-

_csciraro Deep Learning

Eric Ewing ~ Day 3: MNIST, Perceptrons, and MLPs

Thursday,
T 9my/2s .

i

Black Canyon of the Gunnison, Color'gdo'

R e C a p Underfit Good fit Overfit

y=wix?+w,x+b y=wix* + wox3 + wax? + wyx + b
o * *| We must always test for (and
@+ balance) overfitting and
underfittin
A N g
A = -
A A A
aorLL wGELE kL

Loss Functions tell us about the

performance of the model (which we will

- A perceptron/neuron works just like a linear
also optimize for)

regression, but has a different activation function

y = 1.50x + -0.50

w;

— Output

W3

T90PP

Train, validation, and test sets

* Training Set: Used to adjust parameters of model

* Validation set — used to test how well we’re doing as we develop
* Prevents overfitting

e Test Set — used to evaluate the model once the model is done Train

Validation

Test

MNIST

The most famous dataset in Deep Learning
Modified National Institute of Standards and Technology database

ololalololololololclolslolelololelol o] s
ANAuannanoannnueEnane
alolzlz|z]2|I])]|2]z]i]=2]2]2]2]a]|2]3]2
31313]1313]3]13]13]|3]|3131713]13|3]313]13]3 >
qllﬂﬂllllllllllllll#

IEIIIBMEEHE
zizix2z171710
HEHEHEE

7191713

C/ 9 Image courtesy of Wikipedia

Machine Learning Pipeline for Digit Recognition

Evaluate
Model

Dataset » Preprocessing » Train Model >

0L0L00L00e/P0 o0 000
T T T Y T B A R A A |
2222222222222222
3233831323333 333

qqqqqqqqqqqqqqqqq
55585555 55555555
aaaaaaaaaaaaaaaaa
T77771TTI0N1P2R 777
YEIRE S P PEPTTTPCE

MNIST

* 60,000 Images in training set
* 10,000 Images in test set
* No explicit validation set

QIIIIEEII7
Q=] W]T [P0l nos]
Ofxt | x|l Nl s
SNNENEERSEAE
S|t 'a]~] —feof o
N =L RN LEES
Sl-IN|®[>]9]>] ool
N N il) B3 2 S N S s
Ol —|N|™w[N Y]] o
O~ [Nl +ws] oo
Of—|~]ol Vs e[S] &
N ERLESRSNEE
OIxNmIwe | ~foof o
SININIMM W] el o
=) S 5 N) B S Y 5
S[—]n]ofule] ool o
Of—|d|ml>]b ol sfaof o

MNIST

* 60,000 Images in training set
* 10,000 Images in test set
* No explicit validation set

QIIIIIIII7
Q=] W]T [P0l nos]
Ofxt | x|l Nl s
SNNENEERSEAE
S|t 'a]~] —feof o
N =L RN LEES
Sl-IN|®[>]9]>] ool
N N il) B3 2 S N S s
Ol —|N|™w[N Y]] o
O~ [Nl +ws] oo
Of—|~]ol Vs e[S] &
N ERLESRSNEE
OIxNmIwe | ~foof o
SININIMM W] el o
=) S 5 N) B S Y 5
S[—]n]ofule] ool o
Of—|d|ml>]b ol sfaof o

What do you suggest
we do?
80/20 train/validation

splits are common

Machine Learning Pipeline for Digit Recognition

Evaluate
Model

Dataset » Preprocessing » Train Model <

0L0L00L00e/P0 o0 000
(I L T A A N A
1111111111111111
3233831323333 333

444444444444444444
S5 5855555575855 ¢55%
bbbblbbbbobaeseébeel
FT77771TTIN12%7 77
YEFiREIPPERPTTYFCE

Classifying MNIST digits requires predicting
1 of 10 possible values

Our Problem:

Input: X Target: Y
g Which digit is it?
(1) 2 =) Function: f - y@D = «p”
X =

28x28 pixels ‘ f(X)% Y ‘

x(2) = y(z) — «”

) Classifying MNIST digits requires predicting
Our PrOblem' 1 of 10 possible values

Input' X What is our input space? Target: Y
g Which digit is it?
(1) 2 =) Function: f - y@D = «p”
X =

28x28 pixels ‘ f(X)% Y ‘

x(2) = y(Z) — “0”

) Classifying MNIST digits requires predicting
Our PrOblem' 1 of 10 possible values

What is our i ? Target: Y
|nput: X at is our input space g
b
e e 2 [output Which digit is it?

=) Function:f ™= yD = «”

£+ =

28x28 pixels ‘ f(X)9 Y ‘

x(Z) - y(Z) — “0"

) Classifying MNIST digits requires predicting
Our PrOblem' 1 of 10 possible values

What is our input space? Target: Y

Input: X

What is our output space?

Pixel Grid Which digit is it?

=) Function:f ™= y = «2”

28x28 pixels ‘ f(X)% Y ‘

£@ y® = “0”

) Classifying MNIST digits requires predicting
Our PrOblem' 1 of 10 possible values

What is our input space? Target: Y

Input: X

What is our output space?

Pixel Grid : o
What is our prediction task? Which digit is it?

=) Function: f - yD) = «2”

28x28 pixels ‘ f(X)% Y ‘

@ = y@ =0

Our simplified problem:

What is our input space?

