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Recap

A perceptron/neuron works just like a linear 
regression, but has a different activation function

Loss Functions tell us about the 
performance of the model (which we will 
also optimize for)

We must always test for (and 
balance) overfitting and 
underfitting



Train, validation, and test sets

• Training Set: Used to adjust parameters of model

• Validation set — used to test how well we’re doing as we develop 

• Prevents overfitting

• Test Set — used to evaluate the model once the model is done Train

Validation

Test



MNIST

The most famous dataset in Deep Learning
Modified National Institute of Standards and Technology database

Image courtesy of Wikipedia





MNIST

• 60,000 Images in training set
• 10,000 Images in test set
• No explicit validation set



MNIST

• 60,000 Images in training set
• 10,000 Images in test set
• No explicit validation set

What do you suggest 
we do?

80/20 train/validation 
splits are common
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The Perceptron Algorithm

Loop Over Dataset (until no weights change)
 - For each misclassified example
  - update weights to make better prediction for example



The Perceptron Algorithm

1. Initialize Ԧ𝜃 = 0

2. For N iterations or until Ԧ𝜃 does not change
1. For each example 𝑥 𝑘  with label 𝑦 𝑘

1. If 𝑦 𝑘 = 𝑓(𝑥 𝑘 ), continue

2. Else, for all parameters 𝜃𝑖 ∈ Ԧ𝜃, 𝜃𝑖 = 𝜃𝑖 + 𝑦 𝑘 − 𝑓 𝑥 𝑘 ⋅ 𝑥𝑖
𝑘

w: weights
b: bias

𝜃: parameters (weights and biases), Ԧ𝜃 = 𝑤 ∪ 𝑏

𝑥 𝑘 : k’th training example, 𝑦 𝑘  k’th training label
𝑥𝑖

𝑘 : i’th feature for k’th example
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b: bias
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𝑥 𝑘 : k’th training example, 𝑦 𝑘  k’th training label
𝑥𝑖

𝑘 : i’th feature for k’th example

Need to start somewhere… 
any initial setting will work



The Perceptron Algorithm

1. Initialize Ԧ𝜃 = 0

2. For N iterations or until Ԧ𝜃 does not change
1. For each example 𝑥 𝑘  with label 𝑦 𝑘

1. If 𝑦 𝑘 = 𝑓(𝑥 𝑘 ), continue

2. Else, for all parameters 𝜃𝑖 ∈ Ԧ𝜃, 𝜃𝑖 = 𝜃𝑖 + 𝑦 𝑘 − 𝑓 𝑥 𝑘 ⋅ 𝑥𝑖
𝑘
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b: bias

𝜃: parameters (weights and biases), Ԧ𝜃 = 𝑤 ∪ 𝑏

𝑥 𝑘 : k’th training example, 𝑦 𝑘  k’th training label
𝑥𝑖

𝑘 : i’th feature for k’th example

N is referred to as “epochs”:
Number of times the entire 
dataset is iterated through



