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Loss Functions tell us about the

performance of the model (which we will

- A perceptron/neuron works just like a linear
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regression, but has a different activation function
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Train, validation, and test sets

* Training Set: Used to adjust parameters of model

* Validation set — used to test how well we’re doing as we develop
* Prevents overfitting

e Test Set — used to evaluate the model once the model is done Train

Validation

Test




MNIST

The most famous dataset in Deep Learning
Modified National Institute of Standards and Technology database
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Machine Learning Pipeline for Digit Recognition

Evaluate
Model

Dataset » Preprocessing » Train Model >
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MNIST

* 60,000 Images in training set
* 10,000 Images in test set
* No explicit validation set
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MNIST

* 60,000 Images in training set
* 10,000 Images in test set
* No explicit validation set
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What do you suggest
we do?
80/20 train/validation

splits are common




Machine Learning Pipeline for Digit Recognition

Evaluate
Model

Dataset » Preprocessing » Train Model <
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Classifying MNIST digits requires predicting
1 of 10 possible values

Our Problem:

Input: X Target: Y
g Which digit is it?
(1) 2 =) Function: f - y@D = «p”
X =

28x28 pixels ‘ f(X)% Y ‘

x(2) = y(z) — «”




) Classifying MNIST digits requires predicting
Our PrOblem' 1 of 10 possible values

Input' X What is our input space? Target: Y
g Which digit is it?
(1) 2 =) Function: f - y@D = «p”
X =

28x28 pixels ‘ f(X)% Y ‘

x(2) = y(Z) — “0”




) Classifying MNIST digits requires predicting
Our PrOblem' 1 of 10 possible values

What is our i ? Target: Y
|nput: X at is our input space g
b
e e 2 [ output Which digit is it?

=) Function:f ™= yD = «”

£+ =

28x28 pixels ‘ f(X)9 Y ‘

x(Z) - y(Z) — “0"




) Classifying MNIST digits requires predicting
Our PrOblem' 1 of 10 possible values

What is our input space? Target: Y

Input: X

What is our output space?

Pixel Grid Which digit is it?

=) Function:f ™= y = «2”

28x28 pixels ‘ f(X)% Y ‘

£@ y® = “0”




) Classifying MNIST digits requires predicting
Our PrOblem' 1 of 10 possible values

What is our input space? Target: Y

Input: X

What is our output space?

Pixel Grid : o
What is our prediction task? Which digit is it?

=) Function: f - yD) = «2”

28x28 pixels ‘ f(X)% Y ‘

@ = y@ =0




Our simplified problem:

What is our input space?

Target: Y
InPUt: X What is our output space?
: e B
Pixel Grid What is our prediction task: s it digit 22
(1) — - — y =1
AT = =) Function: f

28x28 pixels ‘ f(X)=2> Y ‘

x(2) = y(2) =0 8




The Perceptron Algorithm

Loop Over Dataset (until no weights change)
- For each misclassified example
- update weights to make better prediction for example



The Perceptron Algorithm

1. Initialize 8 = 0
2. For N iterations or until 8 does not change
1. For each example x) with label y®)
1. Ify® = f(x¥)), continue
2. Else, forall parameters 6; € 5, 0, =0; + (y(") — f(x("))) -xi(k)

_ x5 k’th training example, y(k) k’th training label
w: weights ®) ., o th :
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}



The Perceptron Algorithm

. > = Need to start somewhere...
1. ‘ Initialize 8 = 0 ‘ any initial setting will work
2. For N iterations or until 8 does not change

1. Foreach example x® with label y®
1. Ify® = f(x¥)), continue

2. Else, forall parameters 6; € 5, 6, =0, + (y(k) — f(x("))) -xl.(k)

_ x5 k’th training example, y(k) k’th training label
w: weights ® . ,
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}



The Perceptron Algorithm

N is referred to as “epochs”:

T ~ P Number of times the entire
1. Initialize 8 = 0 dataset is iterated through

2. ‘For N iterations‘or until 6 does not change

1. Foreach example x® with label y®
1. Ify® = f(x¥)), continue

2. Else, forall parameters 6; € 5, 6, =0, + (y(k) — f(x("))) -xl.(k)

_ x5 k’th training example, y(k) k’th training label
w: weights ®) ., o th :
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}



The Perceptron Algorithm

1. Initialize § = 0
2. For N iterations or until § does not change

1. | For each example x ) with label y ) I Loop over every example in dataset
1. Ify® = f(x¥)), continue

