
Deep Learning
Eric Ewing

CSCI 1470

Thursday,
9/11/25

Day 3: MNIST, Perceptrons, and MLPs

Black Canyon of the Gunnison, Colorado

Recap

A perceptron/neuron works just like a linear
regression, but has a different activation function

Loss Functions tell us about the
performance of the model (which we will
also optimize for)

We must always test for (and
balance) overfitting and
underfitting

Train, validation, and test sets

• Training Set: Used to adjust parameters of model

• Validation set — used to test how well we’re doing as we develop

• Prevents overfitting

• Test Set — used to evaluate the model once the model is done Train

Validation

Test

MNIST

The most famous dataset in Deep Learning
Modified National Institute of Standards and Technology database

Image courtesy of Wikipedia

MNIST

• 60,000 Images in training set
• 10,000 Images in test set
• No explicit validation set

MNIST

• 60,000 Images in training set
• 10,000 Images in test set
• No explicit validation set

What do you suggest
we do?

80/20 train/validation
splits are common

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1
𝑤2
𝑤3

𝑤4

∑

𝑏

Output

The Perceptron Algorithm

Loop Over Dataset (until no weights change)
 - For each misclassified example
 - update weights to make better prediction for example

The Perceptron Algorithm

1. Initialize Ԧ𝜃 = 0

2. For N iterations or until Ԧ𝜃 does not change
1. For each example 𝑥 𝑘 with label 𝑦 𝑘

1. If 𝑦 𝑘 = 𝑓(𝑥 𝑘), continue

2. Else, for all parameters 𝜃𝑖 ∈ Ԧ𝜃, 𝜃𝑖 = 𝜃𝑖 + 𝑦 𝑘 − 𝑓 𝑥 𝑘 ⋅ 𝑥𝑖
𝑘

w: weights
b: bias

𝜃: parameters (weights and biases), Ԧ𝜃 = 𝑤 ∪ 𝑏

𝑥 𝑘 : k’th training example, 𝑦 𝑘 k’th training label
𝑥𝑖

𝑘 : i’th feature for k’th example

The Perceptron Algorithm

1. Initialize Ԧ𝜃 = 0

2. For N iterations or until Ԧ𝜃 does not change
1. For each example 𝑥 𝑘 with label 𝑦 𝑘

1. If 𝑦 𝑘 = 𝑓(𝑥 𝑘), continue

2. Else, for all parameters 𝜃𝑖 ∈ Ԧ𝜃, 𝜃𝑖 = 𝜃𝑖 + 𝑦 𝑘 − 𝑓 𝑥 𝑘 ⋅ 𝑥𝑖
𝑘

w: weights
b: bias

𝜃: parameters (weights and biases), Ԧ𝜃 = 𝑤 ∪ 𝑏

𝑥 𝑘 : k’th training example, 𝑦 𝑘 k’th training label
𝑥𝑖

𝑘 : i’th feature for k’th example

Need to start somewhere…
any initial setting will work

The Perceptron Algorithm

1. Initialize Ԧ𝜃 = 0

2. For N iterations or until Ԧ𝜃 does not change
1. For each example 𝑥 𝑘 with label 𝑦 𝑘

1. If 𝑦 𝑘 = 𝑓(𝑥 𝑘), continue

2. Else, for all parameters 𝜃𝑖 ∈ Ԧ𝜃, 𝜃𝑖 = 𝜃𝑖 + 𝑦 𝑘 − 𝑓 𝑥 𝑘 ⋅ 𝑥𝑖
𝑘

w: weights
b: bias

𝜃: parameters (weights and biases), Ԧ𝜃 = 𝑤 ∪ 𝑏

𝑥 𝑘 : k’th training example, 𝑦 𝑘 k’th training label
𝑥𝑖

𝑘 : i’th feature for k’th example

N is referred to as “epochs”:
Number of times the entire
dataset is iterated through

