
Deep Learning

Eric Ewing
CSCI 1470

Tuesday, 9/16

Day 4: Backprop

The Grand Cayon

Review: Multi-Layer Perceptrons

Perceptrons are linear classifiers,
separating classes based on input
features with a linear separator

Multi-layer perceptrons learn input
features to perceptrons to
represent more complex functions

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

Vector Calculus

• Partial Derivative: the derivative of a multi-variable function with
respect to one of its inputs

• Example: 𝑓 𝑥, 𝑤, 𝑏 = 𝑤𝑥 + 𝑏

• The partial derivative with respect to w is 𝜕𝑓

𝜕𝑤

• How to compute: Treat all other variables as constants and
differentiate with respect to that variable

𝜕𝑓

𝜕𝑤
=

𝜕

𝜕𝑤
𝑤𝑥 + 𝑏 =

𝜕

𝜕𝑤
𝑤𝑥 +

𝜕

𝜕𝑤
𝑏 = 𝑥

Gradients

Gradient: the vector of partial derivatives

Vector “points” in direction of increasing f values.

∇𝑓 = [
𝜕𝑓

𝜕𝑤
,
𝜕𝑓

𝜕𝑏
, …]

𝑓 𝑥, 𝑤, 𝑏 = 𝑤𝑥 + 𝑏

∇𝑓𝜃 = [
𝜕𝑓

𝜕𝑤
,
𝜕𝑓

𝜕𝑏
,
𝜕𝑓

𝜕𝑥
]

Gradients

Jacobians

• Gradients are for functions with multiple inputs and one output
• Hidden layers in our neural networks have multiple outputs
• The Jacobian matrix is the matrix of all partial derivatives

𝑓: ℝ𝑛 → ℝ𝑚

Output Variables:
[𝑓1, 𝑓2, … 𝑓𝑚]

Input Variables:
[𝑥1, 𝑥2, … , 𝑥𝑛]

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient of what?

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient of what?

Why is this negative?

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient of what?

Why is this negative?
Wait, this isn’t even the best 𝜃

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Learning Rate 𝛼 ∈ [0,1]

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Learning Rate 𝛼 ∈ [0,1]

Why do we need a learning rate?

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Learning Rate 𝛼 ∈ [0,1]

Why do we need a learning rate?

Derivatives/Gradients only hold locally

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.

Understanding gradient descent is the single most
important concept in all of Deep Learning. Most decisions

in DL are made for reasons related to gradients.

Gradients

Gradients are important for gradient descent…
How can we actually find them?
1. Numeric Differentiation
2. Symbolic Differentiation
3. Automatic Differentiation

Symbolic Differentiation

Your computer performs algebra on symbols

Returns exact answers

Hard to implement, inefficient
Only handles static expressions (no loops)

Symbolic Differentiation

Your computer performs algebra on symbols

Returns exact answers

Hard to implement, inefficient
Only handles static expressions (no loops)

While abs(x) >5:
 x = x / 2

Automatic Differentiation

Build a “compute graph” that tracks all operations during execution
of a program

Automatically compute desired derivatives

Tensorflow

One of the three main neural network frameworks in Python

Gradient tape: main method of auto-differentiation

Tensorflow

One of the three main neural network frameworks in Python

Gradient tape: main method of auto-differentiation

While gradient tape is active:
1. Record all operations involving tracked tensorflow variables
2. Each operation stores the result of the operation and “parent” tensors

After loss is calculated (i.e., all operations are done), tape.gradient(loss, model.trainable_parameters) will
return the gradient for all parameters in the model

For each node, gradient tape tracks the operation and input variables

de

da
=

de

dc

dc

da
= d

de

db
=

de

dd

dd

db
+

de

dc

dc

db
= c + d

For each node, gradient tape tracks the operation and input variables

How to compute derivatives of e with respect to each input?

Want de

da
, de

db

de

da
=

de

dc

dc

da
= d

de

db
=

de

dd

dd

db
+

de

dc

dc

db
= c + d

For each node, gradient tape tracks the operation and input variables

How to compute derivatives of e with respect to each input?

Want de

da
, de

db

1. Run compute graph in “forward direction”
 Compute e by executing each operation
2. Run compute graph in “reverse direction”

 Compute derivatives at each node de

da
=

de

dc

dc

da
= d

de

db
=

de

dd

dd

db
+

de

dc

dc

db
= c + d

For each node, gradient tape tracks the operation and input variables

How to compute derivatives of e with respect to each input?

Want de

da
, de

db

1. Run compute graph in “forward direction”
 Compute e by executing each operation
2. Run compute graph in “reverse direction”

 Compute derivatives at each node

de

dc

de

dd

dd

db
dc

db

dc

da

de

da
=

de

dc

dc

da
= d

de

db
=

de

dd

dd

db
+

de

dc

dc

db
= c + d

Order of Backward Pass

Where should we start our backward pass? Which order should we
calculate derivatives in?

Start at output nodes (nodes with no children in forward compute
graph), then move to parents, then parents’ parents, and so on.

Order of Backward Pass

Where should we start our backward pass? Which order should we
calculate derivatives in?

Start at output nodes (nodes with no children in forward compute
graph), then move to parents, then parents’ parents, and so on.

Image source: https://guides.codepath.com/compsci/Topological-Sort

Fully-correct order: Topological order of reverse graph!