Target: Y
InPUt: X What is our output space?
: e B
Pixel Grid What is our prediction task: s it digit 22
(1) — - — y =1
AT = =) Function: f

28x28 pixels ‘ f(X)=2> Y ‘

x(2) = y(2) =0 8

The Perceptron Algorithm

Loop Over Dataset (until no weights change)
- For each misclassified example
- update weights to make better prediction for example

The Perceptron Algorithm

1. Initialize 8 = 0
2. For N iterations or until 8 does not change
1. For each example x) with label y®)
1. Ify® = f(x¥)), continue
2. Else, forall parameters 6; € 5, 0, =0; + (y(") — f(x("))) -xi(k)

_ x5 k’th training example, y(k) k’th training label
w: weights ®) ., o th :
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}

The Perceptron Algorithm

. > = Need to start somewhere...
1. ‘ Initialize 8 = 0 ‘ any initial setting will work
2. For N iterations or until 8 does not change

1. Foreach example x® with label y®
1. Ify® = f(x¥)), continue

2. Else, forall parameters 6; € 5, 6, =0, + (y(k) — f(x("))) -xl.(k)

_ x5 k’th training example, y(k) k’th training label
w: weights ® . ,
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}

The Perceptron Algorithm

N is referred to as “epochs”:

T ~ P Number of times the entire
1. Initialize 8 = 0 dataset is iterated through

2. ‘For N iterations‘or until 6 does not change

1. Foreach example x® with label y®
1. Ify® = f(x¥)), continue

2. Else, forall parameters 6; € 5, 6, =0, + (y(k) — f(x("))) -xl.(k)

_ x5 k’th training example, y(k) k’th training label
w: weights ®) ., o th :
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}

The Perceptron Algorithm

1. Initialize § = 0
2. For N iterations or until § does not change

1. | For each example x) with label y) I Loop over every example in dataset
1. Ify® = f(x¥)), continue

2. Else, forall parameters 6; € 5, 6, =0, + (y(k) — f(x("))) -xl.(k)

_ x5 k’th training example, y(k) k’th training label
w: weights ® . ,
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}

The Perceptron Algorithm

—

1. Initialize 8 = 0

2. For N iterations or until § does not change

1. Foreach example x® with label y
1. I |fy(k) _ f(x(k)), continue I JLook only at examples that are
misclassified (i.e., y© = f(x(0))
CAREREASERYJ AT

2. Else, forall parameters 6; € 5, 0; = 0;

_ x5 k’th training example, y(k) k’th training label
w: weights ® . ,
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}

The Perceptron Algorithm

—

1. Initialize é) = (I For every parameter in our perceptron...

2. For N iterations or until § does not change

1. Foreach example x® with label y®
1. Ify® = f(x¥)), continue

2. Else, forall parameters 6; € 9|9 =0; + (y(k) - (x(k)) (k)‘

{oht x(0): kth training example, y(k) k’th training label
w: weights
b: biasg (k) i’th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}

The Perceptron Algorithm

—

1. Initialize 5 = (I For every parameter in our perceptron...

2. For N iterations or until 8 does not chanq £y% = 1 and F(x%) = 0 and x®>0
H9>0...

1. Foreach example x® with label y®
1. Ify® = f(x®)), continue

2. Else, forall parameters 6; € §| 0; =0; + (y(") — f(x(k))) ‘xi(k) ‘

_ x5 k’th training example, y(k) k’th training label
w: weights ® . ,
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}

The Perceptron Algorithm

—

1. Initialize 5 = (I For every parameter in our perceptron...

2. For N iterations or until 8 does not chanq £y% = 1 and F(x%) = 0 and x®>0
H9>0...

1. For each example x¥) with label y® | P e—

1. Ify® = f(x®)), continue
2. Else, forall parameters 0; € §| 0; =0; + (y(") — f(x(k))) ‘xi(k) ‘

_ x5 k’th training example, y(k) k’th training label
w: weights ® . ,
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}

The Perceptron Algorithm

— If no parameters change, then we know

1. Initialize 8 = 0 that y = £(x®0)vk

2. For N iterations or until‘é does not change‘

1. Foreach example x® with label y®
1. Ify® = f(x¥)), continue

2. Else, forall parameters 6; € 5, 6, =0, + (y(k) — f(x("))) -xl.(k)

_ x5 k’th training example, y(k) k’th training label
w: weights ®) . o th :
b: bias x; . i'th feature for k’th example

6: parameters (weights and biases), 6 = {w U b}

Converting Perceptrons to Multi-Class
Classification

Our Problem:
Input: X
Pixel Grid

x) = 2

28x28 pixels

@ —

Classifying MNIST digits requires predicting
1 of 10 possible values

Target: Y

Which digit is it?

=) Function: f L yD) = «2”

f(X)> Y|

y(Z) — “0"

Our Problem:
Input: X
Pixel Grid

x) = 2

28x28 pixels

@ —

Classifying MNIST digits requires predicting
1 of 10 possible values

Target: Y

How do we do this?

Which digit is it?

=) Function: f L yD) = «2”

f(X)> Y|

y(Z) — “0"

Our Problem:
Input: X

Pixel Grid

28x28 pixels

@ —

Classifying MNIST digits requires predicting
1 of 10 possible values

Target: Y

How do we do this?

Which digit is it?