2. Else, forall parameters 6; € 5, 6, =0, + (y(k) — f(x("))) -xl.(k)

_ x5 k’th training example, y(k) k’th training label
w: weights ® . ,
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}



The Perceptron Algorithm

—

1. Initialize 8 = 0

2. For N iterations or until § does not change

1. Foreach example x® with label y
1. I |fy(k) _ f(x(k)), continue I JLook only at examples that are
misclassified (i.e., y© = f(x(0))
CAREREASERYJ AT

2. Else, forall parameters 6; € 5, 0; = 0;

_ x5 k’th training example, y(k) k’th training label
w: weights ® . ,
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}



The Perceptron Algorithm

—

1. Initialize é) = ( I For every parameter in our perceptron...

2. For N iterations or until § does not change

1. Foreach example x® with label y®
1. Ify® = f(x¥)), continue

2. Else, forall parameters 6; € 9|9 =0; + (y(k) - (x(k)) (k)‘

{oht x(0): kth training example, y(k) k’th training label
w: weights
b: biasg (k) i’th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}



The Perceptron Algorithm

—

1. Initialize 5 = ( I For every parameter in our perceptron...

2. For N iterations or until 8 does not chanq £y% = 1 and F(x%) = 0 and x®>0
H9>0...

1. Foreach example x® with label y®
1. Ify® = f(x®)), continue

2. Else, forall parameters 6; € §| 0; =0; + (y(") — f(x(k))) ‘xi(k) ‘

_ x5 k’th training example, y(k) k’th training label
w: weights ® . ,
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}



The Perceptron Algorithm

—

1. Initialize 5 = ( I For every parameter in our perceptron...

2. For N iterations or until 8 does not chanq £y% = 1 and F(x%) = 0 and x®>0
H9>0...

1. For each example x¥) with label y® | P e—

1. Ify® = f(x®)), continue
2. Else, forall parameters 0; € §| 0; =0; + (y(") — f(x(k))) ‘xi(k) ‘

_ x5 k’th training example, y(k) k’th training label
w: weights ® . ,
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}



The Perceptron Algorithm

— If no parameters change, then we know

1. Initialize 8 = 0 that y = £(x®0)vk

2. For N iterations or until‘é does not change‘

1. Foreach example x® with label y®
1. Ify® = f(x¥)), continue

2. Else, forall parameters 6; € 5, 6, =0, + (y(k) — f(x("))) -xl.(k)

_ x5 k’th training example, y(k) k’th training label
w: weights ®) . o th :
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}



Converting Perceptrons to Multi-Class
Classification



Our Problem:
Input: X
Pixel Grid

x) = 2

28x28 pixels

@ —

Classifying MNIST digits requires predicting
1 of 10 possible values

Target: Y

Which digit is it?

=) Function: f L yD) = «2”

f(X)> Y|

y(Z) — “0"



Our Problem:
Input: X
Pixel Grid

x) = 2

28x28 pixels

@ —

Classifying MNIST digits requires predicting
1 of 10 possible values

Target: Y

How do we do this?

Which digit is it?

=) Function: f L yD) = «2”

f(X)> Y|

y(Z) — “0"



Our Problem:
Input: X

Pixel Grid

28x28 pixels

@ —

Classifying MNIST digits requires predicting
1 of 10 possible values

Target: Y

How do we do this?

Which digit is it?

=) Function:f ™= y = «2”

f(X)> Y|

Instead of outputting a
binary prediction, make
an output for each class.

y(Z) — “0"




Using Multiple Perceptrons

* We can use m perceptrons (where mis the number of output
classes)

* For MNIST, this would be 10 perceptrons

* Each individual perceptron will need to return a value, our model
will return the class with the highest value
* Here, value refers to the weighted sum before the threshold is applied



Using multiple perceptrons

Perceptron for predicting
«— Whether handwritten digitisa 0

ttttttt

Perceptron for predicting
uuuuuu — whether handwritten digitisa 9




Multi-class Perceptron

........ Outputl_
'—output1
— outputz
}_ outputs —
—
----- outputs;
z '—output3

Three separate perceptrons Three perceptrons sharing inputs



MNIST Performance

Perceptrons can perform quite well on MNIST, with around 85% accuracy

4+ Linear But they will always be linear classifiers...
boundary
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Perceptrons

Are Perceptrons guaranteed to achieve XOR Function
100% accuracy?

Xz

Xa



Perceptrons

Are Perceptrons guaranteed to achieve
100% accuracy?