The Perceptron Algorithm

1. Initialize Ԧ𝜃 = 0

2. For N iterations or until Ԧ𝜃 does not change
1. For each example 𝑥 𝑘 with label 𝑦 𝑘

1. If 𝑦 𝑘 = 𝑓(𝑥 𝑘), continue

2. Else, for all parameters 𝜃𝑖 ∈ Ԧ𝜃, 𝜃𝑖 = 𝜃𝑖 + 𝑦 𝑘 − 𝑓 𝑥 𝑘 ⋅ 𝑥𝑖
𝑘

w: weights
b: bias

𝜃: parameters (weights and biases), Ԧ𝜃 = 𝑤 ∪ 𝑏

𝑥 𝑘 : k’th training example, 𝑦 𝑘 k’th training label
𝑥𝑖

𝑘 : i’th feature for k’th example

Loop over every example in dataset

The Perceptron Algorithm

1. Initialize Ԧ𝜃 = 0

2. For N iterations or until Ԧ𝜃 does not change
1. For each example 𝑥 𝑘 with label 𝑦 𝑘

1. If 𝑦 𝑘 = 𝑓(𝑥 𝑘), continue

2. Else, for all parameters 𝜃𝑖 ∈ Ԧ𝜃, 𝜃𝑖 = 𝜃𝑖 + 𝑦 𝑘 − 𝑓 𝑥 𝑘 ⋅ 𝑥𝑖
𝑘

w: weights
b: bias

𝜃: parameters (weights and biases), Ԧ𝜃 = 𝑤 ∪ 𝑏

𝑥 𝑘 : k’th training example, 𝑦 𝑘 k’th training label
𝑥𝑖

𝑘 : i’th feature for k’th example

Look only at examples that are
misclassified (i.e., 𝑦 𝑘 ≠ 𝑓(𝑥 𝑘))

The Perceptron Algorithm

1. Initialize Ԧ𝜃 = 0

2. For N iterations or until Ԧ𝜃 does not change
1. For each example 𝑥 𝑘 with label 𝑦 𝑘

1. If 𝑦 𝑘 = 𝑓(𝑥 𝑘), continue

2. Else, for all parameters 𝜃𝑖 ∈ Ԧ𝜃, 𝜃𝑖 = 𝜃𝑖 + 𝑦 𝑘 − 𝑓 𝑥 𝑘 ⋅ 𝑥𝑖
𝑘

w: weights
b: bias

𝜃: parameters (weights and biases), Ԧ𝜃 = 𝑤 ∪ 𝑏

𝑥 𝑘 : k’th training example, 𝑦 𝑘 k’th training label
𝑥𝑖

𝑘 : i’th feature for k’th example

For every parameter in our perceptron…

The Perceptron Algorithm

1. Initialize Ԧ𝜃 = 0

2. For N iterations or until Ԧ𝜃 does not change
1. For each example 𝑥 𝑘 with label 𝑦 𝑘

1. If 𝑦 𝑘 = 𝑓(𝑥 𝑘), continue

2. Else, for all parameters 𝜃𝑖 ∈ Ԧ𝜃, 𝜃𝑖 = 𝜃𝑖 + 𝑦 𝑘 − 𝑓 𝑥 𝑘 ⋅ 𝑥𝑖
𝑘

w: weights
b: bias

𝜃: parameters (weights and biases), Ԧ𝜃 = 𝑤 ∪ 𝑏

𝑥 𝑘 : k’th training example, 𝑦 𝑘 k’th training label
𝑥𝑖

𝑘 : i’th feature for k’th example

For every parameter in our perceptron…

If 𝑦 𝑘 = 1 and 𝑓 𝑥 𝑘 = 0 and 𝑥𝑖
𝑘 >0…

The Perceptron Algorithm

1. Initialize Ԧ𝜃 = 0

2. For N iterations or until Ԧ𝜃 does not change
1. For each example 𝑥 𝑘 with label 𝑦 𝑘

1. If 𝑦 𝑘 = 𝑓(𝑥 𝑘), continue

2. Else, for all parameters 𝜃𝑖 ∈ Ԧ𝜃, 𝜃𝑖 = 𝜃𝑖 + 𝑦 𝑘 − 𝑓 𝑥 𝑘 ⋅ 𝑥𝑖
𝑘

w: weights
b: bias

𝜃: parameters (weights and biases), Ԧ𝜃 = 𝑤 ∪ 𝑏

𝑥 𝑘 : k’th training example, 𝑦 𝑘 k’th training label
𝑥𝑖

𝑘 : i’th feature for k’th example

For every parameter in our perceptron…

If 𝑦 𝑘 = 1 and 𝑓 𝑥 𝑘 = 0 and 𝑥𝑖
𝑘 >0…

𝜃𝑖 increases

The Perceptron Algorithm

1. Initialize Ԧ𝜃 = 0

2. For N iterations or until Ԧ𝜃 does not change
1. For each example 𝑥 𝑘 with label 𝑦 𝑘

1. If 𝑦 𝑘 = 𝑓(𝑥 𝑘), continue

2. Else, for all parameters 𝜃𝑖 ∈ Ԧ𝜃, 𝜃𝑖 = 𝜃𝑖 + 𝑦 𝑘 − 𝑓 𝑥 𝑘 ⋅ 𝑥𝑖
𝑘

w: weights
b: bias

𝜃: parameters (weights and biases), Ԧ𝜃 = 𝑤 ∪ 𝑏

𝑥 𝑘 : k’th training example, 𝑦 𝑘 k’th training label
𝑥𝑖

𝑘 : i’th feature for k’th example

If no parameters change, then we know
that 𝑦 𝑘 = 𝑓 𝑥 𝑘 ∀𝑘

Converting Perceptrons to Multi-Class
Classification

How do we do this?