=) Function:f ™= y = «2”

f(X)> Y|

Instead of outputting a
binary prediction, make
an output for each class.

y(Z) — “0"

Using Multiple Perceptrons

* We can use m perceptrons (where mis the number of output
classes)

* For MNIST, this would be 10 perceptrons

* Each individual perceptron will need to return a value, our model
will return the class with the highest value
* Here, value refers to the weighted sum before the threshold is applied

Using multiple perceptrons

Perceptron for predicting
«— Whether handwritten digitisa 0

ttttttt

Perceptron for predicting
uuuuuu — whether handwritten digitisa 9

Multi-class Perceptron

........ Outputl_
'—output1
— outputz
}_ outputs —
—
----- outputs;
z '—output3

Three separate perceptrons Three perceptrons sharing inputs

MNIST Performance

Perceptrons can perform quite well on MNIST, with around 85% accuracy

4+ Linear But they will always be linear classifiers...
boundary
@
®/ =m
X2 ®
i
L]
O O
O/ g N

Perceptrons

Are Perceptrons guaranteed to achieve XOR Function
100% accuracy?

Xz

Xa

Perceptrons

Are Perceptrons guaranteed to achieve
100% accuracy?

How can you put a linear separator on the
plot to separate the two classes?

Xz

XOR Function

Xa

Perceptrons

Are Perceptrons guaranteed to achieve XOR Function
100% accuracy?

How can you put a linear separator on the
plot to separate the two classes?

Xz

Xa

Perceptrons

Are Perceptrons guaranteed to achieve XOR Function
100% accuracy?

How can you put a linear separator on the

plot to separate the two classes? T
>
There are simple functions that
perceptrons can’t learn!
0_

Xa

Perceptrons: The Book

Expanded Edition

Perceptrons: An Introduction to Computational Geometry

* Published by Marvin Minsky and Seymour Papert in 1969

* Acknowledged some strengths of Perceptrons and identified
some fundamental flaws

* (Partially) responsible for shifting Al research away from
“connectivism” and towards symbolic Al systems Perceptrons

Al Research Timeline

Limited funding for neural networks research in the 1970s
(First Al winter) Mivin L. Micsky

1980s - revival of neural networks research e e
“Invention” of backpropagation, needed for efficient training of neural networks

1987 - collapse of LISP machine market and abandonment of expert systems
(Second Al winter)

The Solution:

XOR Function Use hand-crafted feature:
@ Class 0 |1 — x32]
11 o
— @
0 1
01---® Trivial to find linear separator

in new feature space!

0 1

X, But how do we find
appropriate features?

The Solution: learn new features

Perceptron

i Output

Multi-Layer Perceptron (MLP, Neural Network)

:I Y — Output

Layer 2

MLPs

Input Features

Hidden Layers

\\o‘*:’é'?'/

. v\ ,
WA = N \

ST N\ X7

“)(‘\ ‘ O‘Ay\’ A‘O ‘0

.A&’:A.A»t:u& KA
N\ N

NWAVA" AN
LXK

PSRN
QL
QLY

.////

NS |
NERAIRST

O KNS 75
.%.0\\ /"\\.
‘l’ NARNYX ‘\- 1
SIS

) e
o (@
\\\ 3 /

@

A Multi-Layered Neural Net

Learned Representation:
Transformation of original features
into new “learned” features

MLPs consist of weights, biases,
and activation functions for each
neuron.

Goal (for binary-classification):
Learn intermediate features, such
that the final representation is
linearly separable

Multi-Layer Perceptrons

What happens if we remove the
threshold activations from a
multi-layer perceptron?

Letw® = [wy, wy, w3, w,]
Perceptron #1: z; = xTw® + b,

Wqg v
)| Y [—— Output

Multi-Layer Perceptrons

What happens if we remove the
activations from a multi-layer
perceptron?

Let w® = [we, wg, Wy, wg]
Perceptron #1:z; = xTw® + b,
Perceptron #2: z, = xTw(® + b,

Wqg v
)| Y [—— Output

Multi-Layer Perceptrons

What happens if we remove the

activations from a multi-layer by
perceptron? @
2 N b3
@‘ "~ Wqg v
Letw® = [ws, we, wy, wg] @“ >‘ 2 » Output
Perceptron #1: z; = xTw® + b, b, ’{5210
Perceptron #2: z, = xTw® + b, @

Perceptron #3: Z3 = Z1Wq + Z2W10 + b3

Multi-Layer Perceptrons

What happens if we remove the

activations from a multi-layer by
perceptron? @
2 N b3
@‘ "~ Wqg v
Letw® = [ws, we, wy, wg] @“ >‘ 2 » Output
Perceptron #1: z; = xTw® + b, b, ’{5210
Perceptron #2: z, = xTw® + b, @

Perceptron #3: Z3 = Z1Wq + Z2W10 + b3

Entire Network:
Wg(xTW(l) + bl) + Wlo(xTW(z) + bz) + b3

Multi-Layer Perceptrons

What happens if we remove the

activations from a multi-layer by
perceptron? @
2 N b3
@‘ "~ Wqg v
Letw® = [ws, we, wy, wg] @“ >‘ 2 » Output
Perceptron #1: z; = xTw® + b, b, ’{5210
Perceptron #2: z, = xTw® + b, @