For HW 3, running Breadth-First-Search order is sufficient

https://guides.codepath.com/compsci/Topological-Sort
https://guides.codepath.com/compsci/Topological-Sort
https://guides.codepath.com/compsci/Topological-Sort

Want to find dL

dθ
, where θ is the set of trainable parameters (w, b)

By Expansion:

F(x) = 4x4 + 4x2 + 1By Expansion:

F(x) = 4x4 + 4x2 + 1By Expansion:

By Chain rule:

F(x) = 4x4 + 4x2 + 1
dF

dx
= 16x3 + 8xBy Expansion:

By Chain rule:

dF

dx
=

dF

df

df

dg

dg

dx

F(x) = 4x4 + 4x2 + 1
dF

dx
= 16x3 + 8xBy Expansion:

By Chain rule:

dF

dx
=

dF

df

df

dg

dg

dx

dF

df
= 1

F(x) = 4x4 + 4x2 + 1
dF

dx
= 16x3 + 8xBy Expansion:

By Chain rule:

dF

dx
=

dF

df

df

dg

dg

dx

dF

df
= 1

df

dg
= 2g(x) = 4x2 + 2

F(x) = 4x4 + 4x2 + 1
dF

dx
= 16x3 + 8xBy Expansion:

By Chain rule:

dF

dx
=

dF

df

df

dg

dg

dx

dF

df
= 1

df

dg
= 2g(x) = 4x2 + 2

dg

dx
= 4x

F(x) = 4x4 + 4x2 + 1
dF

dx
= 16x3 + 8xBy Expansion:

By Chain rule:

dF

dx
=

dF

df

df

dg

dg

dx

dF

df
= 1

df

dg
= 2g(x) = 4x2 + 2

dg

dx
= 4x

dF

dx
= 16x3 + 8x

F(x) = 4x4 + 4x2 + 1
dF

dx
= 16x3 + 8xBy Expansion:

By Chain rule:

dF

dx
=

dF

df

df

dg

dg

dx

dF

df
= 1

df

dg
= 2g(x) = 4x2 + 2

dg

dx
= 4x

dF

dx
= 16x3 + 8x

F(x) = 4x4 + 4x2 + 1
dF

dx
= 16x3 + 8xBy Expansion:

By Chain rule:

Important: We will often need the value of the function to find derivatives through the chain rule

Backpropagation

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏1

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏2
𝑤10

𝑤9

∑

𝑏3

Output

Layer 1 Layer 2

Simple Neural Network with 1 hidden layer,
Assume activation function in hidden layer is
ReLU: (max(0, x))

Notation:
𝑤, 𝑏: weights and biases
𝑧: Intermediate Value
𝑎: Value after activation function

Backpropagation

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏1

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏2
𝑤10

𝑤9

∑

𝑏3

Output

Layer 1 Layer 2

Layer 1:
𝑧1 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4 + 𝑏1

𝑎1 = 𝑟𝑒𝑙𝑢(𝑧1)
𝑧2 = 𝑤5𝑥1 + 𝑤6𝑥2 + 𝑤7𝑥3 + 𝑤8𝑥4 + 𝑏2

𝑎2 = 𝑟𝑒𝑙𝑢(𝑧2)

Simple Neural Network with 1 hidden layer,
Assume activation function in hidden layer is
ReLU: (max(0, x))

Notation:
𝑤, 𝑏: weights and biases
𝑧: Intermediate Value
𝑎: Value after activation function

Backpropagation

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏1

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏2
𝑤10

𝑤9

∑

𝑏3

Output

Layer 1 Layer 2

Layer 1:
𝑧1 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4 + 𝑏1

𝑎1 = 𝑟𝑒𝑙𝑢(𝑧1)
𝑧2 = 𝑤5𝑥1 + 𝑤6𝑥2 + 𝑤7𝑥3 + 𝑤8𝑥4 + 𝑏2

𝑎2 = 𝑟𝑒𝑙𝑢(𝑧2)

Simple Neural Network with 1 hidden layer,
Assume activation function in hidden layer is
ReLU: (max(0, x))

Notation:
𝑤, 𝑏: weights and biases
𝑧: Intermediate Value
𝑎: Value after activation function

𝑧3 = 𝑤9𝑎1 + 𝑤10𝑎2 + 𝑏3

No activation function on final output
(assume we are performing a
regression task that can have any
output value)

Backpropagation

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏1

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏2
𝑤10

𝑤9

∑

𝑏3

Output

Layer 1 Layer 2

Layer 1:
𝑧1 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4 + 𝑏1

𝑎1 = 𝑟𝑒𝑙𝑢(𝑧1)
𝑧2 = 𝑤5𝑥1 + 𝑤6𝑥2 + 𝑤7𝑥3 + 𝑤8𝑥4 + 𝑏2

𝑎2 = 𝑟𝑒𝑙𝑢(𝑧2)

Simple Neural Network with 1 hidden layer,
Assume activation function in hidden layer is
ReLU: (max(0, x))

Notation:
𝑤, 𝑏: weights and biases
𝑧: Intermediate Value
𝑎: Value after activation function

𝑧3 = 𝑤9𝑎1 + 𝑤10𝑎2 + 𝑏3

No activation function on final output
(assume we are performing a
regression task that can have any
output value)

Our numbering system isn’t doing us any favors!

Backpropagation

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

Relabel weights based on layer number,
input number, and output number.

𝑤𝑖,𝑜𝑢𝑡
𝑙 is the weight associated with layer 𝑙,

input 𝑖, and output 𝑜𝑢𝑡.

𝑏(𝑙) =
𝑏1

𝑙

…

𝑏𝑜𝑢𝑡
𝑙

xT =

𝑥1

…
𝑥𝑖

Backpropagation

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

Relabel weights based on layer number,
input number, and output number.

𝑤𝑖,𝑜𝑢𝑡
𝑙 is the weight associated with layer 𝑙,

input 𝑖, and output 𝑜𝑢𝑡.

