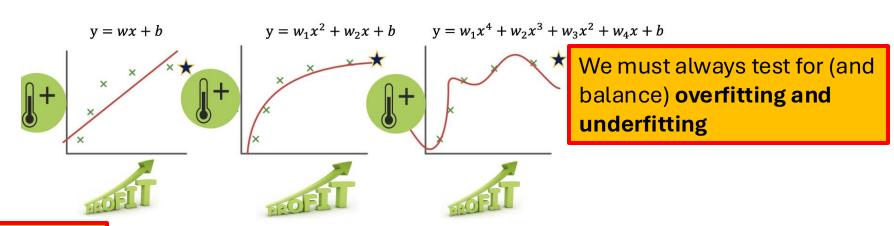
Deep Learning **CSCI 1470** Day 3: MNIST, Perceptrons, and MLPs **Eric Ewing** Thursday, 9/11/25 Black Canyon of the Gunnison, Colorado

Recap

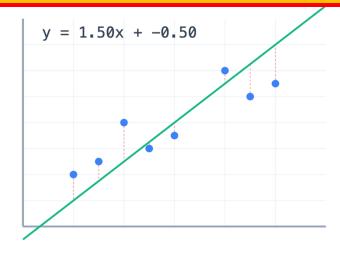
Underfit

Good fit

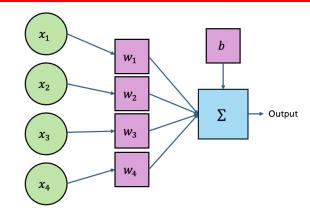
Overfit



Loss Functions tell us about the performance of the model (which we will also optimize for)



A perceptron/neuron works just like a linear regression, but has a different **activation function**



Train, validation, and test sets

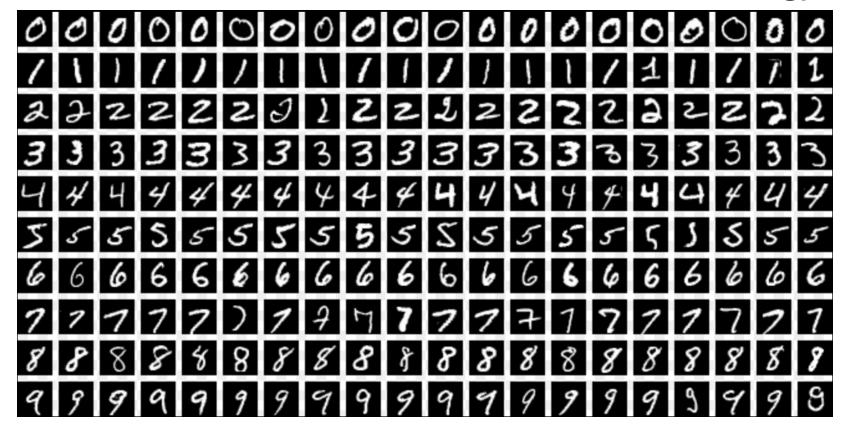
- Training Set: Used to adjust parameters of model
- Validation set used to test how well we're doing as we develop
 - Prevents *overfitting*
- **Test Set** used to evaluate the model once the model is done

Train Validation Test

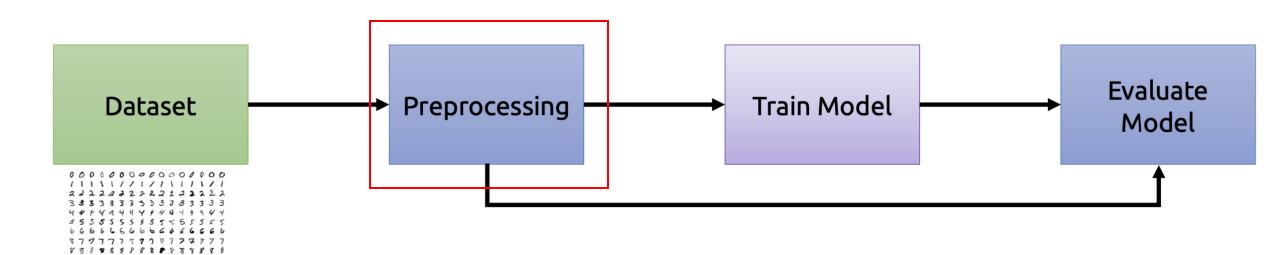
MNIST

The most famous dataset in Deep Learning

Modified National Institute of Standards and Technology database

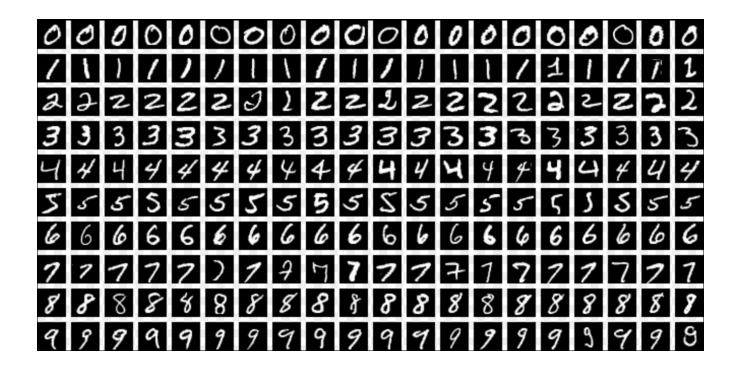


Machine Learning Pipeline for Digit Recognition



MNIST

- 60,000 Images in training set
- 10,000 Images in test set
- No explicit validation set

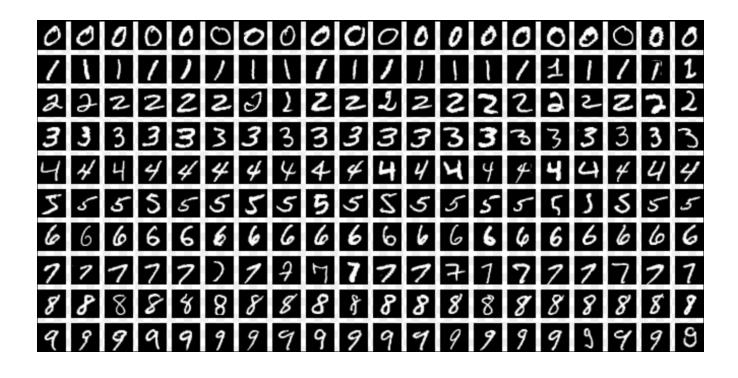


MNIST

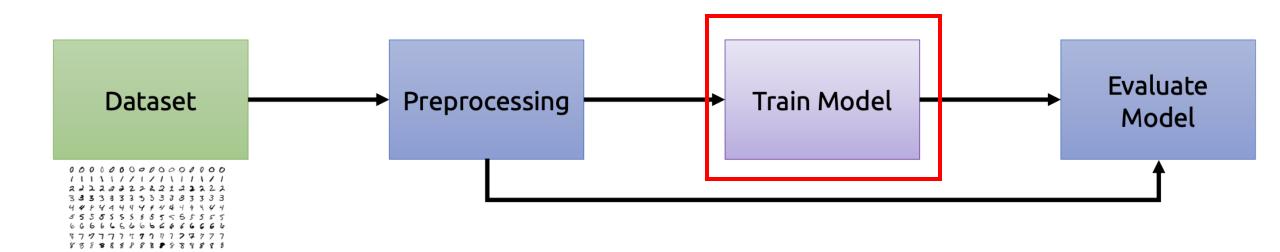
- 60,000 Images in training set
- 10,000 Images in test set
- No explicit validation set

What do you suggest we do?

80/20 train/validation splits are common



Machine Learning Pipeline for Digit Recognition



Classifying MNIST digits requires predicting 1 of 10 possible values

Input: X

Target: Y

Pixel Grid

28x28 pixels

2

 \Rightarrow

Function: f

Which digit is it?

$$y^{(1)} = "2"$$

$$x^{(2)} = \bigcirc$$

 $x^{(1)} =$

$$y^{(2)} = "0"$$

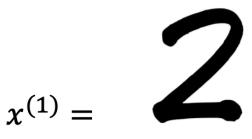
Classifying MNIST digits requires predicting 1 of 10 possible values

Input: X

What is our input space?

Target: Y

Pixel Grid



28x28 pixels

Function: f

$$y^{(1)} = "2"$$

$$x^{(2)} =$$

$$y^{(2)} = "0"$$

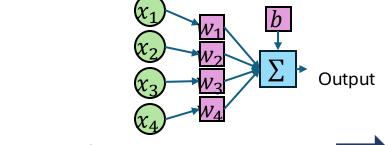
Classifying MNIST digits requires predicting 1 of 10 possible values

Input: X

What is our input space?

Target: Y

Pixel Grid



Which digit is it?

Function: f

$$y^{(1)} = "2"$$

28x28 pixels

$$x^{(2)} =$$

$$y^{(2)} = "0"$$

Classifying MNIST digits requires predicting 1 of 10 possible values

Input: X

What is our input space?

Target: Y

What is our output space?

Pixel Grid

Which digit is it?

$$y^{(1)} = "2"$$

28x28 pixels

$$f(X) \rightarrow Y$$

$$x^{(2)} = \bigcirc$$

 $x^{(1)} =$

$$y^{(2)} = "0"$$

Classifying MNIST digits requires predicting 1 of 10 possible values

Input: X

What is our input space?

Target: Y

Pixel Grid

What is our output space?

What is our prediction task?

Which digit is it?

Function: f

$$y^{(1)} = "2"$$

28x28 pixels

$$f(X) \rightarrow Y$$

$$x^{(2)} = \bigcirc$$

 $x^{(1)} =$

$$y^{(2)} = "0"$$

Our simplified problem:

Input: X

What is our input space?

Target: Y

What is our output space?

Pixel Grid

What is our prediction task?

Is it digit 2?

$$x^{(1)} =$$

$$y^{(1)}=1$$

28x28 pixels

$$f(X) \rightarrow Y$$

$$x^{(2)} =$$

Loop Over Dataset (until no weights change)

- For each misclassified example
 - update weights to make better prediction for example

- 1. Initialize $\vec{\theta} = \vec{0}$
- 2. For N iterations or until $\vec{\theta}$ does not change
 - 1. For each example $x^{(k)}$ with label $y^{(k)}$
 - 1. If $y^{(k)} = f(x^{(k)})$, continue
 - 2. Else, for all parameters $\theta_i \in \vec{\theta}$, $\theta_i = \theta_i + \left(y^{(k)} f(x^{(k)})\right) \cdot x_i^{(k)}$

w: weights

b: bias

 θ : parameters (weights and biases), $\vec{\theta} = \{\vec{w} \cup b\}$

 $x^{(k)}$: k'th training example, $y^{(k)}$ k'th training label

1. Initialize $\vec{\theta} = \vec{0}$

Need to start somewhere... any initial setting will work

- 2. For N iterations or until $\vec{\theta}$ does not change
 - 1. For each example $x^{(k)}$ with label $y^{(k)}$
 - 1. If $y^{(k)} = f(x^{(k)})$, continue
 - 2. Else, for all parameters $\theta_i \in \vec{\theta}$, $\theta_i = \theta_i + \left(y^{(k)} f(x^{(k)})\right) \cdot x_i^{(k)}$

w: weights

b: bias

 θ : parameters (weights and biases), $\vec{\theta} = \{\vec{w} \cup b\}$

 $x^{(k)}$: k'th training example, $y^{(k)}$ k'th training label

1. Initialize $\vec{\theta} = \vec{0}$

N is referred to as "epochs": Number of times the entire dataset is iterated through

- 2. For N iterations or until $\vec{\theta}$ does not change
 - 1. For each example $x^{(k)}$ with label $y^{(k)}$
 - 1. If $y^{(k)} = f(x^{(k)})$, continue
 - 2. Else, for all parameters $\theta_i \in \vec{\theta}$, $\theta_i = \theta_i + \left(y^{(k)} f(x^{(k)})\right) \cdot x_i^{(k)}$

w: weights

b: bias

 θ : parameters (weights and biases), $\vec{\theta} = \{\vec{w} \cup b\}$

 $x^{(k)}$: k'th training example, $y^{(k)}$ k'th training label

- 1. Initialize $\vec{\theta} = \vec{0}$
- 2. For N iterations or until $\vec{\theta}$ does not change
 - 1. For each example $x^{(k)}$ with label $y^{(k)}$

Loop over every example in dataset

- 1. If $y^{(k)} = f(x^{(k)})$, continue
- 2. Else, for all parameters $\theta_i \in \vec{\theta}$, $\theta_i = \theta_i + (y^{(k)} f(x^{(k)})) \cdot x_i^{(k)}$

w: weights

b: bias

 θ : parameters (weights and biases), $\vec{\theta} = \{\vec{w} \cup b\}$

 $x^{(k)}$: k'th training example, $y^{(k)}$ k'th training label

- 1. Initialize $\vec{\theta} = \vec{0}$
- 2. For N iterations or until $\vec{\theta}$ does not change
 - 1. For each example $x^{(k)}$ with label $y^{(k)}$

1. If $y^{(k)} = f(x^{(k)})$, continue

2. Else, for all parameters $\theta_i \in \vec{\theta}$, $\theta_i = \theta_i$ Look only at examples that are misclassified (i.e., $y^{(k)} \neq f(x^{(k)})$)

w: weights

b: bias

 θ : parameters (weights and biases), $\vec{\theta} = \{\vec{w} \cup b\}$

 $x^{(k)}$: k'th training example, $y^{(k)}$ k'th training label

1. Initialize $\vec{\theta} = \vec{0}$

For every parameter in our perceptron...