The Perceptron Algorithm

1. Initialize Ԧ𝜃 = 0

2. For N iterations or until Ԧ𝜃 does not change
1. For each example 𝑥 𝑘  with label 𝑦 𝑘

1. If 𝑦 𝑘 = 𝑓(𝑥 𝑘 ), continue

2. Else, for all parameters 𝜃𝑖 ∈ Ԧ𝜃, 𝜃𝑖 = 𝜃𝑖 + 𝑦 𝑘 − 𝑓 𝑥 𝑘 ⋅ 𝑥𝑖
𝑘

w: weights
b: bias

𝜃: parameters (weights and biases), Ԧ𝜃 = 𝑤 ∪ 𝑏

𝑥 𝑘 : k’th training example, 𝑦 𝑘  k’th training label
𝑥𝑖

𝑘 : i’th feature for k’th example

Loop over every example in dataset



The Perceptron Algorithm

1. Initialize Ԧ𝜃 = 0

2. For N iterations or until Ԧ𝜃 does not change
1. For each example 𝑥 𝑘  with label 𝑦 𝑘

1. If 𝑦 𝑘 = 𝑓(𝑥 𝑘 ), continue

2. Else, for all parameters 𝜃𝑖 ∈ Ԧ𝜃, 𝜃𝑖 = 𝜃𝑖 + 𝑦 𝑘 − 𝑓 𝑥 𝑘 ⋅ 𝑥𝑖
𝑘

w: weights
b: bias

𝜃: parameters (weights and biases), Ԧ𝜃 = 𝑤 ∪ 𝑏

𝑥 𝑘 : k’th training example, 𝑦 𝑘  k’th training label
𝑥𝑖

𝑘 : i’th feature for k’th example

Look only at examples that are 
misclassified (i.e., 𝑦 𝑘 ≠ 𝑓(𝑥 𝑘 ))
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For every parameter in our perceptron…
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For every parameter in our perceptron…

If 𝑦 𝑘 = 1 and 𝑓 𝑥 𝑘 = 0 and 𝑥𝑖
𝑘 >0…



The Perceptron Algorithm

1. Initialize Ԧ𝜃 = 0

2. For N iterations or until Ԧ𝜃 does not change
1. For each example 𝑥 𝑘  with label 𝑦 𝑘

1. If 𝑦 𝑘 = 𝑓(𝑥 𝑘 ), continue

2. Else, for all parameters 𝜃𝑖 ∈ Ԧ𝜃, 𝜃𝑖 = 𝜃𝑖 + 𝑦 𝑘 − 𝑓 𝑥 𝑘 ⋅ 𝑥𝑖
𝑘

w: weights
b: bias

𝜃: parameters (weights and biases), Ԧ𝜃 = 𝑤 ∪ 𝑏

𝑥 𝑘 : k’th training example, 𝑦 𝑘  k’th training label
𝑥𝑖

𝑘 : i’th feature for k’th example

For every parameter in our perceptron…

If 𝑦 𝑘 = 1 and 𝑓 𝑥 𝑘 = 0 and 𝑥𝑖
𝑘 >0…

𝜃𝑖 increases



The Perceptron Algorithm

1. Initialize Ԧ𝜃 = 0

2. For N iterations or until Ԧ𝜃 does not change
1. For each example 𝑥 𝑘  with label 𝑦 𝑘

1. If 𝑦 𝑘 = 𝑓(𝑥 𝑘 ), continue

2. Else, for all parameters 𝜃𝑖 ∈ Ԧ𝜃, 𝜃𝑖 = 𝜃𝑖 + 𝑦 𝑘 − 𝑓 𝑥 𝑘 ⋅ 𝑥𝑖
𝑘

w: weights
b: bias

𝜃: parameters (weights and biases), Ԧ𝜃 = 𝑤 ∪ 𝑏

𝑥 𝑘 : k’th training example, 𝑦 𝑘  k’th training label
𝑥𝑖

𝑘 : i’th feature for k’th example

If no parameters change, then we know 
that 𝑦 𝑘 = 𝑓 𝑥 𝑘 ∀𝑘



Converting Perceptrons to Multi-Class 
Classification





How do we do this?



How do we do this?

Instead of outputting a 
binary prediction, make 

an output for each class.



Using Multiple Perceptrons

• We can use m perceptrons (where m is the number of output 
classes)

• For MNIST, this would be 10 perceptrons
• Each individual perceptron will need to return a value, our model 

will return the class with the highest value
• Here, value refers to the weighted sum before the threshold is applied







MNIST Performance

Perceptrons can perform quite well on MNIST, with around 85% accuracy

But they will always be linear classifiers…



Perceptrons

Are Perceptrons guaranteed to achieve 
100% accuracy?
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How can you put a linear separator on the 
plot to separate the two classes?
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Perceptrons

Are Perceptrons guaranteed to achieve 
100% accuracy?

How can you put a linear separator on the 
plot to separate the two classes?

There are simple functions that 
perceptrons can’t learn!



Perceptrons: The Book

Perceptrons: An Introduction to Computational Geometry
• Published by Marvin Minsky and Seymour Papert in 1969
• Acknowledged some strengths of Perceptrons and identified 

some fundamental flaws
• (Partially) responsible for shifting AI research away from 

“connectivism” and towards symbolic AI systems

Limited funding for neural networks research in the 1970s
(First AI winter)

1980s – revival of neural networks research
“Invention” of backpropagation, needed for efficient training of neural networks

1987 – collapse of LISP machine market and abandonment of expert systems
(Second AI winter)

AI Research Timeline



The Solution:

Use hand-crafted feature:
|𝑥1 − 𝑥2|

0 1

Trivial to find linear separator 
in new feature space!

