
Deep
Learning

Eric Ewing

CSCI 1470

Tuesday,
12/2/25

Day 25: Decision Focused Learning

Case Study: Sudoku

Rules: Each number can only appear once
in each row, column, and subgrid.

Fill in the missing numbers

How would you train a neural network to solve this?

Reinforcement Learning

Option 1: Output potential solution, get a
reward of 1 if correct, 0 if wrong

f()

What issues might we run into while training?

This is a hard problem…
If we randomly guess solutions we are very unlikely
to solve the puzzle and get any reward

Reinforcement Learning

Option 2: Output next value to fill in

f()
6

What should our reward function be?

+1 if valid (doesn’t violate a constraint)?

Model will learn to fill in valid numbers,
but maybe not to fill it in perfectly

Plenty of reward shaping is possible (e.g., +100 if
puzzle is solved)

Supervised Learning

f()

Option 3: Take a dataset of sudoku
puzzles, output solutions

What’s our loss function?

Option A: BCE (puzzle is correct or not)

Option B: Cross Entropy for every predicted digit

What advantages does Option A have over option B?
What about advantages that B has over A?

Supervised Learning

f()

Most data efficient approach (of our options):

1. Predict missing digits
2. Optimize for accuracy of predicted digits using Cross Entropy

But now our loss function is misaligned with our actual objective…
We are optimizing for accuracy when our primary concern is our decision making quality

Deep Learning predictions are very frequently used in decision making
processes, but we aren’t optimizing for decision making quality!

Decision-Focused Learning

We should train our models to make
predictions that lead to good decisions.

This is not the same thing as training our
models to make accurate predictions.

Decision-Focused Learning

We know Sudoku involves a constraint optimization problem.

In essence, if we can learn to solve Sudoku, we’ve learned to solve
this constraint optimization problem.

Can we give our network the knowledge that its outputs correspond
to a constraint optimization problem?

OptNet: Differentiable Optimization as a Layer

Idea: Construct a layer that solves Quadratic Programs

Loss: MSE

Error: percentage of
puzzles not solved

Loss is not perfectly
correlated with number
of puzzles solved!

OptNet Layer

Output of layer i+1
Solution to Quadratic Program

Quadratic Program: Optimization problem with quadratic objective, linear constraints, and inequality constraints

𝑄 𝑧𝑖 , 𝑞 𝑧𝑖 , 𝐴 𝑧𝑖 , 𝑏 𝑧𝑖 , 𝐺 𝑧𝑖 , 𝑎𝑛𝑑 ℎ 𝑧𝑖 are parameters of the optimization problem

Input to layer

General Idea: Learn objective function parameters Q or q or learn constraints A,b,G,h

Quadratic Program

Objective level sets shown with dashes

Feasible region (where constraints
are satisfied) shaded dark gray

Solution 𝑥∗ is point in feasible
region where objective is minimized

Source: Boyd, Convex Optimization

KKT Conditions

What do we know must be true at an optimal solution?

Unconstrained Optimization:

What must the derivative be at
an optimal solution?

∇𝑓 𝑥∗ = 0

This is the first order optimality condition
for unconstrained optimization!

Constrained Optimization:

What must the derivative be at
an optimal solution?

If 𝑥∗lies on a constraint, then
∇𝑓(𝑥∗) ≠ 0

KKT Conditions

𝑥∗ is the optimal solution to the constrained
problem.

We are unable to move to a better solution
because of the first constraint.

Imagine the objective function is gravity pulling
on our point (typically how we imagine gradient
descent) and the constraint is a wall

If our objective exerts a force on our point (i.e.,
∇𝑓 𝑥∗) how much force must the constraint
wall be pushing back with?