How do we do this?

Instead of outputting a
binary prediction, make

an output for each class.

Using Multiple Perceptrons

• We can use m perceptrons (where m is the number of output
classes)

• For MNIST, this would be 10 perceptrons
• Each individual perceptron will need to return a value, our model

will return the class with the highest value
• Here, value refers to the weighted sum before the threshold is applied

MNIST Performance

Perceptrons can perform quite well on MNIST, with around 85% accuracy

But they will always be linear classifiers…

Perceptrons

Are Perceptrons guaranteed to achieve
100% accuracy?

Perceptrons

Are Perceptrons guaranteed to achieve
100% accuracy?

How can you put a linear separator on the
plot to separate the two classes?

Perceptrons

Are Perceptrons guaranteed to achieve
100% accuracy?

How can you put a linear separator on the
plot to separate the two classes?

Perceptrons

Are Perceptrons guaranteed to achieve
100% accuracy?

How can you put a linear separator on the
plot to separate the two classes?

There are simple functions that
perceptrons can’t learn!

Perceptrons: The Book

Perceptrons: An Introduction to Computational Geometry
• Published by Marvin Minsky and Seymour Papert in 1969
• Acknowledged some strengths of Perceptrons and identified

some fundamental flaws
• (Partially) responsible for shifting AI research away from

“connectivism” and towards symbolic AI systems

Limited funding for neural networks research in the 1970s
(First AI winter)

1980s – revival of neural networks research
“Invention” of backpropagation, needed for efficient training of neural networks

1987 – collapse of LISP machine market and abandonment of expert systems
(Second AI winter)

AI Research Timeline

The Solution:

Use hand-crafted feature:
|𝑥1 − 𝑥2|

0 1

Trivial to find linear separator
in new feature space!

But how do we find
appropriate features?

The Solution: learn new features

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

Output

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏 𝑤5

𝑤5

∑

𝑏

Output

Perceptron

Multi-Layer Perceptron (MLP, Neural Network)

Layer 1 Layer 2

MLPs
Hidden Layers

Input Features Outputs

Goal (for binary-classification):
Learn intermediate features, such
that the final representation is
linearly separable

Learned Representation:
Transformation of original features
into new “learned” features

MLPs consist of weights, biases,
and activation functions for each
neuron.

Multi-Layer Perceptrons

What happens if we remove the
threshold activations from a
multi-layer perceptron? 𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏1

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏2
𝑤10

𝑤9

∑

𝑏3

OutputLet w(1) = [𝑤1, 𝑤2, 𝑤3, 𝑤4]
Perceptron #1: z1 = 𝑥𝑇𝑤(1) + 𝑏1

Multi-Layer Perceptrons

What happens if we remove the
activations from a multi-layer
perceptron? 𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏1

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏2
𝑤10

𝑤9

∑

𝑏3

OutputLet w(2) = [𝑤5, 𝑤6, 𝑤7, 𝑤8]
Perceptron #1: z1 = 𝑥𝑇𝑤(1) + 𝑏1

Perceptron #2: 𝑧2 = 𝑥𝑇𝑤(2) + 𝑏2

Multi-Layer Perceptrons

What happens if we remove the
activations from a multi-layer
perceptron? 𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏1

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏2
𝑤10

𝑤9

∑

𝑏3

OutputLet w(2) = [𝑤5, 𝑤6, 𝑤7, 𝑤8]
Perceptron #1: z1 = 𝑥𝑇𝑤(1) + 𝑏1

Perceptron #2: 𝑧2 = 𝑥𝑇𝑤(2) + 𝑏2

Perceptron #3: 𝑧3 = 𝑧1𝑤9 + 𝑧2𝑤10 + 𝑏3

Multi-Layer Perceptrons

What happens if we remove the
activations from a multi-layer
perceptron? 𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏1