𝑊 𝑙 =

𝑤1,1
𝑙

⋯ 𝑤1,out
𝑙

⋮ ⋱ ⋮

𝑤in,1
𝑙

⋯ 𝑤in,out
𝑙

𝑏(𝑙) =
𝑏1

𝑙

…

𝑏𝑜𝑢𝑡
𝑙

xT =

𝑥1

…
𝑥𝑖

Backpropagation

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

Relabel weights based on layer number,
input number, and output number.

𝑤𝑖,𝑜𝑢𝑡
𝑙 is the weight associated with layer 𝑙,

input 𝑖, and output 𝑜𝑢𝑡.

𝑊 𝑙 =

𝑤1,1
𝑙

⋯ 𝑤1,out
𝑙

⋮ ⋱ ⋮

𝑤in,1
𝑙

⋯ 𝑤in,out
𝑙

𝑏(𝑙) =
𝑏1

𝑙

…

𝑏𝑜𝑢𝑡
𝑙

𝑧 1 = 𝑊 1 𝑥 + 𝑏 1 or 𝑧 1 = 𝑥𝑊 1 + 𝑏 1 ?

xT =

𝑥1

…
𝑥𝑖

Backpropagation

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

Relabel weights based on layer number,
input number, and output number.

𝑤𝑖,𝑜𝑢𝑡
𝑙 is the weight associated with layer 𝑙,

input 𝑖, and output 𝑜𝑢𝑡.

𝑊 𝑙 =

𝑤1,1
𝑙

⋯ 𝑤1,out
𝑙

⋮ ⋱ ⋮

𝑤in,1
𝑙

⋯ 𝑤in,out
𝑙

𝑏(𝑙) =
𝑏1

𝑙

…

𝑏𝑜𝑢𝑡
𝑙

𝑧 1 = 𝑊 1 𝑥 + 𝑏 1 or 𝑧 1 = 𝑥𝑊 1 + 𝑏 1 ?

Shapes:
𝑊: in x out
b: out x 1
x: 1 x in

xT =

𝑥1

…
𝑥𝑖

Backpropagation

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

Relabel weights based on layer number,
input number, and output number.

𝑤𝑖,𝑜𝑢𝑡
𝑙 is the weight associated with layer 𝑙,

input 𝑖, and output 𝑜𝑢𝑡.

𝑊 𝑙 =

𝑤1,1
𝑙

⋯ 𝑤1,out
𝑙

⋮ ⋱ ⋮

𝑤in,1
𝑙

⋯ 𝑤in,out
𝑙

𝑏(𝑙) =
𝑏1

𝑙

…

𝑏𝑜𝑢𝑡
𝑙

𝑧 1 = 𝑊 1 𝑥 + 𝑏 1 or 𝑧 1 = 𝑥𝑊 1 + 𝑏 1 ?

Shapes:
𝑊: in x out
b: out x 1
x: 1 x in

𝑧 1 = 𝑥𝑊 1 + 𝑏 1

𝑎 1 = 𝑅𝑒𝐿𝑈(𝑧 1)

xT =

𝑥1

…
𝑥𝑖

Backpropagation

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

Relabel weights based on layer number,
input number, and output number.

𝑤𝑖,𝑜𝑢𝑡
𝑙 is the weight associated with layer 𝑙,

input 𝑖, and output 𝑜𝑢𝑡.

𝑊 𝑙 =

𝑤1,1
𝑙

⋯ 𝑤1,out
𝑙

⋮ ⋱ ⋮

𝑤in,1
𝑙

⋯ 𝑤in,out
𝑙

𝑏(𝑙) =
𝑏1

𝑙

…

𝑏𝑜𝑢𝑡
𝑙

𝑧 1 = 𝑊 1 𝑥 + 𝑏 1 or 𝑧 1 = 𝑥𝑊 1 + 𝑏 1 ?

Shapes:
𝑊: in x out
b: out x 1
x: 1 x in

𝑧 1 = 𝑥𝑊 1 + 𝑏 1

𝑎 1 = 𝑅𝑒𝐿𝑈(𝑧 1)

ReLU performed on each element of 𝑧 1

xT =

𝑥1

…
𝑥𝑖

Backpropagation

Output, 𝑧 2 = 𝑅𝑒𝐿𝑈 𝑥𝑊 1 + 𝑏 1 𝑊 2 + 𝑏 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

Backpropagation

Output, 𝑧 2 = 𝑅𝑒𝐿𝑈 𝑥𝑊 1 + 𝑏 1 𝑊 2 + 𝑏 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

For a single example, suppose we
get an output of 10, when the
ground truth was 7.

Backpropagation

Output, 𝑧 2 = 𝑅𝑒𝐿𝑈 𝑥𝑊 1 + 𝑏 1 𝑊 2 + 𝑏 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

For a single example, suppose we
get an output of 10, when the
ground truth was 7.

What is the mean squared error?

Backpropagation

Output, 𝑧 2 = 𝑅𝑒𝐿𝑈 𝑥𝑊 1 + 𝑏 1 𝑊 2 + 𝑏 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

For a single example, suppose we
get an output of 10, when the
ground truth was 7.

What is the mean squared error?

𝐿 =
∑𝑖=1

𝑛 (𝑧 2 − 𝑦 𝑖)^2

𝑛

Backpropagation

Output, 𝑧 2 = 𝑅𝑒𝐿𝑈 𝑥𝑊 1 + 𝑏 1 𝑊 2 + 𝑏 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

For a single example, suppose we
get an output of 10, when the
ground truth was 7.

What is the mean squared error?

𝐿 =
∑𝑖=1

𝑛 (𝑧 2 − 𝑦 𝑖)^2

𝑛

𝐿 = 𝑧 2 − 𝑦
2

Backpropagation

Output, 𝑧 2 = 𝑅𝑒𝐿𝑈 𝑥𝑊 1 + 𝑏 1 𝑊 2 + 𝑏 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

For a single example, suppose we
get an output of 10, when the
ground truth was 7.