KKT Conditions

1. Stationarity:

 ∇𝑓 𝑥∗ + σ𝑗 𝜆𝑗∇𝑎𝑗(𝑥∗) + σ𝑖 𝜇𝑖∇𝑔𝑖 𝑥∗ = 0

“force+direction of gravity”

Direction Normal to constraint j

Amount of force applied by constraint

Inequality constraints
Equality constraints

KKT Conditions

1. Stationarity:

 ∇𝑓 𝑥∗ + σ𝑗 𝜆𝑗∇𝑎𝑗(𝑥∗) + σ𝑖 𝜇𝑖∇𝑔𝑖 𝑥∗ = 0

2. Primal Feasibility (solution satisfies constraints):
 𝐴𝑥∗ = 𝑏, 𝑔 𝑥 ≤ ℎ

3. Dual Feasibility (inequality constraints push with positive force):
 𝜇𝑖 ≥ 0

4. Complementary Slackness
 σ𝑖 𝜇𝑖𝑔𝑖 𝑥∗ = 0 If 𝑥∗ is on a constraint (the constraint is actively

pushing), then 𝜇𝑖 is non-zero. Any other time, 𝜇𝑖 is 0.

Necessary conditions for optimality in constrained optimization problems!

Quadratic Program Layers

We know how to solve QPs (at least someone else does)

What do we need to turn it into a neural network layer?

Layer
𝑧𝑖 𝑧𝑖+1

Forward Pass: solve QP

Backwards Pass: Find the gradient…

It’s not obvious how to take the
derivative of an argmin or a
problem with constraints…

Implicit Differentiation

What is the derivative of 𝑥2 + 𝑦2 = 1, w.r.t x?
Let’s treat y as an implicit function of x. How does y change as x changes?

𝑑

𝑑𝑥
𝑥2 + 𝑦2 = 1

𝑑

𝑑𝑥
𝑥2 +

𝑑

𝑑𝑥
𝑦2 = 0

2𝑥 + 2𝑦
𝑑𝑦

𝑑𝑥
= 0

𝑑𝑦

𝑑𝑥
= −

𝑥

𝑦

Implicit differentiation lets us
take derivatives of constraints!

The KKT conditions are a set of
constraints!

OptNet

Backward Pass

Forward Pass

Note: The backward pass is
independent of how the
forward pass is solved

Sudoku Linear Program

Constraints: Each cell has
exactly one digit

Each row has exactly
one of value k

Each column has
exactly one of value k

Each 3x3 subgrid has
exactly one of value k

Sudoku formulation only contains
equality constraints, no objective
function.

OptNet
Benefit: Works better than pure prediction

Downside: it’s slower

SATNet: Differentiable Satisfiability Solver

Similar approach, but with a different problem
formulation and optimization procedure.

Decision-Focused Learning

There are many ways to add differentiable components to a neural
network for specific problems

Solving quadratic programs is just one such component

Deep Learning trend #1:

Bigger, more general networks
with more data do better

Deep Learning trend #2:

We can add very specific
components to networks to make
them more data efficient

End-to-end Learning in Stackelberg

Security Games

The Plan

1. Background Info and problem set up 2.

Equations 3. Small examples with

numbers 4. A very important table 5.

Results

1

Backgroun

d

•

•

Stackleberg Game: One player goes first, second player observes

the first players (mixed) action and responds.

Quantal Response: Player responses are not fully rational, but
are still functions of utilities (e.g. Logit QR is a Softmax of

utilities for actions)

2

Maximum Likelihood

Estimation

Suppose you have some events X that are sample from a probability

distribution P(θ), where θ is an unknown parameter. MLE is the

problem of finding the θ that fits the known samples b est.

Example: You flip an unfair (but with unknown probabilities) coin
10 times and it comes up heads 8 times.

Example: You pick 4 balls from a bag with an unknown number of
balls in it. Three of the balls are red and white is black. What is

the most likely ratio of red to white balls?

3

Maximum Likelihood

Estimation

Often easiest to minimize Negative Log Likelihood (NLL). Why?

Likelihood often has many probabilities multiplied together,
taking the log separates them. Logs also help with numerical

stability for small probability events. Sometimes you can find

algebraic and exact answers, other times
not. We primarily use gradient descent because it had better

numerical stability than the exact method.

4

Problem Set Up

Stackelberg Security Games (SSGs)

Stackelberg Security Game

SSGs are played between a defender and an attacker. The defender

allocates k resources to defend T targets. The attacker observes the

allocation and attacks a target.

