz® g™ g, qw®

;@ = O @ 4 p@ / \
2(2? —y)

aP = ReLU(Z(l))

o (1)
(1) _ w@t 0ifz;7<0,
z 7 =xW® +b 1 otherwise



Shape Help

Consider each step to be a function (which they are). What shapes are
the input and outputs? Ther derivative of each function must have shape
RIr*0Ut \where in and out are the input and output dimensions for that

function.

The Jacobian of a function with respect to an input matrix in R™*9 must
have the shape R™*dI

Why? Recall that a derivative/gradient/Jacobian tells you if the function
will increase/decrease with small changes to input. Each element of the
Jacobian corresponds to a specific input value.



Multiple Examples

* The previous example took in one example to compute MSE

* The full gradient of the loss function is not determined by one
example, but multiple examples!

I?
What changes” dL b
dz()
X € ]RnXd instead of X € Rle Many other Jacobians add a batch dimension for the
n examples.

How many inputs and outputs does the term have?

Derivative shapes for parameters (weights and
biases) never change. Why is that expected?



Compute Graph for a Single Layer

P

a(l_l)

dz(l)
da(l—l)

Local grad:

;O = Wwh40-D 4 pO

dz(l)
dw® dz®

Local grad: 0

Local grad: 7z

\

b®




Compute Graph for a Single Layer

P

q(0-D 4z dL
Local grad:da(l_l) dz®
7O = Wwhad-1) 4 pd
Local grad: 22 1
ocal grad: ——; - 7D
Localgrad:m

\

b®




Compute Graph for a Single Layer

dL dL  dz®

dal-D dz®

\da(l_l) i dz® dal-1
(1-1) 0 dL
. Local grad: dz

;O = Wwh40-D 4 pO

dz(l)

dw® dz®

Local grad: 0

dL dL dz® Local grad:

AWw® ~ 4zO qwd

;O

b®

dL  dL dz® |
db® — dz® dpD®




Compute Graph for a Single Layer

d.  dL dz®
dal=-b  dz® dal-D

(1-1) M dL
a dz
Local grad:—— dz0
7O = Wwhad-1) 4 pd )
dz® >
dL B dL dz® Local grad: dvzv(l) - zD
dWO  4zO gwd Local grad: 0
bD
dL  dL dz® |
db®  dz® dp®
Foreach node:
L

Compose cumulative gradient

4, With local gradients

Pass new cumulative gradient to parent nodes, repeat



That was a lot of math, let’s take a break

Weekly quiz is available on Gradescope!



Why should you care about compute graphs?

(This is much more of acommon issue in pytorch than tensorflow)

def train_with_memory_leak():
running_loss = 0.0
for epoch in range(100):
for i, (inputs, targets) in enumerate(loader):

optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()

running_loss += loss

if 1 % 10 == 9:

print(f'Loss: {running_loss / 10}"')

running_loss = 0.0
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def train_with_memory_leak():

running_loss = 0.0

for epoch in range(100):
for i, (inputs, targets) in enumerate(loader):

optimizer.zero_grad()
outputs = model(inputs)

loss = criterion(outputs, targets)

Running loss’ compute loss.backward()

graph will contain the
compute graph of loss!

optimizer.step()

running_loss += loss
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print(f'Loss: {running_loss / 10}"')

running_loss = 0.0



Why should you care about compute graphs?

(This is much more of acommon issue in pytorch than tensorflow)

def train_with_memory_leak():
running_loss = 0.0
for epoch in range(100):
for i, (inputs, targets) in enumerate(loader):
optimizer.zero_grad()
outputs = model(inputs)

loss = criterion(outputs, targets)

Running loss’ compute 105§ : ?aCkwa rd()
graph will contain the optimizer.step()
compute graph of loss!

running_loss += loss

The memory required to if 1 % 10 == 9:
store running_loss will only print(f'Loss: {running_loss / 10}"')
ever increase! running_loss = 0.0




DL Frameworks © pyTorch Tenl,‘mow

* Main current frameworks are Tensorflow, Pytorch, and Jax

* TF and torch are becoming increasingly similar in style and
performance

e Jax is new and different

Percentage of Repositories by Framework B other [ PyTorch [ TensorFlow Number of Job Postings by Framework
100% 20000

75%
50%

10000

Tensor Flow [ PyTorch

FPercentage
Mumber of Postings

25%

2000
0%
Jan 2018 Jan 2019 Jan 2020 Jan 2021
0

Linkedin ZipRecruiter Indeed

Repository creation date
https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/
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Tensorflow