Perceptron #3: Z3 = Z1Wq + Z2W10 + b3

Entire Network:
Z = Wg(XTW(l) + bl) + Wlo(xTW(z) + bz) + b3

With no activation function

MLP’s Expressiveness

With no activation function

MLP’s Expressiveness

Z = Wg(xTW(l) + bl) + Wlo(XTW(Z) + bz) + b3

With no activation function

MLP’s Expressiveness

Z = Wg(xTW(l) + bl) + Wlo(XTW(Z) + bz) + b3
Z = ngTW1 +W9 y bl +W10XTW(2) + WlObZ + b3

With no activation function

MLP’s Expressiveness

Z = Wg(xTW(l) + bl) + Wlo(XTW(Z) + bz) + b3
Z = ngTW(l) +W9 . bl +W10xTW(2) + WlObZ + b3
Z = XT(W9W(1)+W10W(2)) + (Wg' bl + +W10b2 + b3)

MLP’s Expressiveness

With no activation function

Z = Wg(xTW(l) + bl) + Wlo(XTW(Z) + bz) + b3
Z = ngTW1 +W9 y bl +W10XTW(2) + WlObZ + b3

Z =X

T

(Wowl+w,qw ()

+ (Wg' bl + +W10b2 + bg)

MLP’s Expressiveness

With no activation function

Z = Wg(xTW(l) + bl) + Wlo(XTW(Z) + bz) + b3
Z = ngTW1 +W9 y bl +W10XTW(2) + WlObZ + b3

Z =X

T

(Wowl+w,qw ()

/

Just avector...

+ (Wg' bl + +W10b2 + bg)

MLP’s Expressiveness

With no activation function

Z = Wg(xTW(l) + bl) + Wlo(XTW(Z) + bz) + b3
Z = ngTW1 +W9 y bl +W10XTW(2) + WlObZ + b3

Z =X

T

(Wowl+w,qw ()

|

(Wg' bl + +W10b2 + bg)

/

Just avector...

MLP’s Expressiveness

With no activation function

Z = Wg(xTW(l) + bl) + Wlo(XTW(Z) + bz) + b3
Z = ngTW1 +W9 y bl +W10XTW(2) + WlObZ + b3

Z =X

T

(Wowl+w,qw ()

|

(Wg' bl + +W10b2 + bg)

/

Just avector...

/

Just a scalar...

MLP’s Expressiveness

With no activation function

Z = Wg(xTW(l) + bl) + Wlo(XTW(Z) + bz) + b3
Z = ngTW1 +W9 y bl +W10XTW(2) + W10b2 + b3

Z =X

T

(Wowl+w,qw ()

|

(Wg' bl + +W10b2 + bg)

/

Just avector...

/

Just a scalar...

|z =xTw+ bl

MLP’s Expressiveness

With no activation function

Z = Wg(xTW(l) + bl) + Wlo(XTW(Z) + bz) + b3
Z = ngTW1 +W9 y bl +W10XTW(2) + W10b2 + b3

Z =X

T

(W9W1+W10W(2)) + (Wg' bl + +W10b2 + bg)
Just avector... Just a scalar...
[z = xTw + bl

Multi-Layer Perceptrons without non-
linear activation functions are linear
functions

Activation Functions

Non-linear functions
applied to output of
neuron

»| Activation

— Output

MRy

Activation Functions

Non-linear functions
applied to output of
neuron

In the perceptron case,
the activation function
is the threshold

—
»

MRy

Activation

— > Output

Common Activation Functions

Linear (No Activation)
f(x) =x

2.04
1.5
1.0

0.5

— 0.0

-0.5+

-1.0

-1.5-

_2.0 | ! | I | | 1
-2 -15 -1 -05 0 05 1 15 2

X

Common Activation Functions

Linear (No Activation) ReLU

f(x) = x f(x) = max(0, x)
2.04 2.0q
1.5- 1.5-
1.0 1.0
0.5 0.5

= 0.0 o 0.0

- -0.54 - -0.54
-1.0- -1.0-
-1.5- -1.5-
20 5 1650 05 1 15 2 20 5 1 65 0 05 1 15 2

X X

Common Activation Functions

Rectified Linear Unit (ReLU):
One of the most common Activation Functions
Advantages: Simple, easy to compute gradients

Linear (No Activation) RelLU
f(x) =x f(x) = max(0, x)
2.0 2.0~
1.5 1.5
1.0 1.0
0.5 0.5
g 0.0 g 0.0_
-0.54 -0.54
-1.0- -1.0
-1.54 -1.5-
_2.0 | T | T T T 1 '2.0 | | | | | | |
-2 15 -1 -05 0 05 1 15 2 -2 -15 -1 -05 0 05 1 15 2

X X

Common Activation Functions

Linear (No Activation)

f(x) =x

2.0+

1.5

1.0

0.5+

0.0

-0.51

-1.04

-1.54

-2.0

2 15 1-050 05 1 15 2

X

Leaky RelLU

f(x) = x if x > 0 else 0.1x

f(x)

2.0

1.54

1.0

0.5-

0.0

-0.5-

=-1.0-

-1.54

-2.0

2 15 -1-050 05 1 15 2

X

Common Activation Funct ns .
ea elLU:

Common substitute for ReLU, often has better performance
Advantages: Fixes “dying neurons” issue with RelU.