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏2
𝑤10

𝑤9

∑

𝑏3

OutputLet w(2) = [𝑤5, 𝑤6, 𝑤7, 𝑤8]
Perceptron #1: z1 = 𝑥𝑇𝑤(1) + 𝑏1

Perceptron #2: 𝑧2 = 𝑥𝑇𝑤(2) + 𝑏2

Perceptron #3: 𝑧3 = 𝑧1𝑤9 + 𝑧2𝑤10 + 𝑏3

Entire Network:
𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

Multi-Layer Perceptrons

What happens if we remove the
activations from a multi-layer
perceptron? 𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏1

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏2
𝑤10

𝑤9

∑

𝑏3

OutputLet w(2) = [𝑤5, 𝑤6, 𝑤7, 𝑤8]
Perceptron #1: z1 = 𝑥𝑇𝑤(1) + 𝑏1

Perceptron #2: 𝑧2 = 𝑥𝑇𝑤(2) + 𝑏2

Perceptron #3: 𝑧3 = 𝑧1𝑤9 + 𝑧2𝑤10 + 𝑏3

Entire Network:
𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

MLP’s Expressiveness

With no activation function

MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

With no activation function

MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤1 +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

With no activation function

MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤(1) +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

𝑧 = 𝑥𝑇(𝑤9𝑤(1)+𝑤10𝑤(2)) + (𝑤9⋅ 𝑏1 + +𝑤10𝑏2 + 𝑏3)

With no activation function

MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤1 +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

𝑧 = 𝑥𝑇(𝑤9𝑤1+𝑤10𝑤(2)) + (𝑤9⋅ 𝑏1 + +𝑤10𝑏2 + 𝑏3)

With no activation function

MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤1 +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

𝑧 = 𝑥𝑇(𝑤9𝑤1+𝑤10𝑤(2)) + (𝑤9⋅ 𝑏1 + +𝑤10𝑏2 + 𝑏3)

Just a vector…

With no activation function

MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤1 +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

𝑧 = 𝑥𝑇(𝑤9𝑤1+𝑤10𝑤(2)) + (𝑤9⋅ 𝑏1 + +𝑤10𝑏2 + 𝑏3)

Just a vector…

With no activation function

MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤1 +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

𝑧 = 𝑥𝑇(𝑤9𝑤1+𝑤10𝑤(2)) + (𝑤9⋅ 𝑏1 + +𝑤10𝑏2 + 𝑏3)

Just a vector… Just a scalar…

With no activation function

MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤1 +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

𝑧 = 𝑥𝑇(𝑤9𝑤1+𝑤10𝑤(2)) + (𝑤9⋅ 𝑏1 + +𝑤10𝑏2 + 𝑏3)

Just a vector… Just a scalar…

𝑧 = 𝑥𝑇𝑤 + 𝑏

With no activation function

MLP’s Expressiveness

𝑧 = 𝑤9 𝑥𝑇𝑤(1) + 𝑏1 + 𝑤10 𝑥𝑇𝑤(2) + 𝑏2 + 𝑏3

𝑧 = 𝑤9𝑥𝑇𝑤1 +𝑤9 ⋅ 𝑏1 +𝑤10𝑥𝑇𝑤(2) + 𝑤10𝑏2 + 𝑏3

𝑧 = 𝑥𝑇(𝑤9𝑤1+𝑤10𝑤(2)) + (𝑤9⋅ 𝑏1 + +𝑤10𝑏2 + 𝑏3)

Just a vector… Just a scalar…

𝑧 = 𝑥𝑇𝑤 + 𝑏

With no activation function

Multi-Layer Perceptrons without non-
linear activation functions are linear

functions

Activation Functions

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

OutputActivation

Non-linear functions
applied to output of

neuron

Activation Functions

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏

OutputActivation

Non-linear functions
applied to output of

neuron

In the perceptron case,
the activation function

is the threshold

Common Activation Functions

Common Activation Functions

Common Activation Functions
Rectified Linear Unit (ReLU):

One of the most common Activation Functions
Advantages: Simple, easy to compute gradients

Common Activation Functions

Common Activation Functions
Leaky ReLU:

Common substitute for ReLU, often has better performance
Advantages: Fixes “dying neurons” issue with ReLU.

Tanh

Tanh

Tanh:
Advantages:
- Always maps output between -1 and 1 (learning

is easier when input is normalized and this holds
for intermediate layers as well)

- Continuously differentiable
Disadvantages:
- Slower to compute
- Extreme differences in input to activation can

get squashed (i.e., z=100 will be very close to
z=10000)

Special Activation Functions for Final Output

Special Activation Functions for Output
Sigmoid maps input to [0, 1]
Softmax maps vector of inputs to probabilities (outputs sum to 1)

Special Activation Functions for Output
Sigmoid maps input to [0, 1]
Softmax maps vector of inputs to probabilities (outputs sum to 1)

Used for classification tasks

MLPs With Activation Functions

We almost never draw
activation functions in our
neural network diagrams,
but they must always be
there!