- 2. For N iterations or until $\vec{\theta}$ does not change
 - 1. For each example $x^{(k)}$ with label $y^{(k)}$
 - 1. If $y^{(k)} = f(x^{(k)})$, continue
 - 2. Else, for all parameters $\theta_i \in \vec{\theta}$ $\theta_i = \theta_i + (y^{(k)} f(x^{(k)})) \cdot x_i^{(k)}$

w: weights

b: bias

 θ : parameters (weights and biases), $\vec{\theta} = \{\vec{w} \cup b\}$

 $x^{(k)}$: k'th training example, $y^{(k)}$ k'th training label

1. Initialize $\vec{\theta} = \vec{0}$

For every parameter in our perceptron...

- 2. For N iterations or until $\vec{\theta}$ does not chang $\int_{\text{If } y^{(k)} = 1 \text{ and } f(x^{(k)}) = 0 \text{ and } x_i^{(k)} > 0...}$
 - 1. For each example $x^{(k)}$ with label $y^{(k)}$
 - 1. If $y^{(k)} = f(x^{(k)})$, continue
 - 2. Else, for all parameters $\theta_i \in \vec{\theta}$ $\theta_i = \theta_i + (y^{(k)} f(x^{(k)})) \cdot x_i^{(k)}$

w: weights

b: bias

 θ : parameters (weights and biases), $\vec{\theta} = \{\vec{w} \cup b\}$

 $x^{(k)}$: k'th training example, $y^{(k)}$ k'th training label

1. Initialize $\vec{\theta} = \vec{0}$

For every parameter in our perceptron...

 θ_i increases

- 2. For N iterations or until $\vec{\theta}$ does not chang $\int_{\text{If } y^{(k)} = 1 \text{ and } f(x^{(k)}) = 0 \text{ and } x_i^{(k)} > 0...}$
 - 1. For each example $x^{(k)}$ with label $y^{(k)}$
 - 1. If $y^{(k)} = f(x^{(k)})$, continue
 - 2. Else, for all parameters $\theta_i \in \vec{\theta}$ $\theta_i = \theta_i + (y^{(k)} f(x^{(k)})) \cdot x_i^{(k)}$

w: weights

b: bias

 θ : parameters (weights and biases), $\vec{\theta} = \{\vec{w} \cup b\}$

 $x^{(k)}$: k'th training example, $y^{(k)}$ k'th training label

1. Initialize $\vec{\theta} = \vec{0}$

- If no parameters change, then we know that $y^{(k)} = f(x^{(k)}) \forall k$
- 2. For N iterations or until $\vec{\theta}$ does not change
 - 1. For each example $x^{(k)}$ with label $y^{(k)}$
 - 1. If $y^{(k)} = f(x^{(k)})$, continue
 - 2. Else, for all parameters $\theta_i \in \vec{\theta}$, $\theta_i = \theta_i + \left(y^{(k)} f(x^{(k)})\right) \cdot x_i^{(k)}$

w: weights

b: bias

 θ : parameters (weights and biases), $\vec{\theta} = \{\vec{w} \cup b\}$

 $x^{(k)}$: k'th training example, $y^{(k)}$ k'th training label

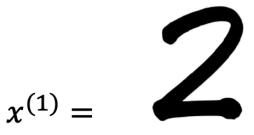
Converting Perceptrons to Multi-Class Classification

Classifying MNIST digits requires predicting 1 of 10 possible values

Input: X≀

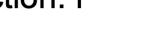
Target: Y

Pixel Grid



28x28 pixels

Function: f



Which digit is it?

$$y^{(1)} = "2"$$

$$x^{(2)} =$$

$$y^{(2)} = "0"$$

Classifying MNIST digits requires predicting 1 of 10 possible values

Input: X

How do we do this?

Target: Y

Pixel Grid

2

28x28 pixels

$$y^{(1)} = "2"$$

$$x^{(2)} =$$

 $x^{(1)} =$

$$y^{(2)} = "0"$$

Classifying MNIST digits requires predicting 1 of 10 possible values

Input: X

How do we do this?

Target: Y

Pixel Grid

2

28x28 pixels

Function: f

$$y^{(1)} = "2"$$

$$x^{(2)} =$$

 $x^{(1)} =$

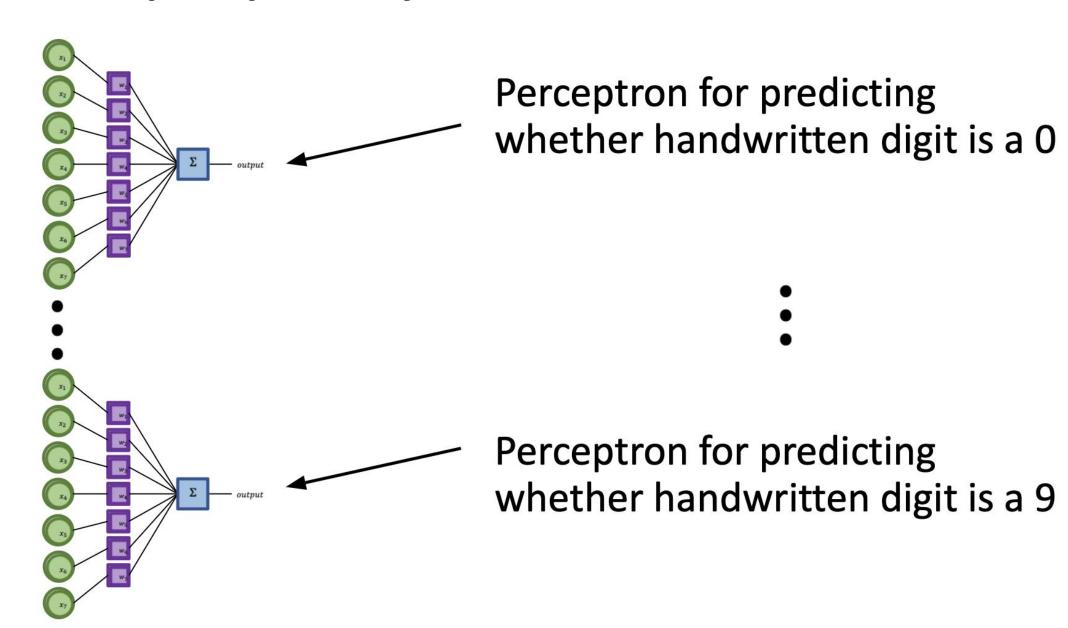
Instead of outputting a binary prediction, make an output for each class.

$$y^{(2)} = "0"$$

Using Multiple Perceptrons

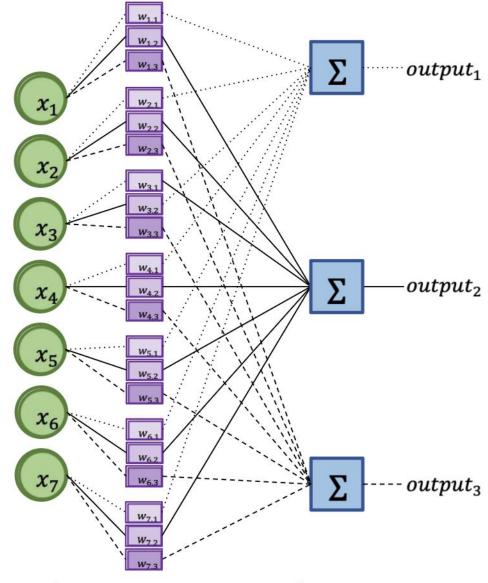
- We can use *m* perceptrons (where *m* is the number of output classes)
- For MNIST, this would be 10 perceptrons
- Each individual perceptron will need to return a value, our model will return the class with the highest value
 - Here, value refers to the weighted sum before the threshold is applied

Using multiple perceptrons



Multi-class Perceptron

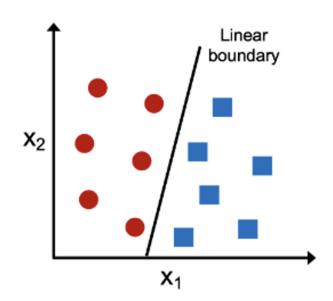




Three perceptrons sharing inputs

MNIST Performance

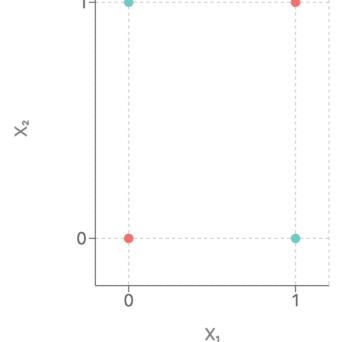
Perceptrons can perform quite well on MNIST, with around 85% accuracy



But they will always be linear classifiers...

Are Perceptrons guaranteed to achieve 100% accuracy?

XOR Function

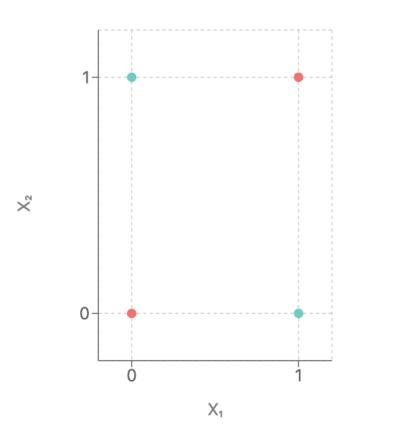


Are Perceptrons guaranteed to achieve 100% accuracy?

How can you put a linear separator on the plot to separate the two classes?

XOR Function

Class 0Class 1

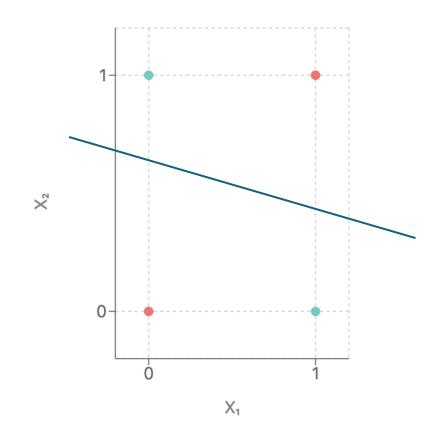


Are Perceptrons guaranteed to achieve 100% accuracy?