How can you put a linear separator on the
plot to separate the two classes?

Xz

XOR Function

Xa



Perceptrons

Are Perceptrons guaranteed to achieve XOR Function
100% accuracy?

How can you put a linear separator on the
plot to separate the two classes?

Xz

Xa



Perceptrons

Are Perceptrons guaranteed to achieve XOR Function
100% accuracy?

How can you put a linear separator on the

plot to separate the two classes? T
>
There are simple functions that
perceptrons can’t learn!
0_

Xa



Perceptrons: The Book

Expanded Edition

Perceptrons: An Introduction to Computational Geometry

* Published by Marvin Minsky and Seymour Papert in 1969

* Acknowledged some strengths of Perceptrons and identified
some fundamental flaws

* (Partially) responsible for shifting Al research away from
“connectivism” and towards symbolic Al systems Perceptrons

Al Research Timeline

Limited funding for neural networks research in the 1970s
(First Al winter) Mivin L. Micsky

1980s - revival of neural networks research e e
“Invention” of backpropagation, needed for efficient training of neural networks

1987 - collapse of LISP machine market and abandonment of expert systems
(Second Al winter)




The Solution:

XOR Function Use hand-crafted feature:
@ Class 0 |1 — x32]
11 o
— @
0 1
01---® Trivial to find linear separator

in new feature space!

0 1

X, But how do we find
appropriate features?




The Solution: learn new features

Perceptron

i Output

Multi-Layer Perceptron (MLP, Neural Network)

:I Y — Output

Layer 2



MLPs

Input Features

Hidden Layers
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A Multi-Layered Neural Net

Learned Representation:
Transformation of original features
into new “learned” features

MLPs consist of weights, biases,
and activation functions for each
neuron.

Goal (for binary-classification):
Learn intermediate features, such
that the final representation is
linearly separable




Multi-Layer Perceptrons

What happens if we remove the
threshold activations from a
multi-layer perceptron?

Letw® = [wy, wy, w3, w,]
Perceptron #1: z; = xTw® + b,

Wqg v
)| Y [—— Output




Multi-Layer Perceptrons

What happens if we remove the
activations from a multi-layer
perceptron?

Let w® = [we, wg, Wy, wg]
Perceptron #1:z; = xTw® + b,
Perceptron #2: z, = xTw(® + b,

Wqg v
)| Y [—— Output




Multi-Layer Perceptrons

What happens if we remove the

activations from a multi-layer by
perceptron? @
2 N b3
@‘ "~ Wqg v
Letw® = [ws, we, wy, wg] @“ >‘ 2 » Output
Perceptron #1: z; = xTw® + b, b, ’{5210
Perceptron #2: z, = xTw® + b, @

Perceptron #3: Z3 = Z1Wq + Z2W10 + b3




Multi-Layer Perceptrons

What happens if we remove the

activations from a multi-layer by
perceptron? @
2 N b3
@‘ "~ Wqg v
Letw® = [ws, we, wy, wg] @“ >‘ 2 » Output
Perceptron #1: z; = xTw® + b, b, ’{5210
Perceptron #2: z, = xTw® + b, @

Perceptron #3: Z3 = Z1Wq + Z2W10 + b3

Entire Network:
Wg(xTW(l) + bl) + Wlo(xTW(z) + bz) + b3




Multi-Layer Perceptrons

What happens if we remove the

activations from a multi-layer by
perceptron? @
2 N b3
@‘ "~ Wqg v
Letw® = [ws, we, wy, wg] @“ >‘ 2 » Output
Perceptron #1: z; = xTw® + b, b, ’{5210
Perceptron #2: z, = xTw® + b, @

Perceptron #3: Z3 = Z1Wq + Z2W10 + b3

Entire Network:
Z = Wg(XTW(l) + bl) + Wlo(xTW(z) + bz) + b3




*With no activation function*

MLP’s Expressiveness



*With no activation function*

MLP’s Expressiveness

Z = Wg(xTW(l) + bl) + Wlo(XTW(Z) + bz) + b3



*With no activation function*

MLP’s Expressiveness

Z = Wg(xTW(l) + bl) + Wlo(XTW(Z) + bz) + b3
Z = ngTW1 +W9 y bl +W10XTW(2) + WlObZ + b3



*With no activation function*

MLP’s Expressiveness

Z = Wg(xTW(l) + bl) + Wlo(XTW(Z) + bz) + b3
Z = ngTW(l) +W9 . bl +W10xTW(2) + WlObZ + b3
Z = XT(W9W(1)+W10W(2)) + (Wg' bl + +W10b2 + b3)