- Developed and maintained by Google

- In addition to autodiff features it also provides:
- Many common functions (i.e., Softmax, Sigmoid, Cross Entropy, etc.)
- An easy way to train models (Keras)

- Strong support for hardware acceleration (i.e., if you have a GPU, TF will
figure out how to use it)

- “Easier to deploy to production” (has been the general consensus
previously, but other frameworks have caught up)

- TF lite for on device applications (e.g., phones)
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Pytorch

* Developed by Facebook Al (how Meta)
* More common in the research and academic community
* “More flexible” and easier to write custom backward passes

* No Gradient Tape, each tensor (matrix/vector) is “trainable” or not.
If a tensor is trainable then all operations on it are tracked.

* Slightly more work to use GPUs or other hardware

* Harder to track stats
* (I stilluse TF’s tensorboard stat tracker when using Pytorch)

* Easier to learn and use than tensorflow
* Better error reporting, training code is harder to write but easier to debug
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Jax

* Also developed by Google...
* Very new compared to Pytorch and Tensorflow
* Much Faster

* Takes advantage of Just In Time (JIT) compiling to speed up
execution

* Functional programming paradigm
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Improving Gradient Descent

Computing the full gradient for a large dataset takes a very long
time and it often will not fit in memory, slowing it down even further

Solution: Approximate the gradient by sampling a selection of
examples (i.e., a batch). Run a gradient descent step with that batch
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Stochastic Gradient Descent

For N epochs:
sample a batch B from dataset X
compute predictions and loss function

compute gradient
update weights with small step in direction of negative grad.

Training is non-deterministic because batches are sampled randomly from dataset

Why does this work? The expectation of the gradient is equal to the gradient itself!




What size should the batch be?

Small batch size: Large batch size:
Fast, jittery updates Slower, stable updates
Batch Size: 1 Batch Size: 100

l 20
20 -

151
15 1

g E 101
10 1

5- 3

C" D' MM‘.# o A e i
ilj 160 2100 3['!'0 4150 Slf'JCl 66'0 6 160 250 360 460 560 EIEJO
Batch Batch

- Empirically, modern optimizers can handle larger batch size well
« Try to pick the largest batch size you can fit on your GPU!




Further Improvements

If gradient descent is like a ball rolling
down a hill... What is that ball’s mass?

SGD can be further improved by
adding momentum term

" SGD without momentum SGD with momentum

Aw := aAw — nVQ;(w)

w:i=w+ Aw




AdaM: SGD + Adaptive Momentum

Generally recommended as the best performing and easiest to use optimizer!

Require: o: Stepsize

. . . - MNIST Multilayer Neural Network + dropout
Require: 1, 3> € [0,1): Exponential decay rates for the moment estimates 107 @ ' '

. . . . . . — AdaGrad
Require: f(6): Stochastic objective function with parameters 6 _ RMasprrzp
Require: 6j: Initial parameter vector — SGDNesterov

st 11 st AdaDelta
mo < 0 (Initialize 1°** moment vector) ~ adam

vo < 0 (Initialize 2™ moment vector)
t < 0 (Imitialize timestep)
while 0; not converged do

training cost

.

t<—t+1
9t < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)
myg < B1-my_1+ (1 — B1) - g+ (Update biased first moment estimate) 107

Vg < Bo-v_1 + (1= Bo) - gf (Update biased second raw moment estimate)
my < my/(1 — B%) (Compute bias-corrected first moment estimate)
vt + vt /(1 — B5) (Compute bias-corrected second raw moment estimate)
Oy < 0r_1 — - my/ (\/%Tt + €) (Update parameters)
end while
return 6; (Resulting parameters)

A L 1
0 50 100 150 200
iterations over entire dataset
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Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Need Loss function to be small for best model, not large.

# Correct

Proposed Loss Function: L =1 — ~

The Issue: most of the time, the gradient of this loss functionisVLg = 0

Gradient is only non-zero when changing a 8 has an impact on output predictions

We cannot use classification as a loss

Unit step (threshold) function because itis incompatible with
gradient descent. Understanding Gradients
0if 05 x is key to understanding all decisions

f(x)=1 | related to neural networks!
1if x=0

1

0 gradient everywhere except x=0
] - X=0is not differentiable, but it does have a sub-gradient




Whatis areasonable loss function touse?