How can you put a linear separator on the plot to separate the two classes?

XOR Function

Class 0Class 1

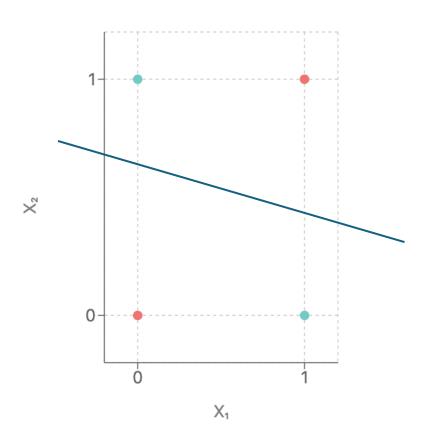


Are Perceptrons guaranteed to achieve 100% accuracy?

How can you put a linear separator on the plot to separate the two classes?

There are simple functions that perceptrons can't learn!

Class 0Class 1



Perceptrons: The Book

Perceptrons: An Introduction to Computational Geometry

- Published by Marvin Minsky and Seymour Papert in 1969
- Acknowledged some strengths of Perceptrons and identified some fundamental flaws
- (Partially) responsible for shifting AI research away from "connectivism" and towards symbolic AI systems

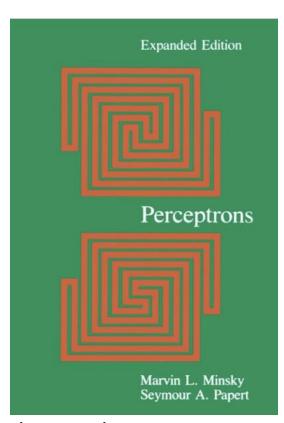
AI Research Timeline

Limited funding for neural networks research in the 1970s (First Al winter)

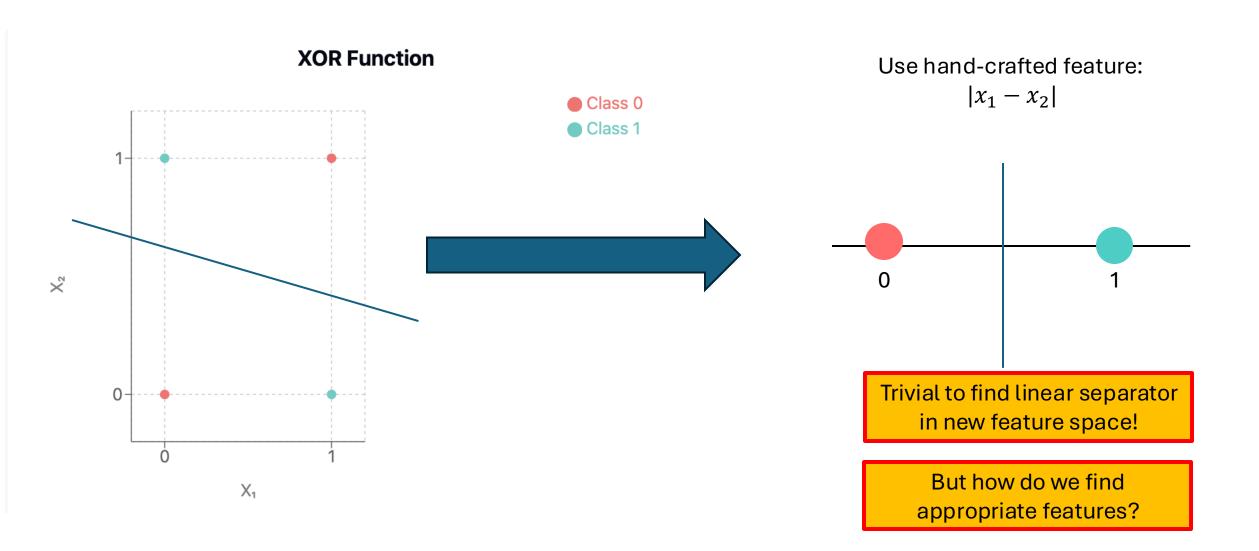
1980s – revival of neural networks research

"Invention" of backpropagation, needed for efficient training of neural networks

1987 – collapse of LISP machine market and abandonment of expert systems (Second AI winter)



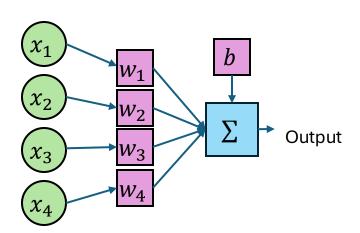
The Solution:

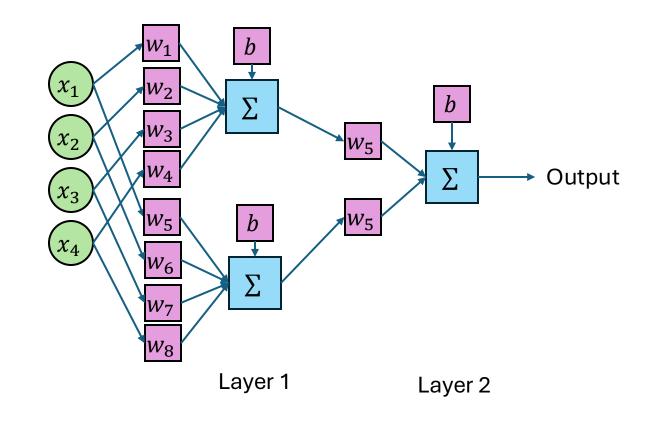


The Solution: learn new features

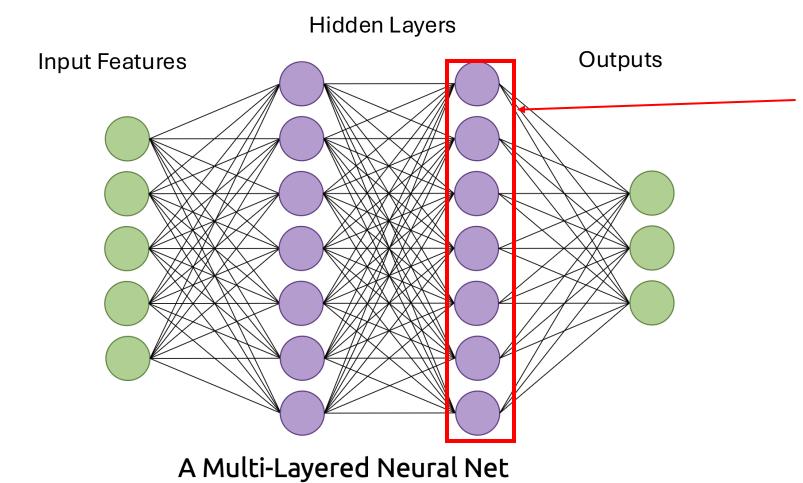
Multi-Layer Perceptron (MLP, Neural Network)

Perceptron





MLPs



Learned Representation:
Transformation of original features
into new "learned" features

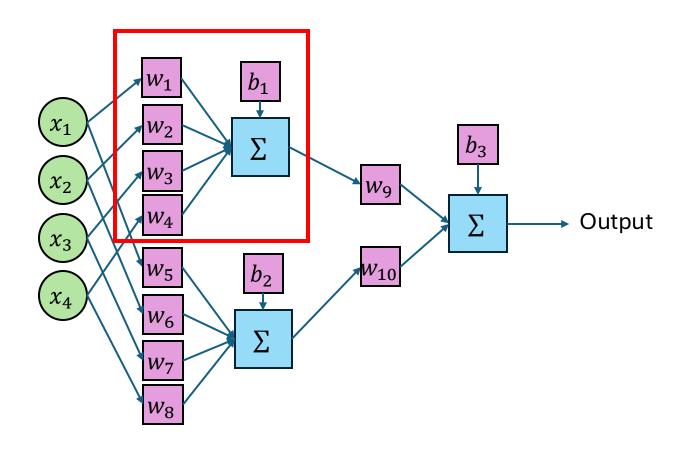
MLPs consist of weights, biases, and activation functions for each neuron.

Goal (for binary-classification): Learn intermediate features, such that the final representation is linearly separable

What happens if we remove the threshold activations from a multi-layer perceptron?

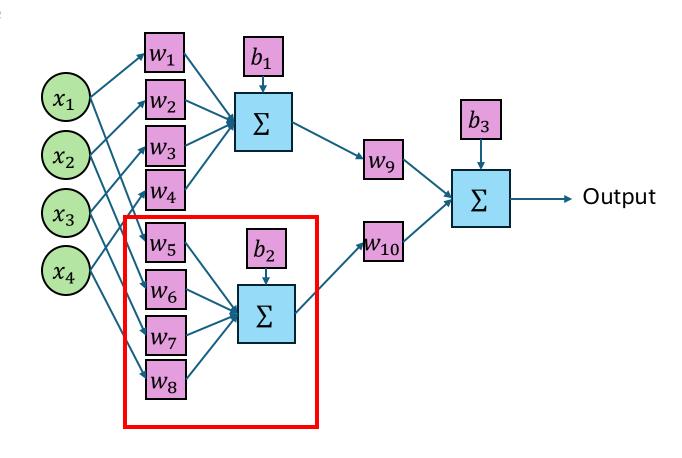
Let
$$w^{(1)} = [w_1, w_2, w_3, w_4]$$

Perceptron #1: $z_1 = x^T w^{(1)} + b_1$



What happens if we remove the activations from a multi-layer perceptron?

Let $w^{(2)} = [w_5, w_6, w_7, w_8]$ Perceptron #1: $z_1 = x^T w^{(1)} + b_1$ Perceptron #2: $z_2 = x^T w^{(2)} + b_2$



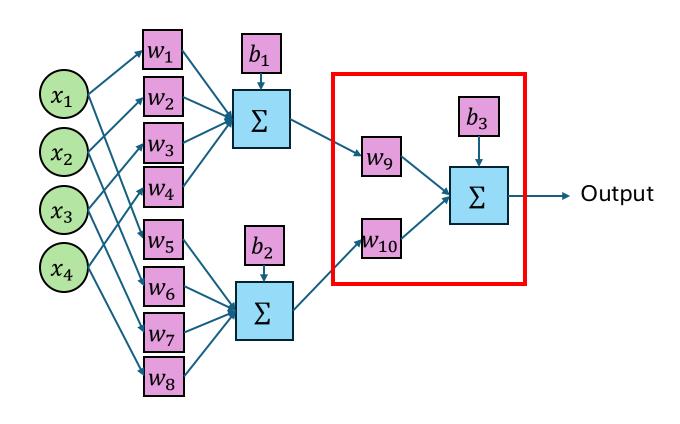
What happens if we remove the activations from a multi-layer perceptron?

```
Let w^{(2)} = [w_5, w_6, w_7, w_8]

Perceptron #1: z_1 = x^T w^{(1)} + b_1

Perceptron #2: z_2 = x^T w^{(2)} + b_2

Perceptron #3: z_3 = z_1 w_9 + z_2 w_{10} + b_3
```



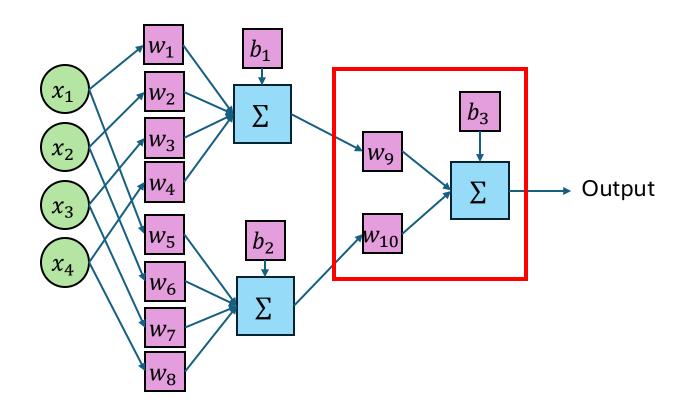
What happens if we remove the activations from a multi-layer perceptron?