Linear (No Activation) Leaky ReLU
f(x) = x f(x) = x if x > 0 else 0.1x
2.0 2.0
1.5- 1.5
1.0+ 1.0
0.5 0.5
% 0.0 g 0.0
- -0.51 -0.54
-1.0 -1.04
-1.54 -1.54
—2.0 T T] T T T 1 '2-0 | I T T T T 1
215 -1-050 05 1 15 2 -2 -15 -1 -05 0 05 1 15 2

X X

Tanh

Tanh

f(x) = (e"x - e”(-x)) / (e”x + e”(-x))
2.0
1.5
1.0
0.5

0.0

—
—
N

-0.5+
-1.0-

-1.54

-2.0

2 15 -1-050 05 1 15

X

Tanh

Tanh

f(x) = (e”x - e”(-x)) / (e”x + e”(-x))
2.0
1.5
1.0
0.5+

0.0

f(x)

-0.5-

-1.0-

-1.5-

215 -1-0560 05 1 15 2

X

Special Activation Functions for Final Output

Sigmoid
f(x) =1/ (1+ e~ (-x))
2.0
] Output Softmax
- layer activation function Probabilities
1.0 3 _)]
1.3 0.02
0.5+
-0.5- =
0.7 Zj:l €™/ 0.01
" 11.1] 10.02]
-15-
-2.0

2 15 -1-050 05 1 15 2

X

Special Activation Functions for Output

Sigmoid
f(x) =1/(1+e”(-x))
2.0
1.5
1.0

0.5

— 0.0

Sigmoid maps inputto [0, 1]

Softmax maps vector of inputs to probabilities (outputs sumto 1)

-0.5-

-1.04

-1.5

-2.0

X

Output
layer

1.3
5.1

0.7
1.1

2 15 -1-050 05 1 15 2

Softmax

activation function

2.2 |w—)

e~

2.

K
j=1°¢€

"

w1 0.05

Probabilities

0.02
0.90

0.01
10.02]

Special Activation Functions for Output

Sigmoid maps inputto [0, 1]
Softmax maps vector of inputs to probabilities (outputs sumto 1)

Sigmoid

f(x) =1/(1+e”(-x))

-0.5-
-1.04

-1.5

2.0+

1.5+

1.0

0.5

0.0

-2.0

Used for classification tasks

(1.3
5.1
2.2
0.7

| 1.1

2 15 -1-050 05 1 15 2

X

Output
layer

Softmax

activation function

e~

2.

K
j=1°¢€

"

w1 0.05

Probabilities

0.02
0.90

0.01
10.02]

MLPs With Activation Functions

Source: Me

We almost never draw

activation functions in our
neural network diagrams,

but they must always be
there!

Source: IBM Source: 3B1B

Deep neural network

Input layer
@
\\y
AN \
AN
o
N9
P
. S
Y/
o~

Multiple hidden layer Output layer

by

)| Y. — Output

Source: Wikipedia

Neural Networks

Neural Networks

* Without non-linear activation functions, a neural network is just a
Linear Regression.

Neural Networks

* Without non-linear activation functions, a neural network is just a
Linear Regression.

 With non-linear activation functions, a neural network is a
universal function approximator.

Neural Networks

* Without non-linear activation functions, a neural network is just a
Linear Regression.

 With non-linear activation functions, a neural network is a
universal function approximator.

* For any function, there exists a neural network of fixed depth that can
approximate within some € of error.

Neural Networks

* Without non-linear activation functions, a neural network is just a

Linear Regression.
 With non-linear activation functions, a neural network is a

universal function approximator.
* For any function, there exists a neural network of fixed depth that can
approximate within some € of error.
* Ife = 0,i.e., we want a perfect approximation, we may need an infinitely

wide network.

Neural Networks

* Without non-linear activation functions, a neural network is just a
Linear Regression.

 With non-linear activation functions, a neural network is a

universal function approximator.
* For any function, there exists a neural network of fixed depth that can
approximate within some € of error.
* Ife = 0,i.e., we want a perfect approximation, we may need an infinitely
wide network.

* This is an existence theorem, meaning it tells you that a neural network
exists with these properties. It does not tell you how to find the weights of

this network.

Intuition

o(z)

’UUE?]* Cl'(wgl) x+ bg“}

155

@5

-8.2-0.1 ©.18.20.30.40.50.68.70.88.9 1

-8.5

Figure 13: Addition of w7 Figure 14: Scaled step-function

With large weights, sigmoid activation functions look like step functions

Approximating functions with step functions

1.2
1.2

L) =02 + 0.427 + 0.3z * sin(15x) +0.05 * cos(50x) + 0.1

Figure 19: Approximation (N=100)

flz) = 0122 4 0.427 + 0.32 * sin(15x) 4 0.05 * cos(50x) + 0.1

8.2 g —

Figure 18: Approximation (N=4)

We can use step functions to approximate arbitrary functions

Neural Networks

* So that’s it, right? That’s why deep learning is so successful.
Because neural networks can approximate any function?