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

∑

𝑏1

𝑤5

𝑤6

𝑤7

𝑤8

∑

𝑏2
𝑤10

𝑤9

∑

𝑏3

Output

Source: IBM

Source: Me

Source: Wikipedia
Source: 3B1B

Neural Networks

Neural Networks

• Without non-linear activation functions, a neural network is just a
Linear Regression.

Neural Networks

• Without non-linear activation functions, a neural network is just a
Linear Regression.

• With non-linear activation functions, a neural network is a
universal function approximator.

Neural Networks

• Without non-linear activation functions, a neural network is just a
Linear Regression.

• With non-linear activation functions, a neural network is a
universal function approximator.
• For any function, there exists a neural network of fixed depth that can

approximate within some 𝜖 of error.

Neural Networks

• Without non-linear activation functions, a neural network is just a
Linear Regression.

• With non-linear activation functions, a neural network is a
universal function approximator.
• For any function, there exists a neural network of fixed depth that can

approximate within some 𝜖 of error.
• If 𝜖 = 0, i.e., we want a perfect approximation, we may need an infinitely

wide network.

Neural Networks

• Without non-linear activation functions, a neural network is just a
Linear Regression.

• With non-linear activation functions, a neural network is a
universal function approximator.
• For any function, there exists a neural network of fixed depth that can

approximate within some 𝜖 of error.
• If 𝜖 = 0, i.e., we want a perfect approximation, we may need an infinitely

wide network.
• This is an existence theorem, meaning it tells you that a neural network

exists with these properties. It does not tell you how to find the weights of
this network.

Intuition

With large weights, sigmoid activation functions look like step functions

Approximating functions with step functions

We can use step functions to approximate arbitrary functions

Neural Networks

• So that’s it, right? That’s why deep learning is so successful.
Because neural networks can approximate any function?

Neural Networks

• So that’s it, right? That’s why deep learning is so successful.
Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Neural Networks

• So that’s it, right? That’s why deep learning is so successful.
Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Decision Trees of infinite depth
can fit any function with 100%

accuracy

Neural Networks

• So that’s it, right? That’s why deep learning is so successful.
Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Decision Trees of infinite depth
can fit any function with 100%

accuracy

Piecewise polynomials are
universal function approximators

(think Taylor expansions)

Neural Networks

• So that’s it, right? That’s why deep learning is so successful.
Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Decision Trees of infinite depth
can fit any function with 100%

accuracy

Piecewise polynomials are
universal function approximators

(think Taylor expansions)

Wavelets (i.e., small pieces of
sine and cosine) are universal

function approximators

Neural Networks

• So that’s it, right? That’s why deep learning is so successful.
Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Decision Trees of infinite depth
can fit any function with 100%

accuracy

Piecewise polynomials are
universal function approximators

(think Taylor expansions)

Wavelets (i.e., small pieces of
sine and cosine) are universal

function approximators

This theorem explains why neural
networks are good at fitting the
training dataset, not why they

perform well on the test dataset.

Optimization

Learning Network Parameters

How do we find
good parameters?

Option 1: Closed Form Solution

Goal: Minimize Loss function
Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters

Option 1: Closed Form Solution

Goal: Minimize Loss function
Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters Worked for Linear Regressions!

Option 1: Closed Form Solution

Goal: Minimize Loss function
Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters Worked for Linear Regressions!

Only had one point where ∇ f𝜃= 0 and that point
was a global optimum.

Option 1: Closed Form Solution

Goal: Minimize Loss function
Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters Worked for Linear Regressions!

Only had one point where ∇ f𝜃= 0 and that point
was a global optimum.

MSE is convex with respect to the parameters of
the linear Regression

Convexity

Picture Source: Andrew Ng

Formally:
- For any two points 𝑥1, 𝑥2 and 𝜆 ∈ [0, 1]
- 𝜆𝑓 𝑥1 + 1 − 𝜆 𝑓 𝑥2 ≤ 𝜆𝑥1 + 1 − 𝜆 𝑥2

The line connecting any two
points on the graph will
always be above the function.

For convex functions, finding a point
with ∇𝑓 = 0 is sufficient for knowing
the point is a global minimum

Non-Convex Functions
MSE is not convex with respect to network parameters
when non-linear activations are involved.