Let
$$w^{(2)} = [w_5, w_6, w_7, w_8]$$

Perceptron #1: $z_1 = x^T w^{(1)} + b_1$
Perceptron #2: $z_2 = x^T w^{(2)} + b_2$
Perceptron #3: $z_3 = z_1 w_9 + z_2 w_{10} + b_3$

Entire Network:

$$w_9(x^Tw^{(1)} + b_1) + w_{10}(x^Tw^{(2)} + b_2) + b_3$$



What happens if we remove the activations from a multi-layer perceptron?

Let
$$w^{(2)} = [w_5, w_6, w_7, w_8]$$

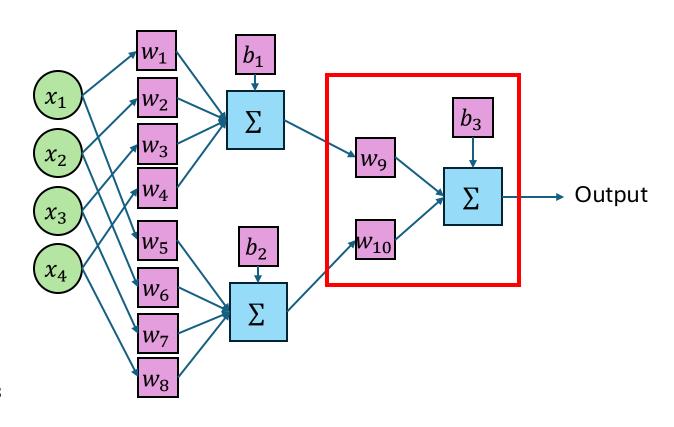
Perceptron #1: $z_1 = x^T w^{(1)} + b_1$

Perceptron #2: $z_2 = x^T w^{(2)} + b_2$

Perceptron #3: $z_3 = z_1 w_9 + z_2 w_{10} + b_3$

Entire Network:

$$z = w_9(x^T w^{(1)} + b_1) + w_{10}(x^T w^{(2)} + b_2) + b_3$$



$$z = w_9(x^T w^{(1)} + b_1) + w_{10}(x^T w^{(2)} + b_2) + b_3$$

$$z = w_9(x^T w^{(1)} + b_1) + w_{10}(x^T w^{(2)} + b_2) + b_3$$

$$z = w_9 x^T w^1 + w_9 \cdot b_1 + w_{10} x^T w^{(2)} + w_{10} b_2 + b_3$$

$$z = w_9(x^T w^{(1)} + b_1) + w_{10}(x^T w^{(2)} + b_2) + b_3$$

$$z = w_9 x^T w^{(1)} + w_9 \cdot b_1 + w_{10} x^T w^{(2)} + w_{10} b_2 + b_3$$

$$z = x^T (w_9 w^{(1)} + w_{10} w^{(2)}) + (w_9 \cdot b_1 + w_{10} b_2 + b_3)$$

$$z = w_9(x^T w^{(1)} + b_1) + w_{10}(x^T w^{(2)} + b_2) + b_3$$

$$z = w_9 x^T w^1 + w_9 \cdot b_1 + w_{10} x^T w^{(2)} + w_{10} b_2 + b_3$$

$$z = x^T (w_9 w^1 + w_{10} w^{(2)}) + (w_9 \cdot b_1 + w_{10} b_2 + b_3)$$

$$z = w_{9}(x^{T}w^{(1)} + b_{1}) + w_{10}(x^{T}w^{(2)} + b_{2}) + b_{3}$$

$$z = w_{9}x^{T}w^{1} + w_{9} \cdot b_{1} + w_{10}x^{T}w^{(2)} + w_{10}b_{2} + b_{3}$$

$$z = x^{T}(w_{9}w^{1} + w_{10}w^{(2)}) + (w_{9} \cdot b_{1} + w_{10}b_{2} + b_{3})$$
Just a vector...

$$z = w_{9}(x^{T}w^{(1)} + b_{1}) + w_{10}(x^{T}w^{(2)} + b_{2}) + b_{3}$$

$$z = w_{9}x^{T}w^{1} + w_{9} \cdot b_{1} + w_{10}x^{T}w^{(2)} + w_{10}b_{2} + b_{3}$$

$$z = x^{T}(w_{9}w^{1} + w_{10}w^{(2)}) + (w_{9} \cdot b_{1} + w_{10}b_{2} + b_{3})$$
Just a vector...

$$z = w_{9}(x^{T}w^{(1)} + b_{1}) + w_{10}(x^{T}w^{(2)} + b_{2}) + b_{3}$$

$$z = w_{9}x^{T}w^{1} + w_{9} \cdot b_{1} + w_{10}x^{T}w^{(2)} + w_{10}b_{2} + b_{3}$$

$$z = x^{T}(w_{9}w^{1} + w_{10}w^{(2)}) + (w_{9} \cdot b_{1} + w_{10}b_{2} + b_{3})$$
Just a vector...

Just a scalar...

$$z = w_{9}(x^{T}w^{(1)} + b_{1}) + w_{10}(x^{T}w^{(2)} + b_{2}) + b_{3}$$

$$z = w_{9}x^{T}w^{1} + w_{9} \cdot b_{1} + w_{10}x^{T}w^{(2)} + w_{10}b_{2} + b_{3}$$

$$z = x^{T}(w_{9}w^{1} + w_{10}w^{(2)}) + (w_{9} \cdot b_{1} + w_{10}b_{2} + b_{3})$$
Just a vector...

Just a scalar...

$$z = x^T \vec{w} + b$$

$$z = w_{9}(x^{T}w^{(1)} + b_{1}) + w_{10}(x^{T}w^{(2)} + b_{2}) + b_{3}$$

$$z = w_{9}x^{T}w^{1} + w_{9} \cdot b_{1} + w_{10}x^{T}w^{(2)} + w_{10}b_{2} + b_{3}$$

$$z = x^{T}(w_{9}w^{1} + w_{10}w^{(2)}) + (w_{9} \cdot b_{1} + w_{10}b_{2} + b_{3})$$
Just a vector...

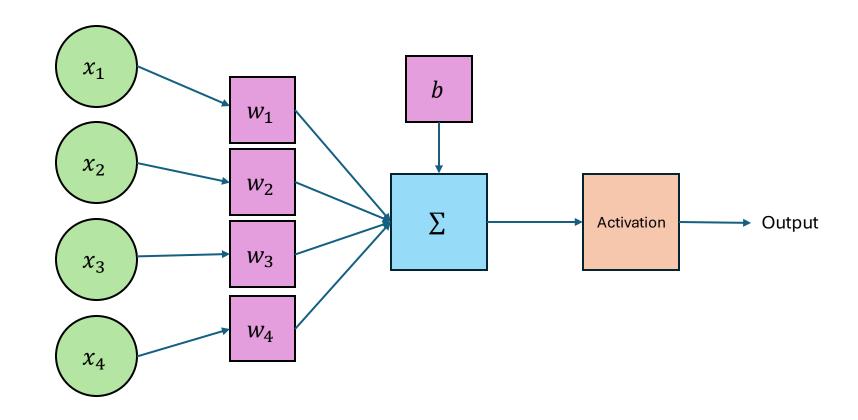
Just a scalar...

$$z = x^T \vec{w} + b$$

Multi-Layer Perceptrons without nonlinear activation functions are linear functions

Activation Functions

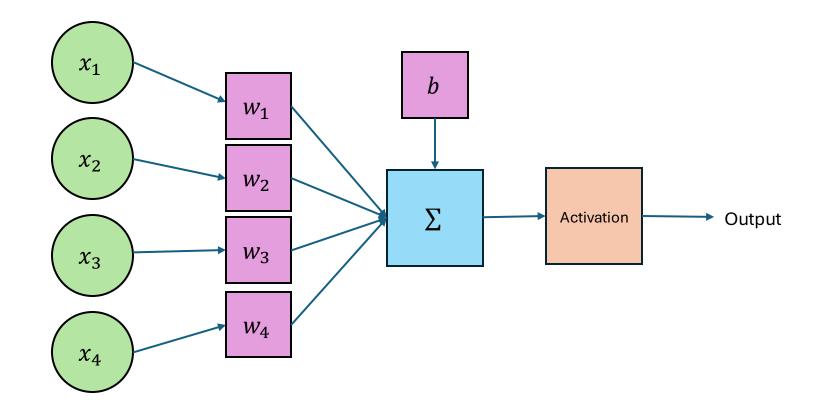
Non-linear functions applied to output of neuron



Activation Functions

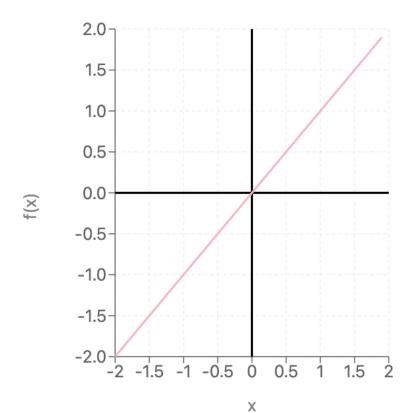
Non-linear functions applied to output of neuron

In the perceptron case, the activation function is the threshold



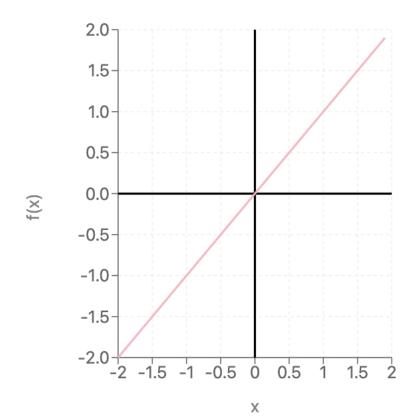
Linear (No Activation)

f(x) = x



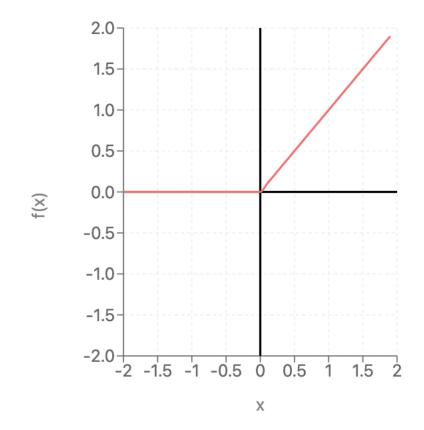
Linear (No Activation)

f(x) = x



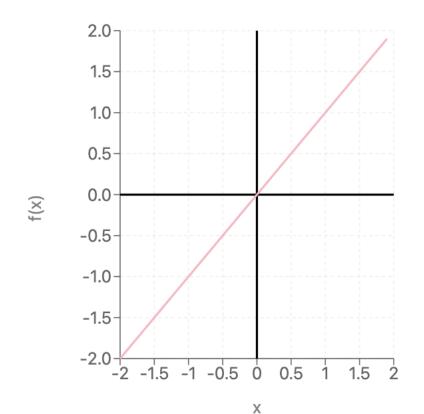
ReLU

 $f(x) = \max(0, x)$



Linear (No Activation)

$$f(x) = x$$

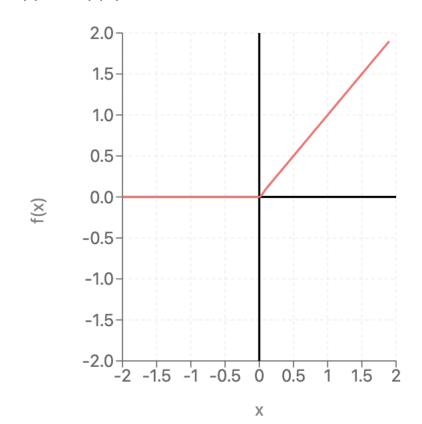


Rectified Linear Unit (ReLU):