MLP’s Expressiveness

*With no activation function*

Z = Wg(xTW(l) + bl) + Wlo(XTW(Z) + bz) + b3
Z = ngTW1 +W9 y bl +W10XTW(2) + WlObZ + b3

Z =X

T

(Wowl+w,qw ()

+ (Wg' bl + +W10b2 + bg)



MLP’s Expressiveness

*With no activation function*

Z = Wg(xTW(l) + bl) + Wlo(XTW(Z) + bz) + b3
Z = ngTW1 +W9 y bl +W10XTW(2) + WlObZ + b3

Z =X

T

(Wowl+w,qw ()

/

Just avector...

+ (Wg' bl + +W10b2 + bg)



MLP’s Expressiveness

*With no activation function*

Z = Wg(xTW(l) + bl) + Wlo(XTW(Z) + bz) + b3
Z = ngTW1 +W9 y bl +W10XTW(2) + WlObZ + b3

Z =X

T

(Wowl+w,qw ()
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(Wg' bl + +W10b2 + bg)

/

Just avector...



MLP’s Expressiveness

*With no activation function*

Z = Wg(xTW(l) + bl) + Wlo(XTW(Z) + bz) + b3
Z = ngTW1 +W9 y bl +W10XTW(2) + WlObZ + b3

Z =X

T

(Wowl+w,qw ()

_|_

(Wg' bl + +W10b2 + bg)

/

Just avector...

/

Just a scalar...



MLP’s Expressiveness

*With no activation function*

Z = Wg(xTW(l) + bl) + Wlo(XTW(Z) + bz) + b3
Z = ngTW1 +W9 y bl +W10XTW(2) + W10b2 + b3

Z =X

T

(Wowl+w,qw ()

_|_

(Wg' bl + +W10b2 + bg)

/

Just avector...

/

Just a scalar...

|z =xTw+ bl




MLP’s Expressiveness

*With no activation function*

Z = Wg(xTW(l) + bl) + Wlo(XTW(Z) + bz) + b3
Z = ngTW1 +W9 y bl +W10XTW(2) + W10b2 + b3

Z =X

T

(W9W1+W10W(2)) + (Wg' bl + +W10b2 + bg)
Just avector... Just a scalar...
[z = xTw + bl

Multi-Layer Perceptrons without non-
linear activation functions are linear
functions




Activation Functions

Non-linear functions
applied to output of
neuron

»|  Activation

— Output

MRy



Activation Functions

Non-linear functions
applied to output of
neuron

In the perceptron case,
the activation function
is the threshold

—
»

MRy

Activation

— > Output




Common Activation Functions

Linear (No Activation)
f(x) =x

2.04
1.5
1.0

0.5

— 0.0
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Common Activation Functions

Linear (No Activation) ReLU

f(x) = x f(x) = max(0, x)
2.04 2.0q
1.5- 1.5-
1.0 1.0
0.5 0.5

= 0.0 o 0.0

- -0.54 - -0.54
-1.0- -1.0-
-1.5- -1.5-
20 5 1650 05 1 15 2 20 5 1 65 0 05 1 15 2

X X



Common Activation Functions

Rectified Linear Unit (ReLU):
One of the most common Activation Functions
Advantages: Simple, easy to compute gradients

Linear (No Activation) RelLU
f(x) =x f(x) = max(0, x)
2.0 2.0~
1.5 1.5
1.0 1.0
0.5 0.5
g 0.0 g 0.0_
-0.54 -0.54
-1.0- -1.0
-1.54 -1.5-
_2.0 | T | T T T 1 '2.0 | | | | | | |
-2 15 -1 -05 0 05 1 15 2 -2 -15 -1 -05 0 05 1 15 2

X X



Common Activation Functions

Linear (No Activation)

f(x) =x

2.0+

1.5

1.0

0.5+

0.0

-0.51

-1.04

-1.54

-2.0

2 15 1-050 05 1 15 2

X

Leaky RelLU

f(x) = x if x > 0 else 0.1x

f(x)

2.0

1.54

1.0

0.5-

0.0
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Common Activation Funct ns .
ea elLU:

Common substitute for ReLU, often has better performance
Advantages: Fixes “dying neurons” issue with RelU.