𝑤1

𝑤2

Non-Convex Functions
MSE is not convex with respect to network parameters
when non-linear activations are involved.

𝑤1

𝑤2

Multiple local minima

Non-Convex Functions
MSE is not convex with respect to network parameters
when non-linear activations are involved.

𝑤1

𝑤2

Multiple local minima

Local maxima

Non-Convex Functions
MSE is not convex with respect to network parameters
when non-linear activations are involved.

𝑤1

𝑤2

Multiple local minima
Saddle points

Local maxima

Non-Convex Functions
MSE is not convex with respect to network parameters
when non-linear activations are involved.

𝑤1

𝑤2

Multiple local minima
Saddle points

Local maxima

If ReLU or other piecewise
activation function is used, may
need 2𝑛 piecewise functions to
write out ∇𝑓𝜃…

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

Vector Calculus

Vector Calculus

• Partial Derivative: the derivative of a multi-variable function with
respect to one of its inputs

Vector Calculus

• Partial Derivative: the derivative of a multi-variable function with
respect to one of its inputs

• Example: 𝑓 𝑥, 𝑤, 𝑏 = 𝑤𝑥 + 𝑏

Vector Calculus

• Partial Derivative: the derivative of a multi-variable function with
respect to one of its inputs

• Example: 𝑓 𝑥, 𝑤, 𝑏 = 𝑤𝑥 + 𝑏

• The partial derivative with respect to w is 𝜕𝑓

𝜕𝑤

Vector Calculus

• Partial Derivative: the derivative of a multi-variable function with
respect to one of its inputs

• Example: 𝑓 𝑥, 𝑤, 𝑏 = 𝑤𝑥 + 𝑏

• The partial derivative with respect to w is 𝜕𝑓

𝜕𝑤

• How to compute: Treat all other variables as constants and
differentiate with respect to that variable

𝜕𝑓

𝜕𝑤
=

𝜕

𝜕𝑤
𝑤𝑥 + 𝑏 =

𝜕

𝜕𝑤
𝑤𝑥 +

𝜕

𝜕𝑤
𝑏 = 𝑥

Gradients

Gradient: the vector of partial derivatives

Vector “points” in direction of increasing f values.

∇𝑓 = [
𝜕𝑓

𝜕𝑤
,
𝜕𝑓

𝜕𝑏
, …]

𝑓 𝑥, 𝑤, 𝑏 = 𝑤𝑥 + 𝑏

∇𝑓𝜃 = [
𝜕𝑓

𝜕𝑤
,
𝜕𝑓

𝜕𝑏
,
𝜕𝑓

𝜕𝑥
]

Gradients

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient of what?

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient of what?

Why is this negative?

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient of what?

Why is this negative?
Wait, this isn’t even the best 𝜃

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Learning Rate 𝛼 ∈ [0,1]

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Learning Rate 𝛼 ∈ [0,1]

Why do we need a learning rate?

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Learning Rate 𝛼 ∈ [0,1]

Why do we need a learning rate?

Derivatives/Gradients only hold locally

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.

Option 2: Gradient Descent

1. Start with some initial set of parameters
2. Take small step in the direction of the

negative gradient
3. Repeat 2 until convergence

Starting point

Gradient points in direction of increasing loss

Small step in
opposite direction

For N iterations or until Δ𝜃 < 𝜖:
 Ԧ𝜃 ← 𝜃 − 𝛼∇𝑓𝜃

Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.

Understanding gradient descent is the single most
important concept in all of Deep Learning. Most decisions

in DL are made for reasons related to gradients.

Review: Mean Squared Error

Used previously for linear regression:

 𝑀𝑆𝐸 =
∑𝑖

𝑛(𝑦𝑖−𝑓𝜃(Ԧ𝑥))^2

𝑛

Used for regression tasks (prediction of continuous variable)

Model with parameters 𝜃

Gradients

Gradients

Gradient descent needs gradients, how do we actually calculate them?

Gradients

Gradient descent needs gradients, how do we actually calculate them?

 𝐿 =
∑𝑖

𝑛(𝑦𝑖−𝑓𝜃(Ԧ𝑥))^2

𝑛

Gradients

Gradient descent needs gradients, how do we actually calculate them?

 𝐿 =
∑𝑖

𝑛(𝑦𝑖−𝑓𝜃(Ԧ𝑥))^2

𝑛

𝐿 =
∑𝑖

𝑛[𝑦𝑖
2−2𝑓𝜃 Ԧ𝑥 + 𝑓𝜃 Ԧ𝑥 2]

𝑛

Gradients

Gradient descent needs gradients, how do we actually calculate them?