One of the most common Activation Functions Advantages: Simple, easy to compute gradients

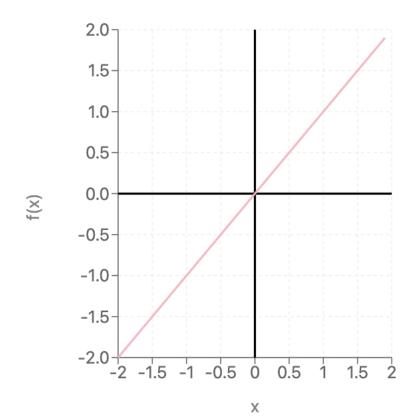
ReLU

 $f(x) = \max(0, x)$



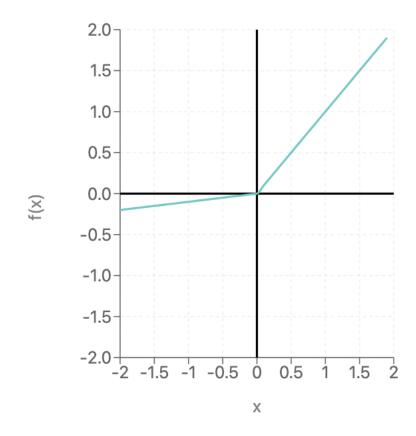
Linear (No Activation)

f(x) = x



Leaky ReLU

f(x) = x if x > 0 else 0.1x

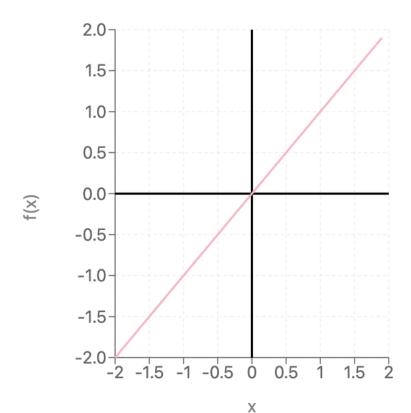


Leaky ReLU:

Common substitute for ReLU, often has better performance Advantages: Fixes "dying neurons" issue with ReLU.

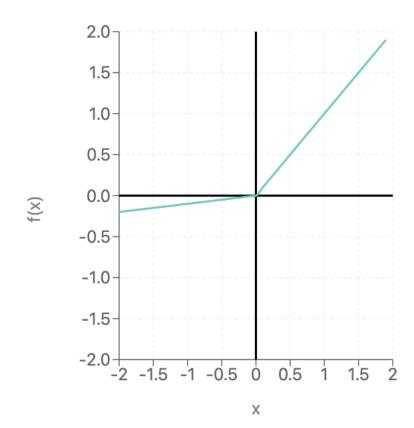
Linear (No Activation)

$$f(x) = x$$



Leaky ReLU

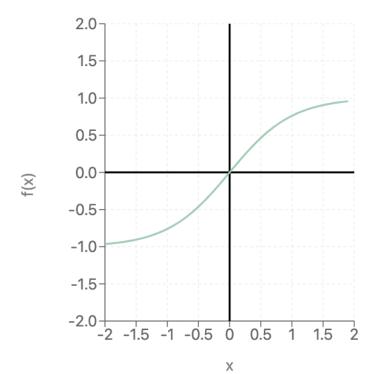
$$f(x) = x \text{ if } x > 0 \text{ else } 0.1x$$



Tanh

Tanh

$$f(x) = (e^x - e^(-x)) / (e^x + e^(-x))$$



Tanh

Tanh:

Advantages:

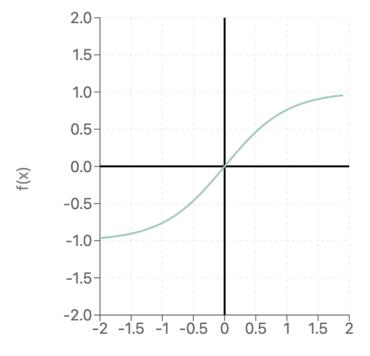
- Always maps output between -1 and 1 (learning is easier when input is normalized and this holds for intermediate layers as well)
- Continuously differentiable

Disadvantages:

- Slower to compute
- Extreme differences in input to activation can get squashed (i.e., z=100 will be very close to z=10000)

Tanh

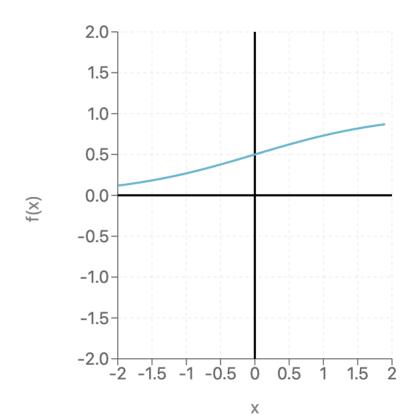
$$f(x) = (e^x - e^{-x}) / (e^x + e^{-x})$$

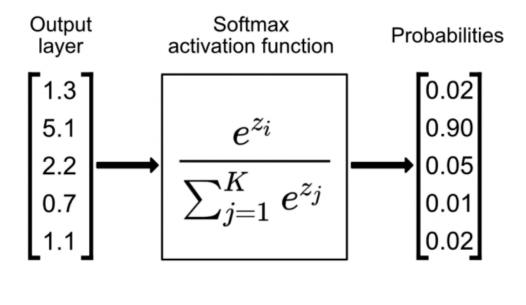


Special Activation Functions for Final Output

Sigmoid

 $f(x) = 1 / (1 + e^{-(-x)})$



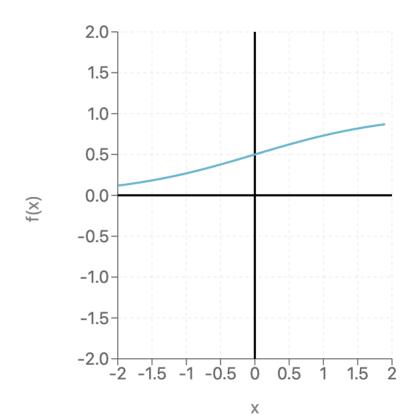


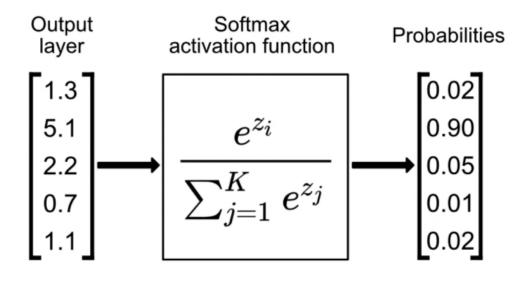
Special Activation Functions for Output

Sigmoid maps input to [0, 1]
Softmax maps vector of inputs to probabilities (outputs sum to 1)

Sigmoid

$$f(x) = 1 / (1 + e^{-(-x)})$$





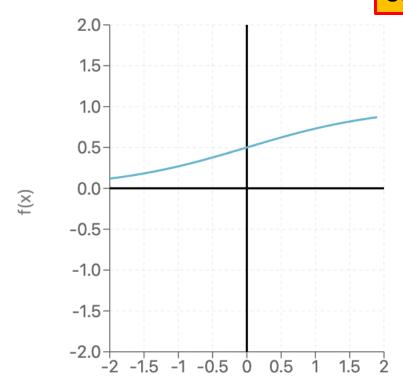
Special Activation Functions for Output

Sigmoid maps input to [0, 1]

Softmax maps vector of inputs to probabilities (outputs sum to 1)

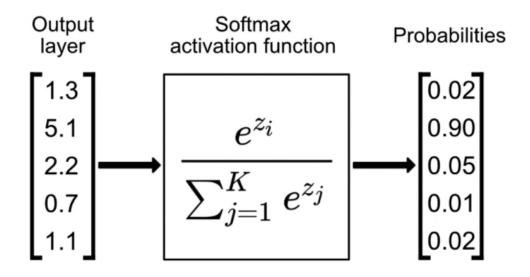
Sigmoid

$$f(x) = 1 / (1 + e^{-(-x)})$$



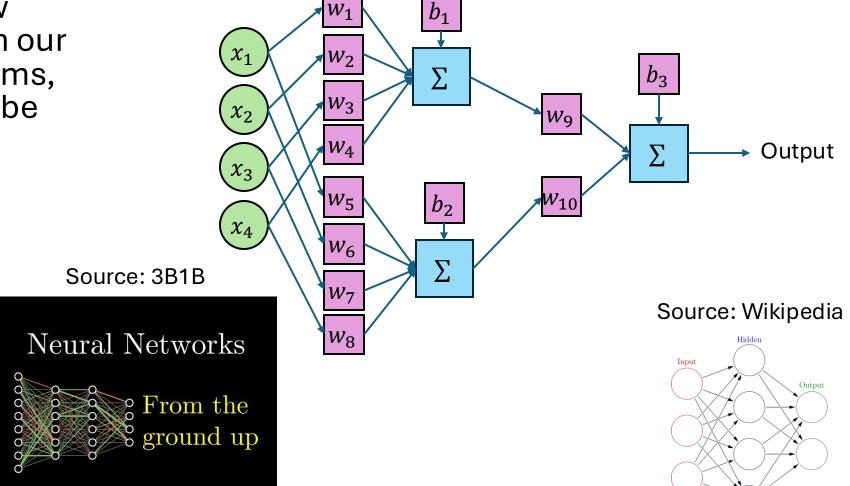
Χ

Used for classification tasks



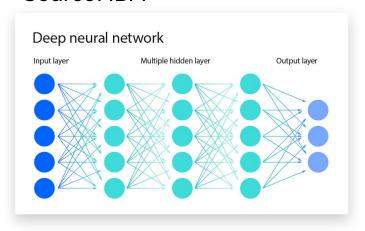
MLPs With Activation Functions

We almost never draw activation functions in our neural network diagrams, but they must always be there!



Source: Me

Source: IBM



• Without non-linear activation functions, a neural network is just a Linear Regression.

- Without non-linear activation functions, a neural network is just a Linear Regression.
- With non-linear activation functions, a neural network is a universal function approximator.

- Without non-linear activation functions, a neural network is just a Linear Regression.
- With non-linear activation functions, a neural network is a universal function approximator.
 - For any function, there exists a neural network of fixed depth that can approximate within some ϵ of error.

- Without non-linear activation functions, a neural network is just a Linear Regression.
- With non-linear activation functions, a neural network is a universal function approximator.
 - For any function, there exists a neural network of fixed depth that can approximate within some ϵ of error.
 - If $\epsilon=0$, i.e., we want a perfect approximation, we may need an infinitely wide network.

- Without non-linear activation functions, a neural network is just a Linear Regression.
- With non-linear activation functions, a neural network is a universal function approximator.
 - For any function, there exists a neural network of fixed depth that can approximate within some ϵ of error.
 - If $\epsilon = 0$, i.e., we want a perfect approximation, we may need an infinitely wide network.
 - This is an **existence** theorem, meaning it tells you that a neural network exists with these properties. It does not tell you how to find the weights of this network.