What is the mean squared error?

𝐿 =
∑𝑖=1

𝑛 (𝑧 2 − 𝑦 𝑖)^2

𝑛

𝐿 = 𝑧 2 − 𝑦
2

𝐿 = 10 − 7 2

𝐿 = 9

Backpropagation

Output, 𝑧 2 = 𝑅𝑒𝐿𝑈 𝑥𝑊 1 + 𝑏 1 𝑊 2 + 𝑏 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

For a single example, suppose we
get an output of 10, when the
ground truth was 7.

What is the mean squared error?

What is 𝑑𝐿

𝑑𝑏 2 ?

𝐿 =
∑𝑖=1

𝑛 (𝑧 2 − 𝑦 𝑖)^2

𝑛

𝐿 = 𝑧 2 − 𝑦
2

𝐿 = 10 − 7 2

𝐿 = 9

Backpropagation

Output, 𝑧 2 = 𝑅𝑒𝐿𝑈 𝑥𝑊 1 + 𝑏 1 𝑊 2 + 𝑏 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

For a single example, suppose we
get an output of 10, when the
ground truth was 7.

What is the mean squared error?

What is 𝑑𝐿

𝑑𝑏 2 ? 𝑑𝐿

𝑑𝑏 2
=

𝑑𝐿

𝑑𝑧 2
⋅

𝑑𝑧 2

𝑑𝑏 2
= 2(𝑧 2 − 𝑦) ⋅ 1 = 6

𝐿 =
∑𝑖=1

𝑛 (𝑧 2 − 𝑦 𝑖)^2

𝑛

𝐿 = 𝑧 2 − 𝑦
2

𝐿 = 10 − 7 2

𝐿 = 9

Backpropagation

Output, 𝑧 2 = 𝑅𝑒𝐿𝑈 𝑥𝑊 1 + 𝑏 1 𝑊 2 + 𝑏 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

What is 𝑑𝐿

𝑑𝑤1,1
1 ?

For a single example, suppose we
get an output of 10, when the
ground truth was 7.

What is the mean squared error?

What is 𝑑𝐿

𝑑𝑏 2 ? 𝑑𝐿

𝑑𝑏 2
=

𝑑𝐿

𝑑𝑧 2
⋅

𝑑𝑧 2

𝑑𝑏 2
= 2(𝑧 2 − 𝑦) ⋅ 1 = 6

𝐿 =
∑𝑖=1

𝑛 (𝑧 2 − 𝑦 𝑖)^2

𝑛

𝐿 = 𝑧 2 − 𝑦
2

𝐿 = 10 − 7 2

𝐿 = 9

Backpropagation

Output, 𝑧 2 = 𝑅𝑒𝐿𝑈 𝑥𝑊 1 + 𝑏 1 𝑊 2 + 𝑏 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1,1
(1)

𝑤2,1
(1)

𝑤3,1
1

𝑤4,1
1

∑

𝑏1
1

𝑤1,2
1

𝑤2,2
1

𝑤3,2
1

𝑤4,2
1

∑

𝑏2
1 𝑤2,1

2

𝑤1,1
2

∑

𝑏1
2

Output

What is 𝑑𝐿

𝑑𝑤1,1
1 ?

For a single example, suppose we
get an output of 10, when the
ground truth was 7.

What is the mean squared error?

What is 𝑑𝐿

𝑑𝑏 2 ? 𝑑𝐿

𝑑𝑏 2
=

𝑑𝐿

𝑑𝑧 2
⋅

𝑑𝑧 2

𝑑𝑏 2
= 2(𝑧 2 − 𝑦) ⋅ 1 = 6

𝐿 =
∑𝑖=1

𝑛 (𝑧 2 − 𝑦 𝑖)^2

𝑛

𝐿 = 𝑧 2 − 𝑦
2

𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

𝐿 = 10 − 7 2

𝐿 = 9

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

Component-wise derivation

𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

Component-wise derivation

𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

Component-wise derivation

𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

𝑤1,1
2

Component-wise derivation

𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

𝑤1,1
2 0 if 𝑧1

1 <0,
1 otherwise

Component-wise derivation

𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

𝑤1,1
2 0 if 𝑧1

1 <0,
1 otherwise

𝑥1

Component-wise derivation

𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

𝑤1,1
2 0 if 𝑧1

1 <0,
1 otherwise

𝑥1

Component-wise derivation

Matrix Form derivation

𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

𝑤1,1
2 0 if 𝑧1

1 <0,
1 otherwise

𝑥1

Component-wise derivation

Matrix Form derivation
𝑑𝐿

𝑑𝑊
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎
1

⋅
𝑑𝑎

1

𝑑𝑧
1

⋅
𝑑𝑧

1

𝑑𝑊
1

𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

𝑤1,1
2 0 if 𝑧1

1 <0,
1 otherwise

𝑥1

Component-wise derivation

Matrix Form derivation
𝑑𝐿

𝑑𝑊
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎
1

⋅
𝑑𝑎

1

𝑑𝑧
1

⋅
𝑑𝑧

1

𝑑𝑊
1

𝐿 = 𝑧 2 − 𝑦
2

𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

𝑤1,1
2 0 if 𝑧1

1 <0,
1 otherwise

𝑥1

Component-wise derivation

Matrix Form derivation
𝑑𝐿

𝑑𝑊
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎
1

⋅
𝑑𝑎

1

𝑑𝑧
1

⋅
𝑑𝑧

1

𝑑𝑊
1

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎 1 𝑊 2 + 𝑏 2

𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

𝑤1,1
2 0 if 𝑧1

1 <0,
1 otherwise

𝑥1

Component-wise derivation

Matrix Form derivation
𝑑𝐿

𝑑𝑊
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎
1

⋅
𝑑𝑎

1

𝑑𝑧
1

⋅
𝑑𝑧

1

𝑑𝑊
1

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎 1 𝑊 2 + 𝑏 2

𝑎
(1)