 𝐿 =
∑𝑖

𝑛(𝑦𝑖−𝑓𝜃(Ԧ𝑥))^2

𝑛

𝐿 =
∑𝑖

𝑛[𝑦𝑖
2−2𝑓𝜃 Ԧ𝑥 + 𝑓𝜃 Ԧ𝑥 2]

𝑛

∇𝜃𝐿 =
∑𝑖

𝑛 2 ⋅ ∇𝑓𝜃 Ԧ𝑥 + 2 ⋅ ∇𝑓𝜃 Ԧ𝑥 ⋅ 𝑓𝜃(Ԧ𝑥)]

𝑛

Gradients

Gradient descent needs gradients, how do we actually calculate them?

 𝐿 =
∑𝑖

𝑛(𝑦𝑖−𝑓𝜃(Ԧ𝑥))^2

𝑛

𝐿 =
∑𝑖

𝑛[𝑦𝑖
2−2𝑓𝜃 Ԧ𝑥 + 𝑓𝜃 Ԧ𝑥 2]

𝑛

∇𝜃𝐿 =
∑𝑖

𝑛 2 ⋅ ∇𝑓𝜃 Ԧ𝑥 + 2 ⋅ ∇𝑓𝜃 Ԧ𝑥 ⋅ 𝑓𝜃(Ԧ𝑥)]

𝑛

But what is this?

Gradients

Gradient descent needs gradients, how do we actually calculate them?

 𝐿 =
∑𝑖

𝑛(𝑦𝑖−𝑓𝜃(Ԧ𝑥))^2

𝑛

𝐿 =
∑𝑖

𝑛[𝑦𝑖
2−2𝑓𝜃 Ԧ𝑥 + 𝑓𝜃 Ԧ𝑥 2]

𝑛

∇𝜃𝐿 =
∑𝑖

𝑛 2 ⋅ ∇𝑓𝜃 Ԧ𝑥 + 2 ⋅ ∇𝑓𝜃 Ԧ𝑥 ⋅ 𝑓𝜃(Ԧ𝑥)]

𝑛

But what is this? 𝑓𝜃 = 𝑤𝑥 + 𝑏
For a single output

Weight Matrix for a Layer of Neurons

• We have an input of size n and we want an output vector of size m.
• We will represent our weights as a matrix.

• What should the dimensions of our matrix be?

n inputs
m inputs

Weight Matrix

• We have an input of size n and we want an output vector of size m.
• We will represent our weights as a matrix.

• What should the dimensions of our matrix be?

n inputs
m inputs

Classification

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Proposed Loss Function: 𝐿 = 1 −
𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Proposed Loss Function: 𝐿 = 1 −
𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛

The Issue: most of the time, the gradient of this loss function is ∇L𝜃 = 0

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Proposed Loss Function: 𝐿 = 1 −
𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛

The Issue: most of the time, the gradient of this loss function is ∇L𝜃 = 0

Gradient is only non-zero when changing a 𝜃 has an impact on output predictions

0 gradient everywhere except x=0
X=0 is not differentiable, but it does have a sub-gradient

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)
Need Loss function to be small for best model, not large.

Proposed Loss Function: 𝐿 = 1 −
𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑛

The Issue: most of the time, the gradient of this loss function is ∇L𝜃 = 0

Gradient is only non-zero when changing a 𝜃 has an impact on output predictions

0 gradient everywhere except x=0
X=0 is not differentiable, but it does have a sub-gradient

We cannot use classification as a loss
function because it is incompatible with

gradient descent

Remaining Questions for next week:
1) What loss function can we use for classification?
2) How do we actually calculate the gradient of a network?

1) If the loss function is applied to the whole dataset, shouldn’t we be
concerned about the size of the dataset?

2) Gradient descent is an iterative approach. If each iteration is slow, the
whole algorithm will take too long to finish.

3) Gradient descent can get stuck in local minima.
 Can we do better?