Neural Networks

* So that’s it, right? That’s why deep learning is so successful.
Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Neural Networks

* So that’s it, right? That’s why deep learning is so successful.
Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Decision Trees of infinite depth
can fit any function with 100%
accuracy

Neural Networks

* So that’s it, right? That’s why deep learning is so successful.
Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Decision Trees of infinite depth Piecewise polynomials are
can fit any function with 100% universal function approximators
accuracy (think Taylor expansions)

Neural Networks

* So that’s it, right? That’s why deep learning is so successful.
Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Decision Trees of infinite depth
can fit any function with 100%
accuracy

Piecewise polynomials are
universal function approximators
(think Taylor expansions)

Wavelets (i.e., small pieces of
sine and cosine) are universal
function approximators

Neural Networks

* So that’s it, right? That’s why deep learning is so successful.
Because neural networks can approximate any function?

Neural Networks are not the only Universal Function Approximator

Decision Trees of infinite depth
can fit any function with 100%
accuracy

Piecewise polynomials are
universal function approximators
(think Taylor expansions)

Wavelets (i.e., small pieces of
sine and cosine) are universal
function approximators

This theorem explains why neural
networks are good at fitting the
training dataset, not why they

perform well on the test dataset.

Optimization

Learning Network Parameters
Input: X Target: Y

Option 1: Closed Form Solution

Goal: Minimize Loss function

Process:

- Find derivative (or gradient) of loss function
- Set derivativeto 0

- Solve for parameters

Option 1: Closed Form Solution

Goal: Minimize Loss function

Process:

- Find derivative (or gradient) of loss function
- Set derivativeto 0

Worked for Linear Regressions!

- Solve for parameters

Option 1: Closed Form Solution

Goal: Minimize Loss function

Process:

- Find derivative (or gradient) of loss function
- Set derivativeto 0

- Solve for para meters Worked for Linear Regressions!

Only had one point where V fg= 0 and that point
was a global optimum.

Option 1: Closed Form Solution

Goal: Minimize Loss function

Process:

- Find derivative (or gradient) of loss function
- Set derivativeto 0

Worked for Linear Regressions!

- Solve for parameters

Only had one point where V fg= 0 and that point
was a global optimum.

MSE is convex with respect to the parameters of
the linear Regression

Convexity

- At s

PO R s
g2y 221 g 27 g gt
. At

M

0, 20 -20 0,

Picture Source: Andrew Ng

Formally:
- Forany two points x1,x, and 4 € [0, 1]
- M) + (A =Df(x) < Axp + (1 = Dxy

The line connecting any two
points on the graph will
always be above the function.

For convex functions, finding a point
with Vf = 0 is sufficient for knowing
the point is a global minimum

Non-Convex Functions

MSE is not convex with respect to network parameters
when non-linear activations are involved.

Non-Convex Functions

MSE is not convex with respect to network parameters
when non-linear activations are involved.

Multiple local minima

Non-Convex Functions

MSE is not convex with respect to network parameters
when non-linear activations are involved.

Multiple local minima

Local maxima

Non-Convex Functions

MSE is not convex with respect to network parameters
when non-linear activations are involved.

Multiple local minima

Saddle points

. Local maxima
-1) W1

Non-Convex Functions

MSE is not convex with respect to network parameters
when non-linear activations are involved.

Multiple local minima

If ReLU or other piecewise
activation function is used, may
need 2™ piecewise functions to

write out Vfy...

Saddle points

Local maxima

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Repeat 2 until convergence

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Starting point

Repeat 2 until convergence

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Repeat 2 until convergence oo ,,L‘S;_;,f

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until convergence oo ,,L‘is,f

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

R : A "g'---..op_posite direction
Repeat 2 until convergence o S/

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

R : A "g'---..op_posite direction
Repeat 2 until convergence o P

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

R : A "g'---..op_posite direction
Repeat 2 until convergence o P

Vector Calculus

Vector Calculus

e Partial Derivative: the derivative of a with
respect to one of its inputs

Vector Calculus

e Partial Derivative: the derivative of a with
respect to one of its inputs

* Example: f(x,w,b) =wx + b

Vector Calculus

e Partial Derivative: the derivative of a
respect to one of its inputs

* Example: f(x,w,b) =wx + b

. : 1 1 . a
* The partial derivative with respect to w s #

with

Vector Calculus

e Partial Derivative: the derivative of a with
respect to one of its inputs

* Example: f(x,w,b) =wx + b

. : 1 1 . a
* The partial derivative with respect to w s #

* How to compute: Treat all other variables as constants and
differentiate with respect to that variable

of 0 i, i,
%_%(wx+b) —%(WX)-F%(ID) = X

Gradients

Gradient: the vector of partial derivatives
Vector “points” in direction of increasing f values.

of of
ow' b

Vf =

flx,w,b) =wx+b

_ Of of of
Vie = 15,35 9%

Gradients

The gradient field <2x-4 ,2y+2 > of the function f=x?- 4x + 7+ 2y.
-5

&\\XQQ%

SARNY

A A R RN
RO XX
S, SN R N N
[, S SR SR S
- - - — -
e e e S el
hl/A/A// > W
P Y v
A BN

-2 0

.
P

’ e

-~

. .. N

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

JRRE : A "g'---..op_posite direction
Repeat 2 until convergence s “\33;}:{.

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until conve rgence gl “:::‘;}:{.

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

Gradient of what?

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until conve rgence gl “:::‘;}:{.

For N iterations oruntil A8 < e:

e 550N

Gradient of what?

Why is this negative?

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until conve rgence gl “:::‘;}:{.

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

AN

Why is this negative?

Gradient of what?