= 𝑅𝑒𝐿𝑈(𝑧
1

)

𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

𝑤1,1
2 0 if 𝑧1

1 <0,
1 otherwise

𝑥1

Component-wise derivation

Matrix Form derivation
𝑑𝐿

𝑑𝑊
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎
1

⋅
𝑑𝑎

1

𝑑𝑧
1

⋅
𝑑𝑧

1

𝑑𝑊
1

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎 1 𝑊 2 + 𝑏 2

𝑎
(1)

= 𝑅𝑒𝐿𝑈(𝑧
1

)

𝑧
1

= 𝑥𝑊(1) + 𝑏

2 𝑧 2 − 𝑦

𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

𝑤1,1
2 0 if 𝑧1

1 <0,
1 otherwise

𝑥1

Component-wise derivation

Matrix Form derivation
𝑑𝐿

𝑑𝑊
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎
1

⋅
𝑑𝑎

1

𝑑𝑧
1

⋅
𝑑𝑧

1

𝑑𝑊
1

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎 1 𝑊 2 + 𝑏 2

𝑎
(1)

= 𝑅𝑒𝐿𝑈(𝑧
1

)

𝑧
1

= 𝑥𝑊(1) + 𝑏

2 𝑧 2 − 𝑦

𝑊 2 T

𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

𝑤1,1
2 0 if 𝑧1

1 <0,
1 otherwise

𝑥1

Component-wise derivation

Matrix Form derivation
𝑑𝐿

𝑑𝑊
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎
1

⋅
𝑑𝑎

1

𝑑𝑧
1

⋅
𝑑𝑧

1

𝑑𝑊
1

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎 1 𝑊 2 + 𝑏 2

𝑎
(1)

= 𝑅𝑒𝐿𝑈(𝑧
1

)

𝑧
1

= 𝑥𝑊(1) + 𝑏

2 𝑧 2 − 𝑦

𝑊 2 T 0 if 𝑧1
1 <0,

1 otherwise

𝑑𝐿

𝑑𝑤1,1
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎1
1

⋅
𝑑𝑎1

1

𝑑𝑧1
1

⋅
𝑑𝑧1

1

𝑑𝑤1,1
1

2 𝑧 2 − 𝑦

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎1
(1)

𝑤1,1
2

+ 𝑎2
1

𝑤1,2
2

+ b 2

𝑎1
(1)

= 𝑅𝑒𝐿𝑈(𝑧1
1

)

𝑧1
(1)

= 𝑤1,1𝑥1 + 𝑤1,2𝑥2 + 𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑏

𝑤1,1
2 0 if 𝑧1

1 <0,
1 otherwise

𝑥1

Component-wise derivation

Matrix Form derivation
𝑑𝐿

𝑑𝑊
1

=
dL

dz 2
⋅

𝑑𝑧 2

𝑑𝑎
1

⋅
𝑑𝑎

1

𝑑𝑧
1

⋅
𝑑𝑧

1

𝑑𝑊
1

𝐿 = 𝑧 2 − 𝑦
2

𝑧 2 = 𝑎 1 𝑊 2 + 𝑏 2

𝑎
(1)

= 𝑅𝑒𝐿𝑈(𝑧
1

)

𝑧
1

= 𝑥𝑊(1) + 𝑏

2 𝑧 2 − 𝑦

𝑊 2 T 0 if 𝑧1
1 <0,

1 otherwise
xT

Shape Help

Consider each step to be a function (which they are). What shapes are
the input and outputs? Ther derivative of each function must have shape
ℝin×out, where in and out are the input and output dimensions for that
function.

The Jacobian of a function with respect to an input matrix in ℝn×d must
have the shape ℝn×d!

Why? Recall that a derivative/gradient/Jacobian tells you if the function
will increase/decrease with small changes to input. Each element of the
Jacobian corresponds to a specific input value.

Multiple Examples

• The previous example took in one example to compute MSE
• The full gradient of the loss function is not determined by one

example, but multiple examples!

What changes?

X ∈ ℝn×d instead of x ∈ ℝ1×d

dL

dz(2)
∈ ℝn×1

Many other Jacobians add a batch dimension for the
n examples.

How many inputs and outputs does the term have?

Derivative shapes for parameters (weights and
biases) never change. Why is that expected?

Compute Graph for a Single Layer

z(l) = W(l)a(l−1) + b(l)

z(l)

Local grad: dz(l)

da(l−1)

Local grad: dz(l)

dW(l)

W(l)

a(l−1)

b(l)

Local grad: dz(l)

db(l)

Compute Graph for a Single Layer

z(l) = W(l)a(l−1) + b(l)

z(l)

dL

dz(l)Local grad: dz(l)

da(l−1)

Local grad: dz(l)

dW(l)

W(l)

a(l−1)

b(l)

Local grad: dz(l)

db(l)

Compute Graph for a Single Layer

z(l) = W(l)a(l−1) + b(l)

z(l)

dL

dz(l)Local grad: dz(l)

da(l−1)

Local grad: dz(l)

dW(l)

W(l)

a(l−1)

b(l)

Local grad: dz(l)

db(l)

dL

db(l)
=

dL

dz(l)

dz(l)

db(l)

dL

dW(l)
=

dL

dz(l)

dz(l)

dW(l)

dL

da(l−1)
=

dL

dz(l)

dz(l)

da(l−1)

Compute Graph for a Single Layer

z(l) = W(l)a(l−1) + b(l)

z(l)

dL

dz(l)Local grad: dz(l)

da(l−1)

Local grad: dz(l)

dW(l)

W(l)

a(l−1)

b(l)

Local grad: dz(l)

db(l)

dL

db(l)
=

dL

dz(l)

dz(l)

db(l)

dL

dW(l)
=

dL

dz(l)

dz(l)

dW(l)

dL

da(l−1)
=

dL

dz(l)

dz(l)

da(l−1)

For each node:

 Compose cumulative gradient dL

dz(l) with local gradients
 Pass new cumulative gradient to parent nodes, repeat

That was a lot of math, let’s take a break

Weekly quiz is available on Gradescope!