But how do we find 
appropriate features?



The Solution: learn new features
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Perceptron

Multi-Layer Perceptron (MLP, Neural Network)

Layer 1 Layer 2



MLPs
Hidden Layers

Input Features Outputs

Goal (for binary-classification):
Learn intermediate features, such 
that the final representation is 
linearly separable

Learned Representation: 
Transformation of original features 
into new “learned” features

MLPs consist of weights, biases, 
and activation functions for each 
neuron.



Multi-Layer Perceptrons

What happens if we remove the 
threshold activations from a 
multi-layer perceptron? 𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏1

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏2
𝑤10

𝑤9

∑

𝑏3

OutputLet w(1) = [𝑤1, 𝑤2, 𝑤3, 𝑤4]
Perceptron #1: z1 = 𝑥𝑇𝑤(1) + 𝑏1



Multi-Layer Perceptrons

What happens if we remove the 
activations from a multi-layer 
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𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏1

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏2
𝑤10

𝑤9

∑

𝑏3

OutputLet w(2) = [𝑤5, 𝑤6, 𝑤7, 𝑤8]
Perceptron #1: z1 = 𝑥𝑇𝑤(1) + 𝑏1

Perceptron #2: 𝑧2 = 𝑥𝑇𝑤(2) + 𝑏2



Multi-Layer Perceptrons

What happens if we remove the 
activations from a multi-layer 
perceptron? 𝑥1

𝑥2
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Perceptron #1: z1 = 𝑥𝑇𝑤(1) + 𝑏1

Perceptron #2: 𝑧2 = 𝑥𝑇𝑤(2) + 𝑏2

Perceptron #3: 𝑧3 = 𝑧1𝑤9 + 𝑧2𝑤10 + 𝑏3



Multi-Layer Perceptrons

What happens if we remove the 
activations from a multi-layer 
perceptron? 𝑥1

𝑥2

𝑥3

𝑥4
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OutputLet w(2) = [𝑤5, 𝑤6, 𝑤7, 𝑤8]
Perceptron #1: z1 = 𝑥𝑇𝑤(1) + 𝑏1

Perceptron #2: 𝑧2 = 𝑥𝑇𝑤(2) + 𝑏2

Perceptron #3: 𝑧3 = 𝑧1𝑤9 + 𝑧2𝑤10 + 𝑏3

Entire Network:
𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3



Multi-Layer Perceptrons

What happens if we remove the 
activations from a multi-layer 
perceptron? 𝑥1

𝑥2

𝑥3

𝑥4

𝑤1
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OutputLet w(2) = [𝑤5, 𝑤6, 𝑤7, 𝑤8]
Perceptron #1: z1 = 𝑥𝑇𝑤(1) + 𝑏1

Perceptron #2: 𝑧2 = 𝑥𝑇𝑤(2) + 𝑏2

Perceptron #3: 𝑧3 = 𝑧1𝑤9 + 𝑧2𝑤10 + 𝑏3

Entire Network:
𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3
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*With no activation function*



MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

*With no activation function*



MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤1 +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

*With no activation function*



MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤(1) +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

𝑧 = 𝑥𝑇(𝑤9𝑤(1)+𝑤10𝑤(2)) + (𝑤9⋅ 𝑏1 + +𝑤10𝑏2 + 𝑏3)

*With no activation function*



MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤1 +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

𝑧 = 𝑥𝑇(𝑤9𝑤1+𝑤10𝑤(2)) + (𝑤9⋅ 𝑏1 + +𝑤10𝑏2 + 𝑏3)

*With no activation function*



MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤1 +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

𝑧 = 𝑥𝑇(𝑤9𝑤1+𝑤10𝑤(2)) + (𝑤9⋅ 𝑏1 + +𝑤10𝑏2 + 𝑏3)

Just a vector…

*With no activation function*



MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤1 +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