Linear (No Activation) Leaky ReLU
f(x) = x f(x) = x if x > 0 else 0.1x
2.0 2.0
1.5- 1.5
1.0+ 1.0
0.5 0.5
% 0.0 g 0.0
- -0.51 -0.54
-1.0 -1.04
-1.54 -1.54
—2.0 T T ] T T T 1 '2-0 | I T T T T 1
215 -1-050 05 1 15 2 -2 -15 -1 -05 0 05 1 15 2

X X



Tanh

Tanh

f(x) = (e"x - e”(-x)) / (e”x + e”(-x))
2.0
1.5
1.0
0.5

0.0

—
—
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-1.54
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Tanh

Tanh

f(x) = (e”x - e”(-x)) / (e”x + e”(-x))
2.0
1.5
1.0
0.5+

0.0

f(x)

-0.5-

-1.0-

-1.5-

215 -1-0560 05 1 15 2

X



Special Activation Functions for Final Output

Sigmoid
f(x) =1/ (1+ e~ (-x))
2.0
] Output Softmax
- layer activation function Probabilities
1.0 3 _ ) ]
1.3 0.02
0.5+
-0.5- =
0.7 Zj:l €™/ 0.01
" 11.1] 10.02]
-15-
-2.0

2 15 -1-050 05 1 15 2

X



Special Activation Functions for Output

Sigmoid
f(x) =1/(1+e”(-x))
2.0
1.5
1.0

0.5

— 0.0

Sigmoid maps inputto [0, 1]

Softmax maps vector of inputs to probabilities (outputs sumto 1)

-0.5-

-1.04

-1.5

-2.0

X

Output
layer

1.3
5.1

0.7
1.1

2 15 -1-050 05 1 15 2

Softmax

activation function

2.2 |w—)
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Special Activation Functions for Output

Sigmoid maps inputto [0, 1]
Softmax maps vector of inputs to probabilities (outputs sumto 1)

Sigmoid

f(x) =1/(1+e”(-x))

-0.5-
-1.04

-1.5

2.0+

1.5+

1.0

0.5

0.0

-2.0

Used for classification tasks

(1.3
5.1
2.2
0.7

| 1.1

2 15 -1-050 05 1 15 2

X

Output
layer

Softmax

activation function

e~

2.

K
j=1°¢€

"

w1 0.05

Probabilities

0.02
0.90

0.01
10.02]




MLPs With Activation Functions

Source: Me

We almost never draw

activation functions in our
neural network diagrams,

but they must always be
there!

Source: IBM Source: 3B1B

Deep neural network

Input layer
@
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Multiple hidden layer Output layer

by

)| Y. — Output

Source: Wikipedia




Neural Networks



Neural Networks

* Without non-linear activation functions, a neural network is just a
Linear Regression.
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Neural Networks

* Without non-linear activation functions, a neural network is just a
Linear Regression.

 With non-linear activation functions, a neural network is a

universal function approximator.
* For any function, there exists a neural network of fixed depth that can
approximate within some € of error.
* Ife = 0,i.e., we want a perfect approximation, we may need an infinitely
wide network.

* This is an existence theorem, meaning it tells you that a neural network
exists with these properties. It does not tell you how to find the weights of

this network.



Intuition
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Figure 13: Addition of w7 Figure 14: Scaled step-function

With large weights, sigmoid activation functions look like step functions




Approximating functions with step functions

1.2
1.2

L) =02 + 0.427 + 0.3z * sin(15x) +0.05 * cos(50x) + 0.1

Figure 19: Approximation (N=100)

flz) = 0122 4 0.427 + 0.32 * sin(15x) 4 0.05 * cos(50x) + 0.1

8.2 g —

Figure 18: Approximation (N=4)

We can use step functions to approximate arbitrary functions
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Neural Networks

* So that’s it, right? That’s why deep learning is so successful.
Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Decision Trees of infinite depth
can fit any function with 100%
accuracy

Piecewise polynomials are
universal function approximators
(think Taylor expansions)

Wavelets (i.e., small pieces of
sine and cosine) are universal
function approximators

This theorem explains why neural
networks are good at fitting the
training dataset, not why they

perform well on the test dataset.




Optimization



Learning Network Parameters
Input: X Target: Y
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Option 1: Closed Form Solution

Goal: Minimize Loss function

Process:

- Find derivative (or gradient) of loss function
- Set derivativeto 0

Worked for Linear Regressions!

- Solve for parameters

Only had one point where V fg= 0 and that point
was a global optimum.