Intuition

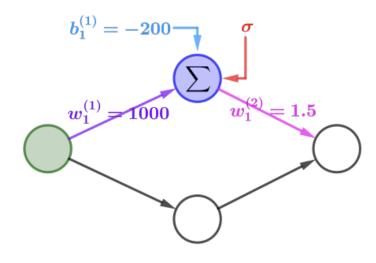


Figure 13: Addition of w_1^2

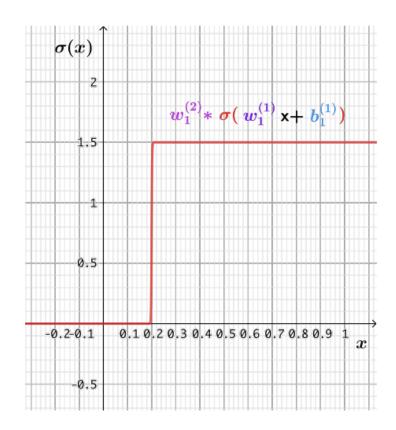


Figure 14: Scaled step-function

With large weights, sigmoid activation functions look like step functions

Approximating functions with step functions

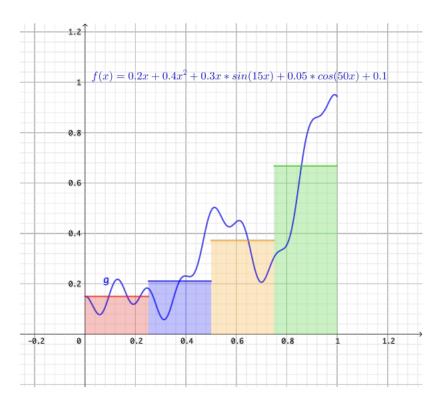


Figure 18: Approximation (N=4)

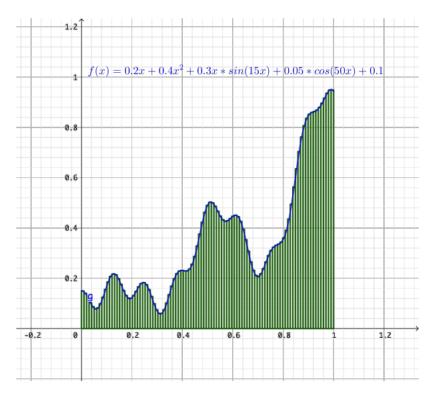


Figure 19: Approximation (N=100)

We can use step functions to approximate arbitrary functions

• So that's it, right? That's why deep learning is so successful. Because neural networks can approximate any function?

• So that's it, right? That's why deep learning is so successful. Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

• So that's it, right? That's why deep learning is so successful. Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Decision Trees of infinite depth can fit any function with 100% accuracy

• So that's it, right? That's why deep learning is so successful. Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Decision Trees of infinite depth can fit any function with 100% accuracy

Piecewise polynomials are universal function approximators (think Taylor expansions)

• So that's it, right? That's why deep learning is so successful. Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Decision Trees of infinite depth can fit any function with 100% accuracy

Piecewise polynomials are universal function approximators (think Taylor expansions)

Wavelets (i.e., small pieces of sine and cosine) are universal function approximators

• So that's it, right? That's why deep learning is so successful. Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Decision Trees of infinite depth can fit any function with 100% accuracy

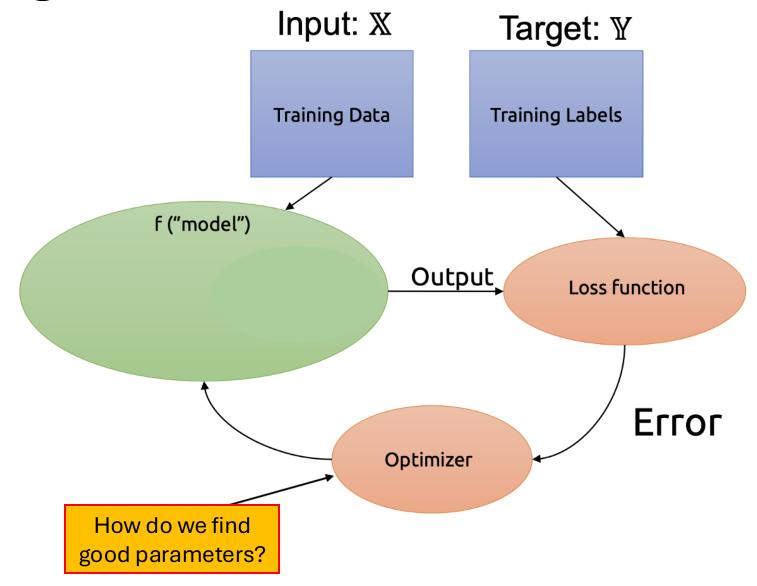
Piecewise polynomials are universal function approximators (think Taylor expansions)

Wavelets (i.e., small pieces of sine and cosine) are universal function approximators

This theorem explains why neural networks are good at fitting the **training** dataset, not why they perform well on the **test** dataset.

Optimization

Learning Network Parameters



Goal: Minimize Loss function

Process:

- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters

Goal: Minimize Loss function

Process:

- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters

Worked for Linear Regressions!

Goal: Minimize Loss function

Process:

- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters

Worked for Linear Regressions!

Only had one point where ∇ $f_{\theta} = \vec{0}$ and that point was a global optimum.

Goal: Minimize Loss function

Process:

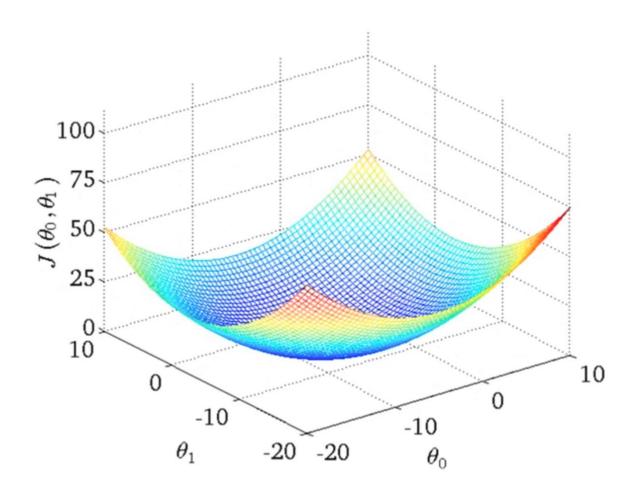
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters

Worked for Linear Regressions!

Only had one point where ∇ $f_{\theta} = \vec{0}$ and that point was a global optimum.

MSE is *convex* with respect to the parameters of the linear Regression

Convexity



Formally:

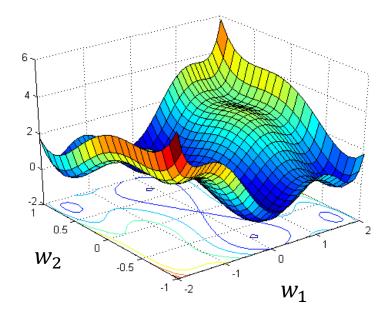
- For any two points x_1, x_2 and $\lambda \in [0, 1]$
- $\lambda f(x_1) + (1 \lambda)f(x_2) \le \lambda x_1 + (1 \lambda)x_2$

The line connecting any two points on the graph will always be above the function.

For convex functions, finding a point with $\nabla f = 0$ is **sufficient** for knowing the point is a **global** minimum

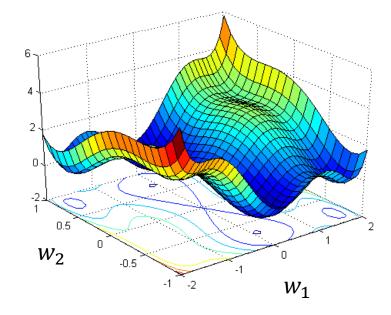
Picture Source: Andrew Ng

MSE is **not** convex with respect to network parameters when non-linear activations are involved.



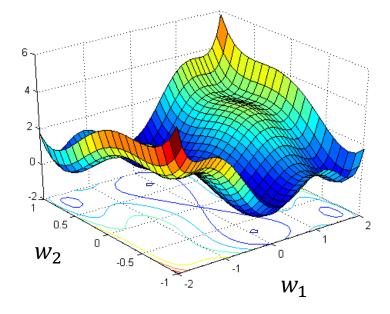
MSE is **not** convex with respect to network parameters when non-linear activations are involved.

Multiple local minima



MSE is **not** convex with respect to network parameters when non-linear activations are involved.

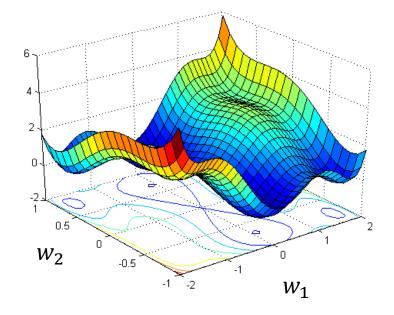
Multiple local minima



Local maxima

MSE is **not** convex with respect to network parameters when non-linear activations are involved.

Multiple local minima



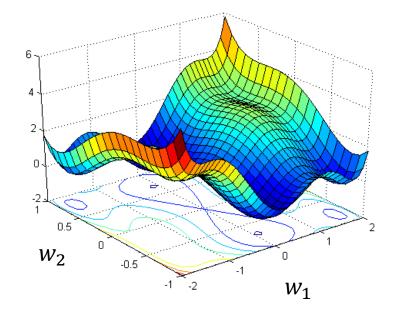
Saddle points

Local maxima

MSE is **not** convex with respect to network parameters when non-linear activations are involved.

Multiple local minima

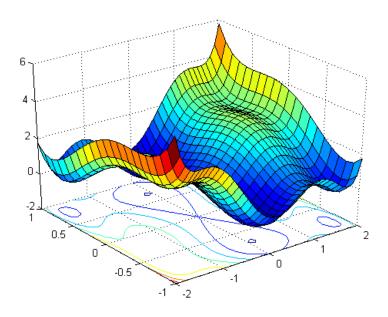
If ReLU or other piecewise activation function is used, may need 2^n piecewise functions to write out ∇f_{θ} ...



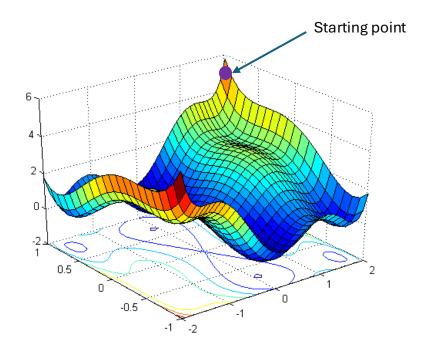
Saddle points

Local maxima

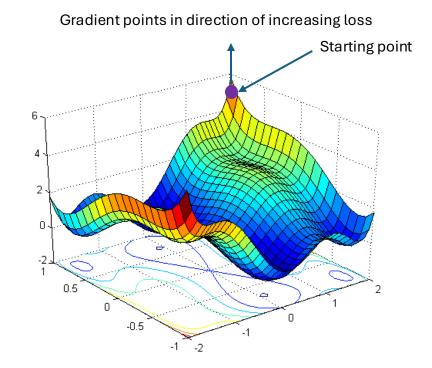
- 1. Start with some initial set of parameters
- 2. Take small step in the direction of the negative gradient
- 3. Repeat 2 until convergence



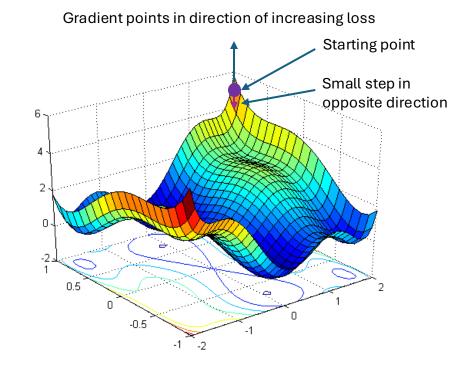
- 1. Start with some initial set of parameters
- 2. Take small step in the direction of the negative gradient
- 3. Repeat 2 until convergence



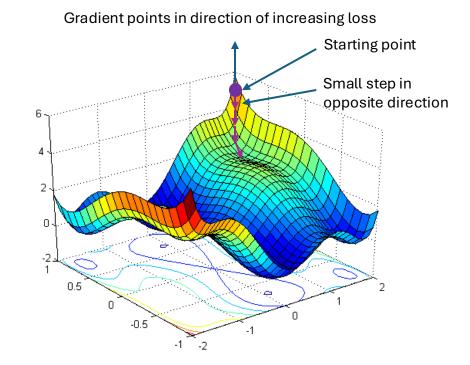
- 1. Start with some initial set of parameters
- 2. Take small step in the direction of the negative gradient
- 3. Repeat 2 until convergence