𝑧 = 𝑥𝑇(𝑤9𝑤1+𝑤10𝑤(2)) + (𝑤9⋅ 𝑏1 + +𝑤10𝑏2 + 𝑏3)

Just a vector…

*With no activation function*



MLP’s Expressiveness
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MLP’s Expressiveness
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MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤1 +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

𝑧 = 𝑥𝑇(𝑤9𝑤1+𝑤10𝑤(2)) + (𝑤9⋅ 𝑏1 + +𝑤10𝑏2 + 𝑏3)

Just a vector… Just a scalar…

𝑧 = 𝑥𝑇𝑤 + 𝑏

*With no activation function*

Multi-Layer Perceptrons without non-
linear activation functions are linear 

functions



Activation Functions
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applied to output of 
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Activation Functions

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

OutputActivation

Non-linear functions 
applied to output of 

neuron

In the perceptron case, 
the activation function 

is the threshold



Common Activation Functions



Common Activation Functions



Common Activation Functions
Rectified Linear Unit (ReLU):

One of the most common Activation Functions
Advantages: Simple, easy to compute gradients
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Common Activation Functions
Leaky ReLU:

Common substitute for ReLU, often has better performance
Advantages: Fixes “dying neurons” issue with ReLU.
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Tanh

Tanh:
Advantages: 
- Always maps output between -1 and 1 (learning 

is easier when input is normalized and this holds 
for intermediate layers as well)

- Continuously differentiable
Disadvantages:
- Slower to compute
- Extreme differences in input to activation can 

get squashed (i.e., z=100 will be very close to 
z=10000)



Special Activation Functions for Final Output



Special Activation Functions for Output
Sigmoid maps input to [0, 1]
Softmax maps vector of inputs to probabilities (outputs sum to 1)



Special Activation Functions for Output
Sigmoid maps input to [0, 1]
Softmax maps vector of inputs to probabilities (outputs sum to 1)

Used for classification tasks



MLPs With Activation Functions

We almost never draw 
activation functions in our 
neural network diagrams, 
but they must always be 
there!

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏1

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏2
𝑤10

𝑤9

∑

𝑏3

Output

Source: IBM

Source: Me

Source: Wikipedia
Source: 3B1B
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Neural Networks

• Without non-linear activation functions, a neural network is just a 
Linear Regression.

• With non-linear activation functions, a neural network is a 
universal function approximator.
• For any function, there exists a neural network of fixed depth that can 

approximate within some 𝜖 of error.
• If 𝜖 = 0, i.e., we want a perfect approximation, we may need an infinitely 

wide network.
• This is an existence theorem, meaning it tells you that a neural network 

exists with these properties. It does not tell you how to find the weights of 
this network.



Intuition

With large weights, sigmoid activation functions look like step functions



Approximating functions with step functions

We can use step functions to approximate arbitrary functions
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Neural Networks

• So that’s it, right? That’s why deep learning is so successful. 
Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Decision Trees of infinite depth 
can fit any function with 100% 

accuracy

Piecewise polynomials are 
universal function approximators 

(think Taylor expansions)

Wavelets (i.e., small pieces of 
sine and cosine) are universal 

function approximators

This theorem explains why neural 
networks are good at fitting the 
training dataset, not why they 

perform well on the test dataset.



Optimization



Learning Network Parameters

How do we find 
good parameters?



Option 1: Closed Form Solution

Goal: Minimize Loss function
Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters
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Option 1: Closed Form Solution

Goal: Minimize Loss function
Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters Worked for Linear Regressions!

Only had one point where ∇ f𝜃= 0 and that point 
was a global optimum.

MSE is convex with respect to the parameters of 
the linear Regression



Convexity

Picture Source: Andrew Ng

Formally: 
- For any two points 𝑥1, 𝑥2 and 𝜆 ∈ [0, 1]
- 𝜆𝑓 𝑥1 + 1 − 𝜆 𝑓 𝑥2 ≤ 𝜆𝑥1 + 1 − 𝜆 𝑥2

The line connecting any two 
points on the graph will 
always be above the function.

For convex functions, finding a point 
with ∇𝑓 = 0 is sufficient for knowing 
the point is a global minimum
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Non-Convex Functions
MSE is not convex with respect to network parameters 
when non-linear activations are involved. 