Why should you care about compute graphs?
(This is much more of a common issue in pytorch than tensorflow)

Why should you care about compute graphs?

Running loss’ compute
graph will contain the

compute graph of loss!

(This is much more of a common issue in pytorch than tensorflow)

Why should you care about compute graphs?

Running loss’ compute
graph will contain the

compute graph of loss!

The memory required to
store running_loss will only

ever increase!

(This is much more of a common issue in pytorch than tensorflow)

DL Frameworks

• Main current frameworks are Tensorflow, Pytorch, and Jax
• TF and torch are becoming increasingly similar in style and

performance
• Jax is new and different

https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/

Tensorflow

Tensorflow

- Developed and maintained by Google

Tensorflow

- Developed and maintained by Google
- In addition to autodiff features it also provides:

- Many common functions (i.e., Softmax, Sigmoid, Cross Entropy, etc.)
- An easy way to train models (Keras)
- Strong support for hardware acceleration (i.e., if you have a GPU, TF will

figure out how to use it)

Tensorflow

- Developed and maintained by Google
- In addition to autodiff features it also provides:

- Many common functions (i.e., Softmax, Sigmoid, Cross Entropy, etc.)
- An easy way to train models (Keras)
- Strong support for hardware acceleration (i.e., if you have a GPU, TF will

figure out how to use it)

- “Easier to deploy to production” (has been the general consensus
previously, but other frameworks have caught up)

Tensorflow

- Developed and maintained by Google
- In addition to autodiff features it also provides:

- Many common functions (i.e., Softmax, Sigmoid, Cross Entropy, etc.)
- An easy way to train models (Keras)
- Strong support for hardware acceleration (i.e., if you have a GPU, TF will

figure out how to use it)

- “Easier to deploy to production” (has been the general consensus
previously, but other frameworks have caught up)

- TF lite for on device applications (e.g., phones)

Pytorch

Pytorch

• Developed by Facebook AI (now Meta)

Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community

Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community
• “More flexible” and easier to write custom backward passes

Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community
• “More flexible” and easier to write custom backward passes
• No Gradient Tape, each tensor (matrix/vector) is “trainable” or not.

If a tensor is trainable then all operations on it are tracked.

Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community
• “More flexible” and easier to write custom backward passes
• No Gradient Tape, each tensor (matrix/vector) is “trainable” or not.

If a tensor is trainable then all operations on it are tracked.
• Slightly more work to use GPUs or other hardware

Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community
• “More flexible” and easier to write custom backward passes
• No Gradient Tape, each tensor (matrix/vector) is “trainable” or not.

If a tensor is trainable then all operations on it are tracked.
• Slightly more work to use GPUs or other hardware
• Harder to track stats

• (I still use TF’s tensorboard stat tracker when using Pytorch)

Pytorch

• Developed by Facebook AI (now Meta)
• More common in the research and academic community
• “More flexible” and easier to write custom backward passes
• No Gradient Tape, each tensor (matrix/vector) is “trainable” or not.

If a tensor is trainable then all operations on it are tracked.
• Slightly more work to use GPUs or other hardware
• Harder to track stats

• (I still use TF’s tensorboard stat tracker when using Pytorch)
• Easier to learn and use than tensorflow

• Better error reporting, training code is harder to write but easier to debug

Jax

Jax

• Also developed by Google…

Jax

• Also developed by Google…
• Very new compared to Pytorch and Tensorflow

Jax

• Also developed by Google…
• Very new compared to Pytorch and Tensorflow
• Much Faster

Jax

• Also developed by Google…
• Very new compared to Pytorch and Tensorflow
• Much Faster
• Takes advantage of Just In Time (JIT) compiling to speed up

execution

Jax

• Also developed by Google…
• Very new compared to Pytorch and Tensorflow
• Much Faster
• Takes advantage of Just In Time (JIT) compiling to speed up

execution
• Functional programming paradigm

Improving Gradient Descent

Improving Gradient Descent

Computing the full gradient for a large dataset takes a very long
time and it often will not fit in memory, slowing it down even further

Improving Gradient Descent

Computing the full gradient for a large dataset takes a very long
time and it often will not fit in memory, slowing it down even further

Solution: Approximate the gradient by sampling a selection of
examples (i.e., a batch). Run a gradient descent step with that batch

Stochastic Gradient Descent

For N epochs:
 sample a batch B from dataset X
 compute predictions and loss function
 compute gradient
 update weights with small step in direction of negative grad.

Stochastic Gradient Descent

For N epochs:
 sample a batch B from dataset X
 compute predictions and loss function
 compute gradient
 update weights with small step in direction of negative grad.

Training is non-deterministic because batches are sampled randomly from dataset

Stochastic Gradient Descent

For N epochs:
 sample a batch B from dataset X
 compute predictions and loss function
 compute gradient
 update weights with small step in direction of negative grad.

Training is non-deterministic because batches are sampled randomly from dataset

Why does this work? The expectation of the gradient is equal to the gradient itself!

Further Improvements

If gradient descent is like a ball rolling
down a hill… What is that ball’s mass?

SGD can be further improved by
adding momentum term

AdaM: SGD + Adaptive Momentum
Generally recommended as the best performing and easiest to use optimizer!