Wait, this isn’t even the best 6

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until conve rgence gl “:::‘;}:{.

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

2l e, R
I _1 _2

Learning Rate a € [0,1]

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until conve rgence gl “:::‘;}:{.

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

I Why do we need a learning rate? =
Learning Rate a € [0,1]

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until convergence oo “:,3_‘,;}}

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

I Why do we need a learning rate? =
Learning Rate a € [0,1]

Derivatives/Gradients only hold locally

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until convergence oo “:,3_‘,;}}

For N iterations oruntil A8 < e:
é — 0 — C(Vfg

Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.

Option 2: Gradient Descent

Start with some initial set of parameters

Take small step in the direction of the
negative gradient

Gradient points in direction of increasing loss

Starting point

Small stepin

Repeat 2 until convergence l g8 ‘:’
Understanding gradient descent is the single most X

important concept in all of Deep Learning. Most decisions | L
s

in DL are made for reasons related to gradients.
For N iterations oruntil A8 < €:

§<—9—an9

Gradient Descent does not converge to the global minimum.
It can (and pretty much always does) get stuck in local minima.

Review: Mean Squared Error

Used previously for linear regression: Modelwith parameters ¢

2i (Vi—fo(%))"2

n

MSE =

Used for regression tasks (prediction of continuous variable)

Gradients

Gradients

Gradient descent needs gradients, how do we actually calculate them?

Gradients

Gradient descent needs gradients, how do we actually calculate them?

_ S0~ fo ()2

n

L

Gradients

Gradient descent needs gradients, how do we actually calculate them?

SO fo ()2
B n
SPy2—2f5 (%) + fo(®)?]

n

L =

Gradients

Gradient descent needs gradients, how do we actually calculate them?

SO fo ()2
B n
SPy2—2f5 (%) + fo(®)?]

n

212 Vfg(xX) +2-Vfg(x) - fo(x)]

n

L =

VQL —_

Gradients

Gradient descent needs gradients, how do we actually calculate them?

SO fo ()2
B n
SPy2—2f5 (%) + fo(®)?]

n

212 Vfg(xX) +2-Vfg(x) - fo(x)]

/ n

But whatis this?

L =

VQL —_

Gradients

Gradient descent needs gradients, how do we actually calculate them?

SO fo ()2
B n
SPy2—2f5 (%) + fo(®)?]

n

212 Vfg(xX) +2-Vfg(x) - fo(x)]

/ n

But what is this? fo =wx + b
For a single output

L =

VQL —_

Weight Matrix for a Layer of Neurons

* We have an input of size n and we want an output vector of size m.

* We will represent our weights as a matrix.
* What should the dimensions of our matrix be?

, m inputs
n inputs

Weight Matrix

* We have an input of size n and we want an output vector of size m.

* We will represent our weights as a matrix.
* What should the dimensions of our matrix be?

m inputs

wj; is the j*" row and the i*" column of our matrix, or the weight ninputs thi
multiplied by the ith index of the input which is used to create the jth '
index in the output

0 i t n

=1

input

lj = ij'k X + bj

Il =wx +b

\

linear layer

L=(y-1)?

loss

Looking at composite function!

Chain rule

If f and g are both differentiable and F(x) is the composite function defined
by F(x) = flg(x)) then F is differentiable and F’ is given by the product

F'(x) =f"(g(x)) g’(x)
: !

Differentiate Differentiate
outer function inner function

Courtesy: https://www.onlinemathlearning.com/chain-rule.html

Applying Chain rule [Example]

f(x) = x? g(x) = (2x* + 1)
F(x) = f(g(x))

F(x) = (2x% + 1)*

Each layer
computes tl.ae
The Chain Rule (for Differentiation) sradients Wi

variables and
passes the result

ﬂ _ar . ag backwards

¢ Given arbitrary function: f(g(x)) =

dx dg dx

dx dg

Backpropagation

(or backward pass)

i 1 8(x) | f(g()

Classification

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Need Loss function to be small for best model, not large.

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Need Loss function to be small for best model, not large.

Correct

Proposed Loss Function: L =1 — ~

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Need Loss function to be small for best model, not large.

Correct

Proposed Loss Function: L =1 — ~

The Issue: most of the time, the gradient of this loss functionisVLg = 0

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Need Loss function to be small for best model, not large.

Correct

Proposed Loss Function: L =1 — ~

The Issue: most of the time, the gradient of this loss functionisVLg = 0

Gradient is only non-zero when changing a 8 has an impact on output predictions

Unit step (threshold)

1

B (0if 0>x
JO=11if x= 0

0 gradient everywhere except x=0
] - X=0is not differentiable, but it does have a sub-gradient

Classification

In general, we’d like to optimize the accuracy of our model (#correct/#total)

Need Loss function to be small for best model, not large.

Correct

Proposed Loss Function: L =1 — ~

The Issue: most of the time, the gradient of this loss functionisVLg = 0

Gradient is only non-zero when changing a 8 has an impact on output predictions

We cannot use classification as a loss
function because itis incompatible with
gradient descent

Unit step (threshold)

1

B (0if 0>x
JO=11if x= 0

0 gradient everywhere except x=0
] - X=0is not differentiable, but it does have a sub-gradient

Remaining Questions for next week:
1) What loss function can we use for classification?