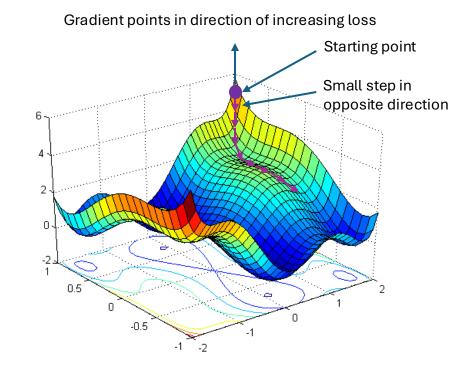
- 1. Start with some initial set of parameters
- 2. Take small step in the direction of the negative gradient
- 3. Repeat 2 until convergence



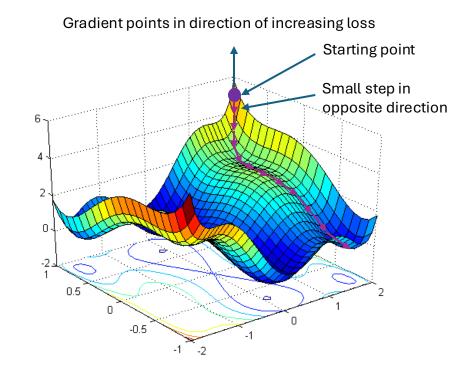
- 1. Start with some initial set of parameters
- 2. Take small step in the direction of the negative gradient
- 3. Repeat 2 until convergence



- 1. Start with some initial set of parameters
- 2. Take small step in the direction of the negative gradient
- 3. Repeat 2 until convergence



- 1. Start with some initial set of parameters
- 2. Take small step in the direction of the negative gradient
- 3. Repeat 2 until convergence



• Partial Derivative: the derivative of a multi-variable function with respect to one of its inputs

- Partial Derivative: the derivative of a multi-variable function with respect to one of its inputs
- Example: f(x, w, b) = wx + b

- Partial Derivative: the derivative of a multi-variable function with respect to one of its inputs
- Example: f(x, w, b) = wx + b
- The partial derivative with respect to w is $\frac{\partial f}{\partial w}$

- Partial Derivative: the derivative of a multi-variable function with respect to one of its inputs
- Example: f(x, w, b) = wx + b
- The partial derivative with respect to w is $\frac{\partial f}{\partial w}$
- How to compute: Treat all other variables as constants and differentiate with respect to that variable

$$\frac{\partial f}{\partial w} = \frac{\partial}{\partial w}(wx + b) = \frac{\partial}{\partial w}(wx) + \frac{\partial}{\partial w}(b) = x$$

Gradients

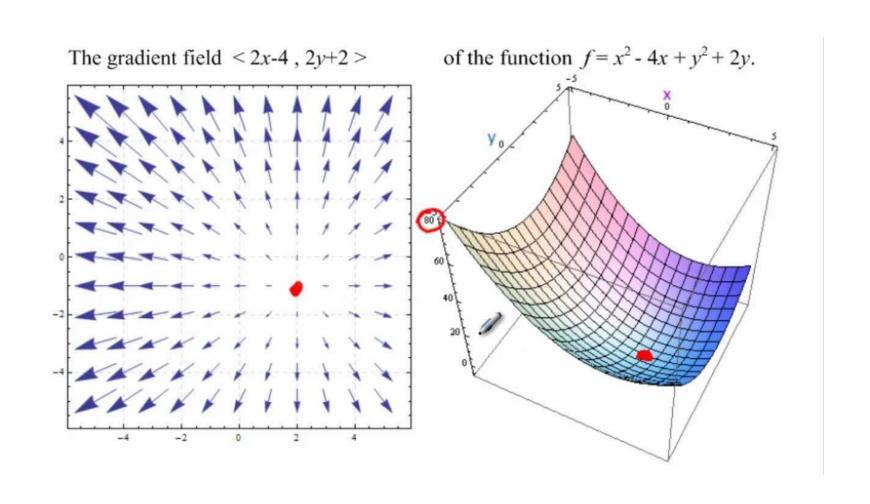
Gradient: the vector of partial derivatives
Vector "points" in direction of increasing *f* values.

$$\nabla f = \left[\frac{\partial f}{\partial w}, \frac{\partial f}{\partial b}, \dots \right]$$

$$f(x, w, b) = wx + b$$

$$\nabla f_{\theta} = \left[\frac{\partial f}{\partial w}, \frac{\partial f}{\partial b}, \frac{\partial f}{\partial x}\right]$$

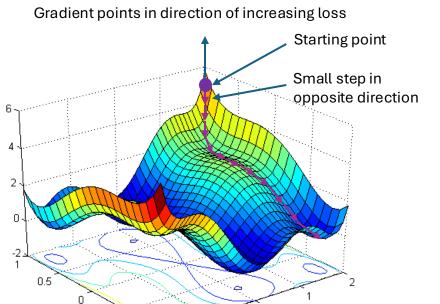
Gradients



- 1. Start with some initial set of parameters
- 2. Take small step in the direction of the negative gradient
- 3. Repeat 2 until convergence

For N iterations or until $\Delta \theta < \epsilon$:

$$\vec{\theta} \leftarrow \theta - \alpha \nabla f_{\theta}$$

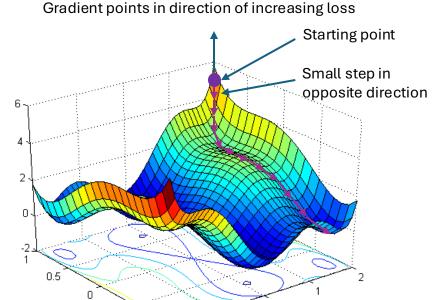


- 1. Start with some initial set of parameters
- 2. Take small step in the direction of the negative gradient
- 3. Repeat 2 until convergence

For N iterations or until $\Delta \theta < \epsilon$:

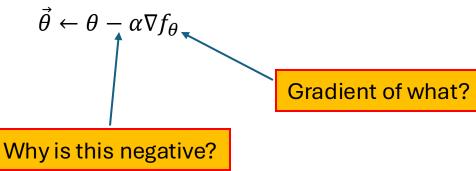
$$\vec{\theta} \leftarrow \theta - \alpha \nabla f_{\theta}$$

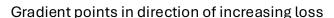
Gradient of what?

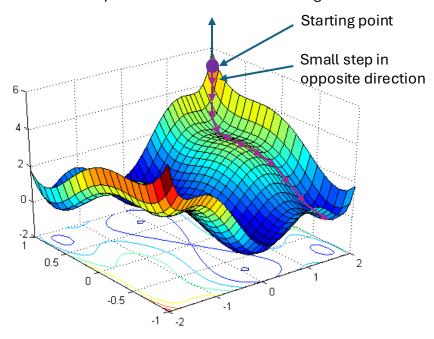


- 1. Start with some initial set of parameters
- 2. Take small step in the direction of the negative gradient
- 3. Repeat 2 until convergence

For N iterations or until $\Delta \theta < \epsilon$:

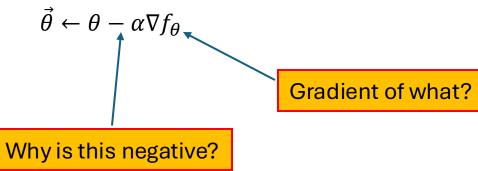


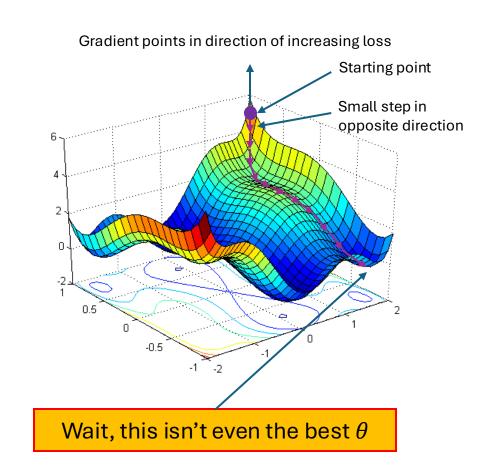




- 1. Start with some initial set of parameters
- 2. Take small step in the direction of the negative gradient
- 3. Repeat 2 until convergence

For N iterations or until $\Delta \theta < \epsilon$:



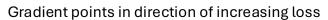


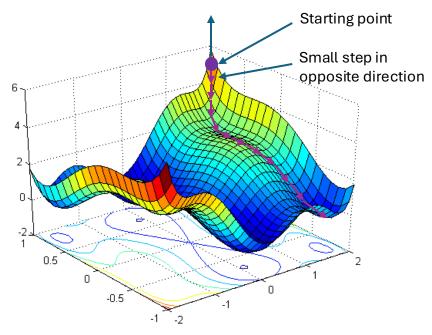
- 1. Start with some initial set of parameters
- 2. Take small step in the direction of the negative gradient
- 3. Repeat 2 until convergence

For N iterations or until $\Delta \theta < \epsilon$:

$$\vec{\theta} \leftarrow \theta - \alpha \nabla f_{\theta}$$

Learning Rate $\alpha \in [0,1]$





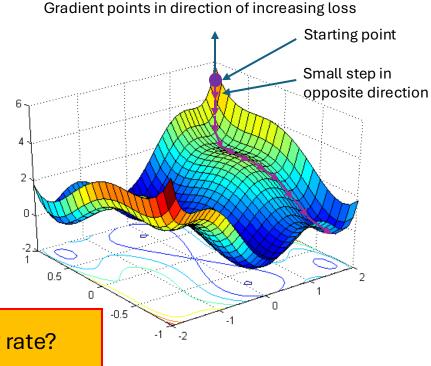
- 1. Start with some initial set of parameters
- 2. Take small step in the direction of the negative gradient
- 3. Repeat 2 until convergence

For N iterations or until $\Delta \theta < \epsilon$:

$$\vec{\theta} \leftarrow \theta - \alpha \nabla f_{\theta}$$

$$\uparrow$$
Learning Rate $\alpha \in [0,1]$

Why do we need a learning rate?



- 1. Start with some initial set of parameters
- 2. Take small step in the direction of the negative gradient
- 3. Repeat 2 until convergence

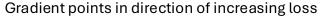
For N iterations or until $\Delta \theta < \epsilon$:

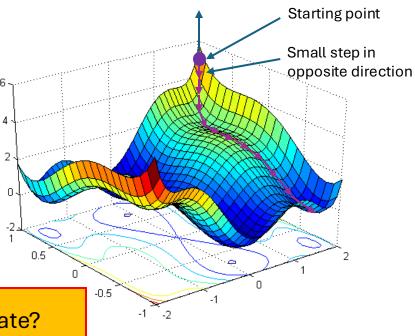
$$\vec{\theta} \leftarrow \theta - \alpha \nabla f_{\theta}$$

$$\uparrow$$
Learning Rate $\alpha \in [0,1]$

Why do we need a learning rate?

Derivatives/Gradients only hold locally

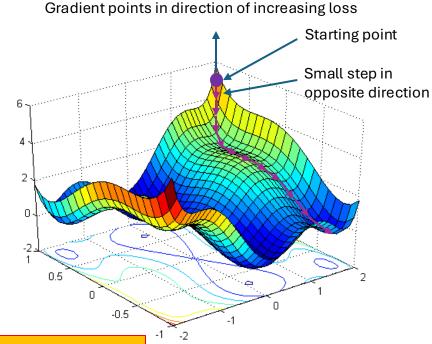




- 1. Start with some initial set of parameters
- 2. Take small step in the direction of the negative gradient
- 3. Repeat 2 until convergence

For N iterations or until $\Delta \theta < \epsilon$:

$$\vec{\theta} \leftarrow \theta - \alpha \nabla f_{\theta}$$



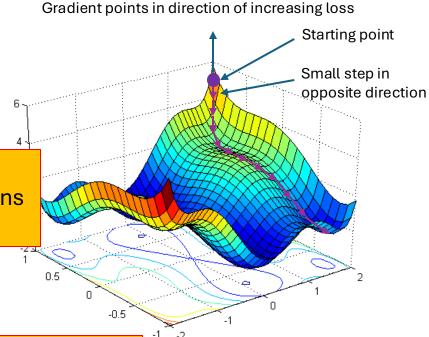
Gradient Descent does not converge to the global minimum. It can (and pretty much always does) get stuck in local minima.