* Accuracy is a “hard” function
* Hard to take meaningful derivatives of

* Other examples:
* Max vs. Softmax
* Ranking vs Softrank
e Sign function (i.e., perceptron activation) vs. Softsign
* Argmax



Whatis areasonable loss function touse?

* Accuracy is a “hard” function
* Hard to take meaningful derivatives of

* Other examples:
* Max vs. Softmax
* Ranking vs Softrank
e Sign function (i.e., perceptron activation) vs. Softsign
* Argmax

My (somewhat) old research
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Kullback-Leibler divergence

* One type of statistical distance
* Distance between two probability distributions

When P(x) is high, Q(x) should

Defined for two probability
also be high... (Log(1) = 0)

distributions, P and Q

Dy (P WI ?) =) P(z) log( 28 )

Think of Q as what we predict and
P as the ground truth Probabilities
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One-Hot Vectors Revisited

datagy.io

Biscoe =3P 1 0 0

Torgensen 0 0 1

Dream 0 1 0 T~ Can be

interpreted as a
probability!
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* One type of statistical distance
* Distance between two probability distributions

“Ground truth” Probability (i.e.,
label)

Di(P | Q) =Y P(a) log( g(ﬁ)

I reX

Predicted probabilities




Kullback-Leibler divergence

* One type of statistical distance
* Distance between two probability distributions

P(x)is 1ifxis correct label, O ‘

otherwise

Dy (P | ?) = Y Ple) tog( o)

“Ground truth” Probability (i.e.,
label)

Predicted probabilities




Binary Cross Entropy

KL Divergence

Diu(P | Q) =Y P(z) log( giw;)

reX £

Cross Entropy (CE)

CEG.9) =~ ) yilog,



Binary Cross Entropy

KL Divergence

Dki(P || Q) = ZP log(Qw

2

Cross Entropy (CE)

reX &

CEG.9) =~ ) yilog,

”Categorical Cross Entropy”




Binary Cross Entropy

KL Divergence

Cross Entropy (CE)

CE.9) =~ ) yilog,

2

T
Dy (P || Q) = J:EZXP log( Q(z

”Categorical Cross Entropy”

For Binary problems “Binary
Cross Entropy” (BCE)
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Derivative of Cross Entropy

dL

What is this? (vector, scalar,
matrix)

n
d

E oo U
dy yl Ogyl\

|

What is this? (vector, scalar,
matrix)

What is this? (vector, scalar,
matrix)




Derivative of Cross Entropy

dL  d z": -
dy_ dﬁ . Vi Ogyl
l

n
dL B 2 1
dy ~ D

Probability of predicting
correct label for example i




Probabilities

* If we have probabilities, we can use Cross Entropy

* How do we get probabilities?

Option #1: Normalize outputs (i.e.,
divide by their total)

Option #2: Use another function
(i.e., softmax)




Softmax Function

Output Softmax

layer activation function Probabilities

1.3 0.02

a1 e~ 0.90

2.2 | — w1 0.05
S e

0.7 =1 0.01

By 0.02

Source: https://www.singlestore.com/blog/a-guide-to-softmax-activation-function/



http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/

What'’s the difference?

Consider a neural network with 2 outputs.
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network outputs [10, 20].
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Consider a neural network with 2 outputs.

For one image, the network outputs [1, 2]. For a second image, the
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What will be the predicted probabilities with Softmax?
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[0.00005, 0.99995] for [10, 20]
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What'’s the difference?

Add 10 to each output

Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image,
the network outputs [20, 30].

What will be the predicted probabilities with Normalization?

[0.47, 0.53] for [11, 12]
[0.4, 0.6] for [20, 30]
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What'’s the difference?

Add 10 to each output

Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image,
the network outputs [20, 30].

What will be the predicted probabilities with Softmax?

[0.26, 0.73] for [11, 12]
[0.00005, 0.99995] for [20, 30]
Exactly the same as [1, 2] and [10, 20]
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What'’s the difference?

Normalization is sensitive to additive changes, but not multiplicative
changes

Softmax is sensitive to multiplicative changes, but not additive

Softmax also has other advantages:

- Tends to handle smaller probabilities better (less float underflow)

- Remember that log in our loss function? Remember the eZ in softmax?
Our loss function becomes ~linear for our neuron outputs z

- Maybe has issues with overflow... (outputs can become inf or NaN)
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