2) How do we actually calculate the gradient of a network?
1) If the loss functionis applied to the whole dataset, shouldn’t we be
concerned about the size of the dataset?
2) Gradientdescentis an iterative approach. If each iteration is slow, the
whole algorithm will take too long to finish.

3) Gradient descent can get stuck in local minima.
Can we do better?

T

ol

	Slide 1
	Slide 2: Recap
	Slide 3: Train, validation, and test sets
	Slide 4: MNIST
	Slide 5
	Slide 6: MNIST
	Slide 7: MNIST
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: The Perceptron Algorithm
	Slide 16: The Perceptron Algorithm
	Slide 17: The Perceptron Algorithm
	Slide 18: The Perceptron Algorithm
	Slide 19: The Perceptron Algorithm
	Slide 20: The Perceptron Algorithm
	Slide 21: The Perceptron Algorithm
	Slide 22: The Perceptron Algorithm
	Slide 23: The Perceptron Algorithm
	Slide 24: The Perceptron Algorithm
	Slide 25: Converting Perceptrons to Multi-Class Classification
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Using Multiple Perceptrons
	Slide 30
	Slide 31
	Slide 32: MNIST Performance
	Slide 33: Perceptrons
	Slide 34: Perceptrons
	Slide 35: Perceptrons
	Slide 36: Perceptrons
	Slide 37: Perceptrons: The Book
	Slide 38: The Solution:
	Slide 39: The Solution: learn new features
	Slide 40: MLPs
	Slide 41: Multi-Layer Perceptrons
	Slide 42: Multi-Layer Perceptrons
	Slide 43: Multi-Layer Perceptrons
	Slide 44: Multi-Layer Perceptrons
	Slide 45: Multi-Layer Perceptrons
	Slide 46: MLP’s Expressiveness
	Slide 47: MLP’s Expressiveness
	Slide 48: MLP’s Expressiveness
	Slide 49: MLP’s Expressiveness
	Slide 50: MLP’s Expressiveness
	Slide 51: MLP’s Expressiveness
	Slide 52: MLP’s Expressiveness
	Slide 53: MLP’s Expressiveness
	Slide 54: MLP’s Expressiveness
	Slide 55: MLP’s Expressiveness
	Slide 56: Activation Functions
	Slide 57: Activation Functions
	Slide 58: Common Activation Functions
	Slide 59: Common Activation Functions
	Slide 60: Common Activation Functions
	Slide 61: Common Activation Functions
	Slide 62: Common Activation Functions
	Slide 63: Tanh
	Slide 64: Tanh
	Slide 65: Special Activation Functions for Final Output
	Slide 66: Special Activation Functions for Output
	Slide 67: Special Activation Functions for Output
	Slide 68: MLPs With Activation Functions
	Slide 69: Neural Networks
	Slide 70: Neural Networks
	Slide 71: Neural Networks
	Slide 72: Neural Networks
	Slide 73: Neural Networks
	Slide 74: Neural Networks
	Slide 75: Intuition
	Slide 76: Approximating functions with step functions
	Slide 77: Neural Networks
	Slide 78: Neural Networks
	Slide 79: Neural Networks
	Slide 80: Neural Networks
	Slide 81: Neural Networks
	Slide 82: Neural Networks
	Slide 83: Optimization
	Slide 84: Learning Network Parameters
	Slide 85: Option 1: Closed Form Solution
	Slide 86: Option 1: Closed Form Solution
	Slide 87: Option 1: Closed Form Solution
	Slide 88: Option 1: Closed Form Solution
	Slide 89: Convexity
	Slide 90: Non-Convex Functions
	Slide 91: Non-Convex Functions
	Slide 92: Non-Convex Functions
	Slide 93: Non-Convex Functions
	Slide 94: Non-Convex Functions
	Slide 95: Option 2: Gradient Descent
	Slide 96: Option 2: Gradient Descent
	Slide 97: Option 2: Gradient Descent
	Slide 98: Option 2: Gradient Descent
	Slide 99: Option 2: Gradient Descent
	Slide 100: Option 2: Gradient Descent
	Slide 101: Option 2: Gradient Descent
	Slide 102: Vector Calculus
	Slide 103: Vector Calculus
	Slide 104: Vector Calculus
	Slide 105: Vector Calculus
	Slide 106: Vector Calculus
	Slide 107: Gradients
	Slide 108: Gradients
	Slide 109: Option 2: Gradient Descent
	Slide 110: Option 2: Gradient Descent
	Slide 111: Option 2: Gradient Descent
	Slide 112: Option 2: Gradient Descent
	Slide 113: Option 2: Gradient Descent
	Slide 114: Option 2: Gradient Descent
	Slide 115: Option 2: Gradient Descent
	Slide 116: Option 2: Gradient Descent
	Slide 117: Option 2: Gradient Descent
	Slide 118: Review: Mean Squared Error
	Slide 119: Gradients
	Slide 120: Gradients
	Slide 121: Gradients
	Slide 122: Gradients
	Slide 123: Gradients
	Slide 124: Gradients
	Slide 125: Gradients
	Slide 126: Weight Matrix for a Layer of Neurons
	Slide 127: Weight Matrix
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133: Classification
	Slide 134: Classification
	Slide 135: Classification
	Slide 136: Classification
	Slide 137: Classification
	Slide 138: Classification
	Slide 139: Classification
	Slide 140