	Slide 1
	Slide 2: Recap
	Slide 3: Train, validation, and test sets
	Slide 4: MNIST
	Slide 5
	Slide 6: MNIST
	Slide 7: MNIST
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: The Perceptron Algorithm
	Slide 16: The Perceptron Algorithm
	Slide 17: The Perceptron Algorithm
	Slide 18: The Perceptron Algorithm
	Slide 19: The Perceptron Algorithm
	Slide 20: The Perceptron Algorithm
	Slide 21: The Perceptron Algorithm
	Slide 22: The Perceptron Algorithm
	Slide 23: The Perceptron Algorithm
	Slide 24: The Perceptron Algorithm
	Slide 25: Converting Perceptrons to Multi-Class Classification
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Using Multiple Perceptrons
	Slide 30
	Slide 31
	Slide 32: MNIST Performance
	Slide 33: Perceptrons
	Slide 34: Perceptrons
	Slide 35: Perceptrons
	Slide 36: Perceptrons
	Slide 37: Perceptrons: The Book
	Slide 38: The Solution:
	Slide 39: The Solution: learn new features
	Slide 40: MLPs
	Slide 41: Multi-Layer Perceptrons
	Slide 42: Multi-Layer Perceptrons
	Slide 43: Multi-Layer Perceptrons
	Slide 44: Multi-Layer Perceptrons
	Slide 45: Multi-Layer Perceptrons
	Slide 46: MLP’s Expressiveness
	Slide 47: MLP’s Expressiveness
	Slide 48: MLP’s Expressiveness
	Slide 49: MLP’s Expressiveness
	Slide 50: MLP’s Expressiveness
	Slide 51: MLP’s Expressiveness
	Slide 52: MLP’s Expressiveness
	Slide 53: MLP’s Expressiveness
	Slide 54: MLP’s Expressiveness
	Slide 55: MLP’s Expressiveness
	Slide 56: Activation Functions
	Slide 57: Activation Functions
	Slide 58: Common Activation Functions
	Slide 59: Common Activation Functions
	Slide 60: Common Activation Functions
	Slide 61: Common Activation Functions
	Slide 62: Common Activation Functions
	Slide 63: Tanh
	Slide 64: Tanh
	Slide 65: Special Activation Functions for Final Output
	Slide 66: Special Activation Functions for Output
	Slide 67: Special Activation Functions for Output
	Slide 68: MLPs With Activation Functions
	Slide 69: Neural Networks
	Slide 70: Neural Networks
	Slide 71: Neural Networks
	Slide 72: Neural Networks
	Slide 73: Neural Networks
	Slide 74: Neural Networks
	Slide 75: Intuition
	Slide 76: Approximating functions with step functions
	Slide 77: Neural Networks
	Slide 78: Neural Networks
	Slide 79: Neural Networks
	Slide 80: Neural Networks
	Slide 81: Neural Networks
	Slide 82: Neural Networks
	Slide 83: Optimization
	Slide 84: Learning Network Parameters
	Slide 85: Option 1: Closed Form Solution
	Slide 86: Option 1: Closed Form Solution
	Slide 87: Option 1: Closed Form Solution
	Slide 88: Option 1: Closed Form Solution
	Slide 89: Convexity
	Slide 90: Non-Convex Functions
	Slide 91: Non-Convex Functions
	Slide 92: Non-Convex Functions
	Slide 93: Non-Convex Functions
	Slide 94: Non-Convex Functions
	Slide 95: Option 2: Gradient Descent
	Slide 96: Option 2: Gradient Descent
	Slide 97: Option 2: Gradient Descent
	Slide 98: Option 2: Gradient Descent
	Slide 99: Option 2: Gradient Descent
	Slide 100: Option 2: Gradient Descent
	Slide 101: Option 2: Gradient Descent
	Slide 102: Vector Calculus
	Slide 103: Vector Calculus
	Slide 104: Vector Calculus
	Slide 105: Vector Calculus
	Slide 106: Vector Calculus
	Slide 107: Gradients
	Slide 108: Gradients
	Slide 109: Option 2: Gradient Descent
	Slide 110: Option 2: Gradient Descent
	Slide 111: Option 2: Gradient Descent
	Slide 112: Option 2: Gradient Descent
	Slide 113: Option 2: Gradient Descent
	Slide 114: Option 2: Gradient Descent
	Slide 115: Option 2: Gradient Descent
	Slide 116: Option 2: Gradient Descent
	Slide 117: Option 2: Gradient Descent
	Slide 118: Review: Mean Squared Error
	Slide 119: Gradients
	Slide 120: Gradients
	Slide 121: Gradients
	Slide 122: Gradients
	Slide 123: Gradients
	Slide 124: Gradients
	Slide 125: Gradients
	Slide 126: Weight Matrix for a Layer of Neurons
	Slide 127: Weight Matrix
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133: Classification
	Slide 134: Classification
	Slide 135: Classification
	Slide 136: Classification
	Slide 137: Classification
	Slide 138: Classification
	Slide 139: Classification
	Slide 140