- 1. Start with some initial set of parameters
- 2. Take small step in the direction of the negative gradient
- 3. Repeat 2 until convergence

Understanding gradient descent is the single most important concept in all of Deep Learning. Most decisions in DL are made for reasons related to gradients.

For N iterations or until $\Delta \theta < \epsilon$:

$$\vec{\theta} \leftarrow \theta - \alpha \nabla f_{\theta}$$



Gradient Descent does not converge to the global minimum. It can (and pretty much always does) get stuck in local minima.

Review: Mean Squared Error

Used previously for linear regression: Model with parameters θ $MSE = \frac{\sum_{i}^{n}(y_{i} - f_{\theta}(\vec{x}))^{2}}{n}$

Used for regression tasks (prediction of continuous variable)

$$L = \frac{\sum_{i}^{n} (y_i - f_{\theta}(\vec{x}))^2}{n}$$

$$L = \frac{\sum_{i}^{n} (y_{i} - f_{\theta}(\vec{x}))^{2}}{n}$$

$$L = \frac{\sum_{i}^{n} [y_{i}^{2} - 2f_{\theta}(\vec{x}) + f_{\theta}(\vec{x})^{2}]}{n}$$

$$L = \frac{\sum_{i}^{n} (y_{i} - f_{\theta}(\vec{x}))^{2}}{n}$$

$$L = \frac{\sum_{i}^{n} [y_{i}^{2} - 2f_{\theta}(\vec{x}) + f_{\theta}(\vec{x})^{2}]}{n}$$

$$\nabla_{\theta} L = \frac{\sum_{i=1}^{n} 2 \cdot \nabla f_{\theta}(\vec{x}) + 2 \cdot \nabla f_{\theta}(\vec{x}) \cdot f_{\theta}(\vec{x})}{n}$$

Gradient descent needs gradients, how do we actually calculate them?

$$L = \frac{\sum_{i}^{n} (y_{i} - f_{\theta}(\vec{x}))^{2}}{n}$$

$$L = \frac{\sum_{i}^{n} [y_{i}^{2} - 2f_{\theta}(\vec{x}) + f_{\theta}(\vec{x})^{2}]}{n}$$

$$\nabla_{\theta} L = \frac{\sum_{i=1}^{n} 2 \cdot \nabla f_{\theta}(\vec{x}) + 2 \cdot \nabla f_{\theta}(\vec{x}) \cdot f_{\theta}(\vec{x})}{n}$$

But what is this?

Gradient descent needs gradients, how do we actually calculate them?

$$L = \frac{\sum_{i}^{n} (y_{i} - f_{\theta}(\vec{x}))^{2}}{n}$$

$$L = \frac{\sum_{i}^{n} [y_{i}^{2} - 2f_{\theta}(\vec{x}) + f_{\theta}(\vec{x})^{2}]}{n}$$

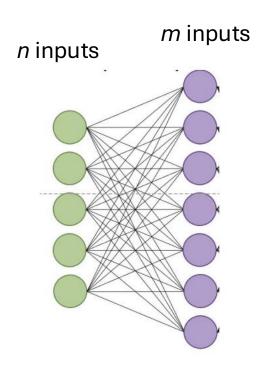
$$\nabla_{\theta} L = \frac{\sum_{i=1}^{n} 2 \cdot \nabla f_{\theta}(\vec{x}) + 2 \cdot \nabla f_{\theta}(\vec{x}) \cdot f_{\theta}(\vec{x})}{n}$$

But what is this?

 $f_{\theta} = wx + b$ For a single output

Weight Matrix for a Layer of Neurons

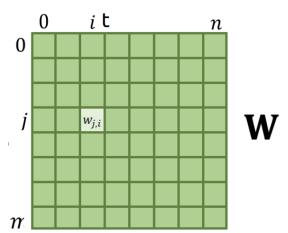
- We have an input of size *n* and we want an output vector of size *m*.
- We will represent our weights as a matrix.
 - What should the dimensions of our matrix be?

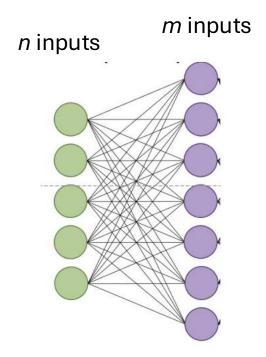


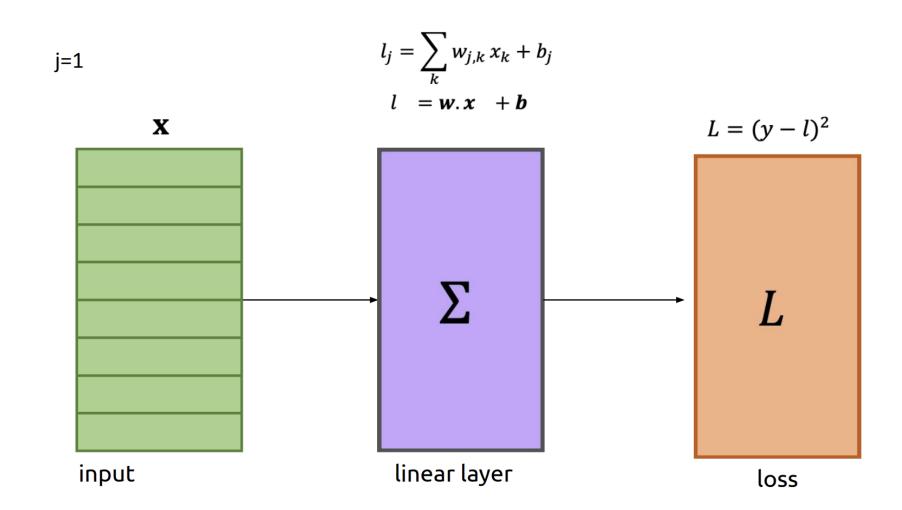
Weight Matrix

- We have an input of size *n* and we want an output vector of size *m*.
- We will represent our weights as a matrix.
 - What should the dimensions of our matrix be?

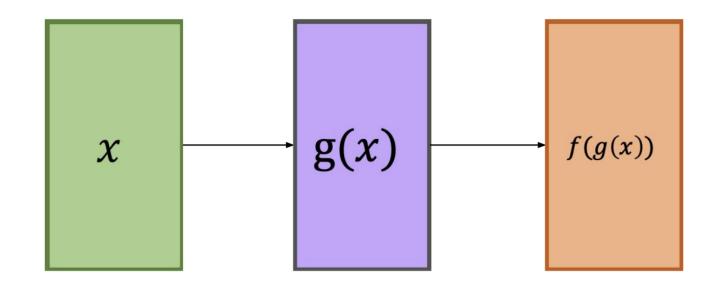
 $w_{j,i}$ is the j^{th} row and the i^{th} column of our matrix, or the weight multiplied by the i^{th} index of the input which is used to create the j^{th} index in the output





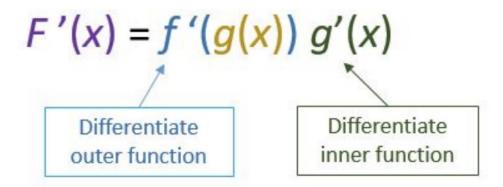


Looking at composite function!



Chain rule

If f and g are both differentiable and F(x) is the composite function defined by F(x) = f(g(x)) then F is differentiable and F' is given by the product



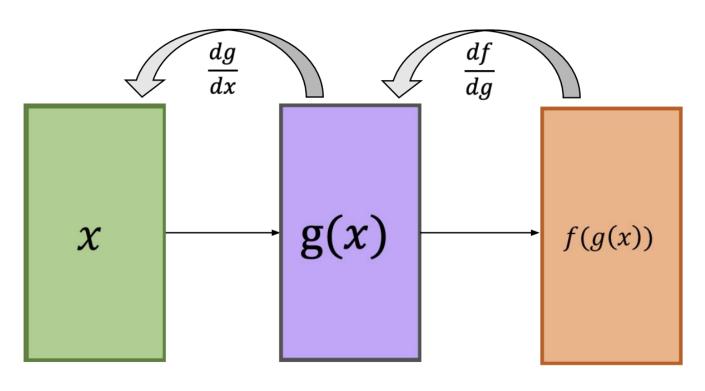
Applying Chain rule [Example]

$$f(x) = x^2$$
 $g(x) = (2x^2 + 1)$
 $F(x) = f(g(x))$
 $F(x) = (2x^2 + 1)^2$

The Chain Rule (for Differentiation)

• Given arbitrary function: $f(g(x)) \Rightarrow \frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$

Each layer computes the gradients with respect to it's variables and passes the result backwards



Backpropagation

(or backward pass)

In general, we'd like to optimize the accuracy of our model (#correct/#total)

In general, we'd like to optimize the accuracy of our model (#correct/#total) Need Loss function to be small for best model, not large.

In general, we'd like to optimize the accuracy of our model (#correct/#total) Need Loss function to be small for best model, not large.

Proposed Loss Function:
$$L = 1 - \frac{\# Correct}{n}$$

In general, we'd like to optimize the accuracy of our model (#correct/#total) Need Loss function to be small for best model, not large.

Proposed Loss Function:
$$L = 1 - \frac{\# Correct}{n}$$

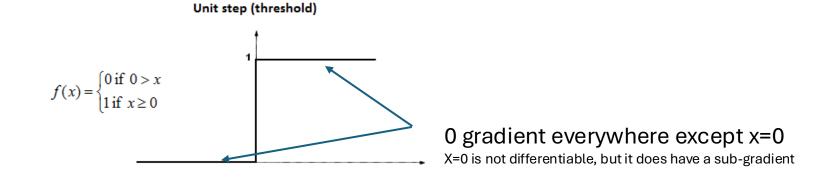
The Issue: most of the time, the gradient of this loss function is $\nabla L_{\theta} = 0$

In general, we'd like to optimize the accuracy of our model (#correct/#total) Need Loss function to be small for best model, not large.

Proposed Loss Function:
$$L = 1 - \frac{\# Correct}{n}$$

The Issue: most of the time, the gradient of this loss function is $\nabla L_{\theta} = 0$

Gradient is only non-zero when changing a θ has an impact on output predictions

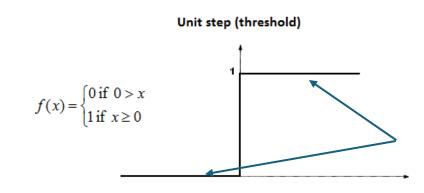


In general, we'd like to optimize the accuracy of our model (#correct/#total) Need Loss function to be small for best model, not large.

Proposed Loss Function:
$$L = 1 - \frac{\# Correct}{n}$$

The Issue: most of the time, the gradient of this loss function is $\nabla L_{\theta} = 0$

Gradient is only non-zero when changing a θ has an impact on output predictions



We cannot use classification as a loss function because it is **incompatible with**gradient descent

O gradient everywhere except x=0 X=0 is not differentiable, but it does have a sub-gradient

Remaining Questions for next week:

- 1) What loss function can we use for classification?
- 2) How do we actually calculate the gradient of a network?
 - 1) If the loss function is applied to the whole dataset, shouldn't we be concerned about the size of the dataset?
 - 2) Gradient descent is an iterative approach. If each iteration is slow, the whole algorithm will take too long to finish.
- 3) Gradient descent can get stuck in local minima.

Can we do better?