Motivating example: anti-poaching

Defender = Park Rangers

Attacker = Poachers

•

•

•

5

Problem

Setup

•

•

•

Each target is an area in the park Each target has known utility

values for the defender The utility values for the attacker are

unknown to the

defender, but known to be based on observable features for

each target (e.g. distance from nearest road, animals,

proximity to ranger station, etc.)

• The rangers can’t observe all attacks the adversaries

make/attackers make infrequent attacks. (There is some

amount of noise in observations)

6

General

Sum

•

•

•

Most poaching activity is along the border of the national park

and targets boars for food

An attack against a boar is much less concerning for Rangers
than an attack against a rhino

Defender and Attacker utilities are not necessarily tied
together and is therefore modeled as a general sum (non-zero

sum) game.

7

The Game

•

•

•

•

•

Given a set of targets T, the defender is trying to maximize their

expected utility.

The defender can allocate a resource (or a fraction of a
resource) to a target to defend that target.

The attacker observes the allocation and makes an attack on
a target.

If the attack target is covered by the defender the attacker
receives a negative utility, if the attack is not covered, the

defender receives the negative utility.

Defender Expected Utility (DEU): is the probability a target is

covered times the probability it is attacked times the utility of

that target.

8

Definition

s

)

Variable

xt

Usage The defender’s allocated resources to target t

(proba- bility of covering t) The utility gained for the

defender for target t if it is

covered and attacked

The utility gained* for the defender for target t if is

uncovered and attacked. (negative)

The attacker’s probability of attacking target t

The features of target t

The attacker preference function. Maps from features

to attacker utility for target t.

U

U

qt

yt

ϕ(y

t

c
td

u
td

9

The Defender’s Optimization

Problem

DEU:

s

t

.

xt qt

U

xt)qt

U

Defender’s Expected Utility

ma

x
x

DEU= +(1 (1)

(2)

(3)

c
td

u
td∑t

∈T
0
∑ ≤ x ≤ 1

xt≤k

t∈T

−

.

10

Subjective Utility Quantal Response: SUQR

=

Humans are only sort of rational... SUQR is one way of quantifying this.

qt is a softmax of an attractiveness function: wxt + ϕ(yi),
where w is how strongly the attacker takes into account the

coverage.

qt
ewxt
ϕ w

j e xj
∈T

+ (yi)

+ϕ(yj)

11

∑

Why SUQR and not QR

Why use wxt + ϕ(yt) as an attractivness function rather than

wxtϕ‘(yt) (where ϕ‘(·) is the attacker’s utility)?

• In general: Better fit to data collected in security games.

Human’s don’t actually compute explicit utilities for their

actions and our behavior may more closely match a SUQR
model than traditional Logit QR models.

• In this paper: Need to separate decision variable x from ϕ(·).
The effects of a change in coverage need to be decomposable
from the inherent attractiveness of a target.

12

Response to

coverage:

w

w is how much the adversary responds to coverage and should be

non-p ositive

• w = 0: The attacker does not consider coverage

• w > 0: The attacker is more likely to attack a covered

target(???)

• w

=
−∞ The attacker selects the least covered target

w can be computed with MLE if the attacker makes attacks under

two different coverage schemes. w = −4 has been found
empirically before for some experiments, so we generally use that
value.

13

The

Learning

Learning Attacker

Preferences

If we knew ϕ(·) exactly, the problem would be easier. You can use
MLE to compute ϕ̃˜(y) exactly for the targets you observe attacks
on. You could use your favorite non-convex optimizer to solve for

x∗.

The Problem: We may only be able to observe attacks on some

targets or we want to transfer our methods to new parks/airports

with new targets.

Idea: Two-Stage Approach Fit a Neural Network to predict

qt
given yt (which is basically equivalent to learning ϕ(

·)). Optimize
for DEU given your predictions of ϕ(·).

14

Two-Stage Approach

What’s wrong with this predict-then-optimize approach? Our loss

function is optimizing for accuracy of prediction, not the end

objective value of DEU.

We have bounds for DEU of a target for some given error in
prediction ε2 in Logit QR in general sum and zero sum games.

Key Idea: the defender needs to be pessimistic on predictions for
targets that are high value to the defender.