𝑤1

𝑤2

Multiple local minima
Saddle points

Local maxima

If ReLU or other piecewise 
activation function is used, may 
need 2𝑛 piecewise functions to 
write out ∇𝑓𝜃…
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Vector Calculus

• Partial Derivative: the derivative of a multi-variable function with 
respect to one of its inputs

• Example: 𝑓 𝑥, 𝑤, 𝑏 = 𝑤𝑥 + 𝑏

• The partial derivative with respect to w is 𝜕𝑓

𝜕𝑤

• How to compute: Treat all other variables as constants and 
differentiate with respect to that variable

𝜕𝑓

𝜕𝑤
=

𝜕

𝜕𝑤
𝑤𝑥 + 𝑏 =

𝜕

𝜕𝑤
𝑤𝑥 +

𝜕

𝜕𝑤
𝑏 = 𝑥



Gradients

Gradient: the vector of partial derivatives

Vector “points” in direction of increasing f  values.

∇𝑓 = [
𝜕𝑓

𝜕𝑤
,
𝜕𝑓

𝜕𝑏
, … ]

𝑓 𝑥, 𝑤, 𝑏 = 𝑤𝑥 + 𝑏

∇𝑓𝜃 = [
𝜕𝑓

𝜕𝑤
,
𝜕𝑓

𝜕𝑏
,
𝜕𝑓

𝜕𝑥
]
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1. Start with some initial set of parameters
2. Take small step in the direction of the 

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in 
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient of what?

Why is this negative?
Wait, this isn’t even the best 𝜃
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Starting point

Gradient points in direction of increasing loss

Small step in 
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Learning Rate 𝛼 ∈ [0,1]

Why do we need a learning rate?

Derivatives/Gradients only hold locally
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Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the 

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in 
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.

Understanding gradient descent is the single most 
important concept in all of Deep Learning. Most decisions 

in DL are made for reasons related to gradients.



Review: Mean Squared Error

Used previously for linear regression:

 𝑀𝑆𝐸 =
∑𝑖

𝑛(𝑦𝑖−𝑓𝜃( Ԧ𝑥))^2

𝑛

Used for regression tasks (prediction of continuous variable)

Model with parameters 𝜃
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Gradients

Gradient descent needs gradients, how do we actually calculate them?

 𝐿 =
∑𝑖

𝑛(𝑦𝑖−𝑓𝜃( Ԧ𝑥))^2

𝑛

𝐿 =
∑𝑖

𝑛[𝑦𝑖
2−2𝑓𝜃 Ԧ𝑥 + 𝑓𝜃 Ԧ𝑥 2]

𝑛

∇𝜃𝐿 =
∑𝑖

𝑛 2 ⋅ ∇𝑓𝜃 Ԧ𝑥 + 2 ⋅ ∇𝑓𝜃 Ԧ𝑥 ⋅ 𝑓𝜃( Ԧ𝑥)]

𝑛

But what is this? 𝑓𝜃 = 𝑤𝑥 + 𝑏
For a single output



Weight Matrix for a Layer of Neurons

• We have an input of size n and we want an output vector of size m.
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n inputs
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Weight Matrix

• We have an input of size n and we want an output vector of size m.
• We will represent our weights as a matrix.

• What should the dimensions of our matrix be?

n inputs
m inputs
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Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Proposed Loss Function: 𝐿 = 1 −
# 𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛

The Issue: most of the time, the gradient of this loss function is ∇L𝜃 = 0

Gradient is only non-zero when changing a 𝜃 has an impact on output predictions

0 gradient everywhere except x=0
X=0 is not differentiable, but it does have a sub-gradient

We cannot use classification as a loss 
function because it is incompatible with 

gradient descent



Remaining Questions for next week:
1) What loss function can we use for classification?
2) How do we actually calculate the gradient of a network?

1) If the loss function is applied to the whole dataset, shouldn’t we be 
concerned about the size of the dataset?

2) Gradient descent is an iterative approach. If each iteration is slow, the 
whole algorithm will take too long  to finish. 

3) Gradient descent can get stuck in local minima. 
 Can we do better?
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