Classification

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Proposed Loss Function: 𝐿 = 1 −
𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Proposed Loss Function: 𝐿 = 1 −
𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛

The Issue: most of the time, the gradient of this loss function is ∇L𝜃 = 0

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Proposed Loss Function: 𝐿 = 1 −
𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛

The Issue: most of the time, the gradient of this loss function is ∇L𝜃 = 0

Gradient is only non-zero when changing a 𝜃 has an impact on output predictions

0 gradient everywhere except x=0
X=0 is not differentiable, but it does have a sub-gradient

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Proposed Loss Function: 𝐿 = 1 −
𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛

The Issue: most of the time, the gradient of this loss function is ∇L𝜃 = 0

Gradient is only non-zero when changing a 𝜃 has an impact on output predictions

0 gradient everywhere except x=0
X=0 is not differentiable, but it does have a sub-gradient

We cannot use classification as a loss
function because it is incompatible with

gradient descent. Understanding Gradients
is key to understanding all decisions

related to neural networks!

What is a reasonable loss function to use?

• Accuracy is a “hard” function
• Hard to take meaningful derivatives of

• Other examples:
• Max vs. Softmax

• Ranking vs Softrank

• Sign function (i.e., perceptron activation) vs. Softsign

• Argmax

What is a reasonable loss function to use?

• Accuracy is a “hard” function
• Hard to take meaningful derivatives of

• Other examples:
• Max vs. Softmax

• Ranking vs Softrank

• Sign function (i.e., perceptron activation) vs. Softsign

• Argmax

My (somewhat) old research

Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

Defined for two probability
distributions, P and Q

Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

Defined for two probability
distributions, P and Q

Think of Q as what we predict and
P as the ground truth Probabilities

Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

Defined for two probability
distributions, P and Q

Think of Q as what we predict and
P as the ground truth Probabilities

When P(x) is high, Q(x) should
also be high… (Log(1) = 0)

One-Hot Vectors Revisited

One-Hot Vectors Revisited

Can be
interpreted as a

probability!

Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

“Ground truth” Probability (i.e.,
label)

Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

“Ground truth” Probability (i.e.,
label)

Predicted probabilities

Kullback–Leibler divergence

• One type of statistical distance
• Distance between two probability distributions

“Ground truth” Probability (i.e.,
label)

Predicted probabilities

P(x) is 1 if x is correct label, 0
otherwise

Binary Cross Entropy

KL Divergence

Cross Entropy (CE)

Binary Cross Entropy

KL Divergence

Cross Entropy (CE) ”Categorical Cross Entropy”

Binary Cross Entropy

KL Divergence

Cross Entropy (CE) ”Categorical Cross Entropy”

For Binary problems “Binary
Cross Entropy” (BCE)

Derivative of Cross Entropy

Derivative of Cross Entropy

What is this? (vector, scalar,
matrix)

Derivative of Cross Entropy

What is this? (vector, scalar,
matrix)

What is this? (vector, scalar,
matrix)

Derivative of Cross Entropy

What is this? (vector, scalar,
matrix)

What is this? (vector, scalar,
matrix)

What is this? (vector, scalar,
matrix)

Derivative of Cross Entropy

Probability of predicting
correct label for example i

Probabilities

• If we have probabilities, we can use Cross Entropy

• How do we get probabilities?

Option #1: Normalize outputs (i.e.,
divide by their total)

Option #2: Use another function
(i.e., softmax)

Softmax Function

Source: https://www.singlestore.com/blog/a-guide-to-softmax-activation-function/

http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
http://www.singlestore.com/blog/a-guide-to-softmax-activation-function/

What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [1, 2]. For a second image, the
network outputs [10, 20].

What will be the predicted probabilities with normalization?

What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [1, 2]. For a second image, the
network outputs [10, 20].

What will be the predicted probabilities with normalization?

[1/3, 2/3] for both examples

What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [1, 2]. For a second image, the
network outputs [10, 20].

What will be the predicted probabilities with Softmax?

What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [1, 2]. For a second image, the
network outputs [10, 20].

What will be the predicted probabilities with Softmax?

[0.26, 0.73] for [1, 2]
[0.00005, 0.99995] for [10, 20]

What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image,
the network outputs [20, 30].

What will be the predicted probabilities with Normalization?

Add 10 to each output

What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image,
the network outputs [20, 30].

What will be the predicted probabilities with Normalization?

[0.47, 0.53] for [11, 12]
[0.4, 0.6] for [20, 30]

Add 10 to each output

What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image,
the network outputs [20, 30].

What will be the predicted probabilities with Softmax?

Add 10 to each output

What’s the difference?

Consider a neural network with 2 outputs.

For one image, the network outputs [11, 12]. For a second image,
the network outputs [20, 30].

What will be the predicted probabilities with Softmax?

Add 10 to each output

[0.26, 0.73] for [11, 12]
[0.00005, 0.99995] for [20, 30]

Exactly the same as [1, 2] and [10, 20]

What’s the difference?

What’s the difference?

Normalization is sensitive to additive changes, but not multiplicative
changes

What’s the difference?

Normalization is sensitive to additive changes, but not multiplicative
changes

Softmax is sensitive to multiplicative changes, but not additive

What’s the difference?

• Normalization is sensitive to additive changes, but not multiplicative
changes

• Softmax is sensitive to multiplicative changes, but not additive

Softmax also has other advantages:

What’s the difference?

• Normalization is sensitive to additive changes, but not multiplicative
changes

• Softmax is sensitive to multiplicative changes, but not additive

Softmax also has other advantages:

• - Tends to handle smaller probabilities better (less float underflow)

What’s the difference?