15

Decision Focused

Learning

Better Idea: Decision Focused Learning

We shouldn’t be agnostic to the fact that our learning has an

optimization after it. We want to optimize for decision quality, not

accuracy in predicting attack probabilities.

The Plan: Learn ϕ(·) that optimizes for solution quality by
differentiating through the optimization problem as well and using
decision quality as a loss rather than prediction accuracy.

16

Numb

ers

Set up

Assume a game with 2 targets, with utilities

and one defender resource k = 1

The defender seeks to optimize DEU:

= 1 = 2

max

s.t.

− q1(1 − x1) − 2q2(1 −
x2)

x1+x2=1

If the attacker has uniform preference (ϕ(y1) = ϕ(y2)), then the
optimal defender coverage is

x∗ = (.244, .755)

The resulting attack probabilities would be q = (.885, 115).

U U1 2

17

d d− −,

But what if not equal

preferences?

Say the defender observes a number of attacks with their coverage

and observes q̃˜ = (.5, .5). The attack distribution was different than

what the defender assumed (i.e. attacker has non-uniform

preferences).

The defender can use MLE to estimate ϕ̃˜(y) = (0, 2).

But how can the defender use this attack data to generalize to other

targets with different sets of features? Let’s fit a neural network to

ϕ̃˜(y)

18

More Numerical

Examples

Description Observed Preferences

Overestimating Valuable Target

Underestimating Valuable Target

Overestimating at Same Cross Entropy

ϕ̂ˆ(y)

(0, 2) (0,

3) (0, 1)

(0, 2.5)

x
(.25

(.18

(.31

(.19

75)

82)

69)

81)

What happens if we don’t fit the true attacker preferences correctly?

q
(

5(64

(38

(62

5)

36)

62)

38)

Cross Entropy of

.693

.957

.723

.723

=

0.625

.650

.647

.645

∗

,

.
,
.,

.,

.

. ,

.. ,

.. ,

.. ,

.

q DE
U

L

19

Decision-focused

learning

•

•

•

If we want to include the optimization problem in our

gradients, we need to differentiate through a non-convex

optimization problem.

Want to know how the decision quality (

with changes in our model parameters θ.

Follow the gradient ∂L

L = DEU) changes

∂theta to train our model.

20

One big Chain Rule

L L ∗ q
=

x
∗

Which one of these terms seems difficult to compute?

Our overall gradient is made up of a few different components:

∂

∂

θ

∂

∂

∂

∂

∂

∂

θ

x

q

21

Gradients of non-convex

optimization

Theorem: Let x be a strict local minimizer of f over X. Then,
except on a measure zero set, there exists a convex set

such that x∗

I around x
I(θ) = arg minx∈I∩X f (x, θ) is differentiable. The

gradients of x∗I with respect to θ are given by the gradients of the

solutions to the local quadratic approximation

min ∈X1/2xT∇2f(x)x+xTx ,θ ∇f(x,θ)

(OPTNet Paper contains differentiable QP solver [Amos & Kolter
2017])

22

Does it matter?

Figure 1: Game focused Learning vs 2 Stage learning on synthetic data

24

Human Data

Figure 2: Game focused Learning vs 2 Stage learning on human data

25

Comparison of Prediction error and

performance

26

	Slide 1
	Slide 2: Case Study: Sudoku
	Slide 3: Reinforcement Learning
	Slide 4: Reinforcement Learning
	Slide 5: Supervised Learning
	Slide 6: Supervised Learning
	Slide 7: Decision-Focused Learning
	Slide 8: Decision-Focused Learning
	Slide 10: OptNet: Differentiable Optimization as a Layer
	Slide 11: OptNet Layer
	Slide 12: Quadratic Program
	Slide 13: KKT Conditions
	Slide 14: KKT Conditions
	Slide 15: KKT Conditions
	Slide 16: KKT Conditions
	Slide 17: Quadratic Program Layers
	Slide 18: Implicit Differentiation
	Slide 19: OptNet
	Slide 20: Sudoku Linear Program
	Slide 21: OptNet
	Slide 22
	Slide 23: Decision-Focused Learning
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