MSE is convex with respect to the parameters of
the linear Regression




Convexity

- At s
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Picture Source: Andrew Ng

Formally:
- Forany two points x1,x, and 4 € [0, 1]
- M) + (A =Df(x) < Axp + (1 = Dxy

The line connecting any two
points on the graph will
always be above the function.

For convex functions, finding a point
with Vf = 0 is sufficient for knowing
the point is a global minimum
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Non-Convex Functions

MSE is not convex with respect to network parameters
when non-linear activations are involved.

Multiple local minima

If ReLU or other piecewise
activation function is used, may
need 2™ piecewise functions to

write out Vfy...

Saddle points

Local maxima
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Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

R : A "g'---..op_posite direction
Repeat 2 until convergence o P
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Vector Calculus

e Partial Derivative: the derivative of a with
respect to one of its inputs

* Example: f(x,w,b) =wx + b

. : 1 1 . a
* The partial derivative with respect to w s #

* How to compute: Treat all other variables as constants and
differentiate with respect to that variable

of 0 i, i,
%_%(wx+b) —%(WX)-F%(ID) = X



Gradients

Gradient: the vector of partial derivatives
Vector “points” in direction of increasing f values.

of of
ow' b

Vf =

flx,w,b) =wx+b

_ Of of of
Vie = 15,35 9%




Gradients

The gradient field <2x-4 ,2y+2 > of the function f=x?- 4x + 7+ 2y.
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Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until conve rgence gl “:::‘;}:{.

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

AN

Why is this negative?

Gradient of what?

Wait, this isn’t even the best 6
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Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until convergence oo “:,3_‘,;}}

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

I Why do we need a learning rate? =
Learning Rate a € [0,1]

Derivatives/Gradients only hold locally




Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until convergence oo “:,3_‘,;}}

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.




Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until convergence l g8 ‘:’
Understanding gradient descent is the single most X

important concept in all of Deep Learning. Most decisions | L
s

in DL are made for reasons related to gradients.
For N iterations oruntil A8 < €:

§<—9—an9

Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.




Review: Mean Squared Error

Used previously for linear regression:  Modelwith parameters ¢

2i (Vi—fo(%))"2

n

MSE =

Used for regression tasks (prediction of continuous variable)
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Gradients

Gradient descent needs gradients, how do we actually calculate them?

SO fo ()2
B n
SPy2—2f5 (%) + fo(®)?]

n

212 Vfg(xX) +2-Vfg(x) - fo(x)]

/ n

But what is this? fo =wx + b
For a single output

L =

VQL —_
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Weight Matrix

* We have an input of size n and we want an output vector of size m.

* We will represent our weights as a matrix.
* What should the dimensions of our matrix be?

m inputs

wj; is the j*" row and the i*" column of our matrix, or the weight ninputs thi
multiplied by the ith index of the input which is used to create the jth '
index in the output

0 i t n




=1

input

lj = ij'k X + bj

Il =wx +b

\

linear layer

L=(y-1)?

loss



Looking at composite function!




Chain rule

If f and g are both differentiable and F(x) is the composite function defined
by F(x) = flg(x)) then F is differentiable and F’ is given by the product

F'(x) =f"(g(x)) g’(x)
: !

Differentiate Differentiate
outer function inner function

Courtesy: https://www.onlinemathlearning.com/chain-rule.html



Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*



Each layer
computes tl.ae
The Chain Rule (for Differentiation) sradients Wi

variables and
passes the result

ﬂ _ar . ag backwards

¢ Given arbitrary function: f(g(x)) =

dx dg dx

dx dg

Backpropagation

(or backward pass)

i 1 8(x) | f(g()
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Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Need Loss function to be small for best model, not large.

# Correct

Proposed Loss Function: L =1 — ~

The Issue: most of the time, the gradient of this loss functionisVLg = 0

Gradient is only non-zero when changing a 8 has an impact on output predictions

We cannot use classification as a loss
function because itis incompatible with
gradient descent

Unit step (threshold)

1

B (0if 0>x
JO=11if x= 0

0 gradient everywhere except x=0
] - X=0is not differentiable, but it does have a sub-gradient




Remaining Questions for next week:
1) What loss function can we use for classification?

2) How do we actually calculate the gradient of a network?
1) If the loss functionis applied to the whole dataset, shouldn’t we be
concerned about the size of the dataset?
2) Gradientdescentis an iterative approach. If each iteration is slow, the
whole algorithm will take too long to finish.

3) Gradient descent can get stuck in local minima.
Can we do better?

T

ol
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