Normalization is sensitive to additive changes, but not multiplicative
changes

Softmax is sensitive to multiplicative changes, but not additive

Softmax also has other advantages:

- Tends to handle smaller probabilities better (less float underflow)
- Remember that log in our loss function? Remember the 𝑒𝑧 in softmax?

Our loss function becomes ~linear for our neuron outputs z

What’s the difference?

Normalization is sensitive to additive changes, but not multiplicative
changes

Softmax is sensitive to multiplicative changes, but not additive

Softmax also has other advantages:

- Tends to handle smaller probabilities better (less float underflow)
- Remember that log in our loss function? Remember the 𝑒𝑧 in softmax?

Our loss function becomes ~linear for our neuron outputs z

- Maybe has issues with overflow… (outputs can become inf or NaN)

	Slide 1
	Slide 2: Review: Multi-Layer Perceptrons
	Slide 3: Gradient Descent
	Slide 4: Vector Calculus
	Slide 5: Gradients
	Slide 6: Gradients
	Slide 7: Jacobians
	Slide 8: Option 2: Gradient Descent
	Slide 9: Option 2: Gradient Descent
	Slide 10: Option 2: Gradient Descent
	Slide 11: Option 2: Gradient Descent
	Slide 12: Option 2: Gradient Descent
	Slide 13: Option 2: Gradient Descent
	Slide 14: Option 2: Gradient Descent
	Slide 15: Option 2: Gradient Descent
	Slide 16: Option 2: Gradient Descent
	Slide 17: Gradients
	Slide 18
	Slide 19
	Slide 20: Symbolic Differentiation
	Slide 21: Symbolic Differentiation
	Slide 22: Automatic Differentiation
	Slide 23: Tensorflow
	Slide 24: Tensorflow
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Order of Backward Pass
	Slide 31: Order of Backward Pass
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Backpropagation
	Slide 47: Backpropagation
	Slide 48: Backpropagation
	Slide 49: Backpropagation
	Slide 50: Backpropagation
	Slide 51: Backpropagation
	Slide 52: Backpropagation
	Slide 53: Backpropagation
	Slide 54: Backpropagation
	Slide 55: Backpropagation
	Slide 56: Backpropagation
	Slide 57: Backpropagation
	Slide 58: Backpropagation
	Slide 59: Backpropagation
	Slide 60: Backpropagation
	Slide 61: Backpropagation
	Slide 62: Backpropagation
	Slide 63: Backpropagation
	Slide 64: Backpropagation
	Slide 65: Backpropagation
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81: Shape Help
	Slide 82: Multiple Examples
	Slide 83: Compute Graph for a Single Layer
	Slide 84: Compute Graph for a Single Layer
	Slide 85: Compute Graph for a Single Layer
	Slide 86: Compute Graph for a Single Layer
	Slide 87: That was a lot of math, let’s take a break
	Slide 88: Why should you care about compute graphs?
	Slide 89: Why should you care about compute graphs?
	Slide 90: Why should you care about compute graphs?
	Slide 91: DL Frameworks
	Slide 92: Tensorflow
	Slide 93: Tensorflow
	Slide 94: Tensorflow
	Slide 95: Tensorflow
	Slide 96: Tensorflow
	Slide 97: Pytorch
	Slide 98: Pytorch
	Slide 99: Pytorch
	Slide 100: Pytorch
	Slide 101: Pytorch
	Slide 102: Pytorch
	Slide 103: Pytorch
	Slide 104: Pytorch
	Slide 105: Jax
	Slide 106: Jax
	Slide 107: Jax
	Slide 108: Jax
	Slide 109: Jax
	Slide 110: Jax
	Slide 111: Improving Gradient Descent
	Slide 112: Improving Gradient Descent
	Slide 113: Improving Gradient Descent
	Slide 114: Stochastic Gradient Descent
	Slide 115: Stochastic Gradient Descent
	Slide 116: Stochastic Gradient Descent
	Slide 117
	Slide 118: Further Improvements
	Slide 119: AdaM: SGD + Adaptive Momentum
	Slide 120: Classification
	Slide 121: Classification
	Slide 122: Classification
	Slide 123: Classification
	Slide 124: Classification
	Slide 125: Classification
	Slide 126: Classification
	Slide 127: What is a reasonable loss function to use?
	Slide 128: What is a reasonable loss function to use?
	Slide 129: Kullback–Leibler divergence
	Slide 130: Kullback–Leibler divergence
	Slide 131: Kullback–Leibler divergence
	Slide 132: Kullback–Leibler divergence
	Slide 133: One-Hot Vectors Revisited
	Slide 134: One-Hot Vectors Revisited
	Slide 135: Kullback–Leibler divergence
	Slide 136: Kullback–Leibler divergence
	Slide 137: Kullback–Leibler divergence
	Slide 138: Kullback–Leibler divergence
	Slide 139: Binary Cross Entropy
	Slide 140: Binary Cross Entropy
	Slide 141: Binary Cross Entropy
	Slide 142: Derivative of Cross Entropy
	Slide 143: Derivative of Cross Entropy
	Slide 144: Derivative of Cross Entropy
	Slide 145: Derivative of Cross Entropy
	Slide 146: Derivative of Cross Entropy
	Slide 147: Probabilities
	Slide 148: Softmax Function
	Slide 149: What’s the difference?
	Slide 150: What’s the difference?
	Slide 151: What’s the difference?
	Slide 152: What’s the difference?
	Slide 153: What’s the difference?
	Slide 154: What’s the difference?
	Slide 155: What’s the difference?
	Slide 156: What’s the difference?
	Slide 157: What’s the difference?
	Slide 158: What’s the difference?
	Slide 159: What’s the difference?
	Slide 160: What’s the difference?
	Slide 161: What’s the difference?
	Slide 162: What’s the difference?
	Slide 163: What’s the difference?

