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Case Study: Sudoku

Rules: Each number can only appear once
in each row, column, and subgrid.

Fillin the missing numbers

How would you train a neural network to solve this?




Reinforcement Learning

Option 1: Output potential solution, get a

reward of 1if correct, O if wrong
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What issues might we run into while training?

This is a hard problem...
If we randomly guess solutions we are very unlikely
to solve the puzzle and get any reward
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Reinforcement Learning

Option 2: Output next value to fill in
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What should our reward function be?

+1 if valid (doesn’t violate a constraint)?

Model will learn to fill in valid numbers,
but maybe not to fill it in perfectly
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Plenty of reward shaping is possible (e.g., +100 if
puzzle is solved)




Supervised Learning

What’s our loss function?

Option 3: Take a dataset of sudoku
puzzles, output solutions Option A: BCE (puzzle is correct or not)

Option B: Cross Entropy for every predicted digit
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What advantages does Option A have over option B?
What about advantages that B has over A?




Supervised Learning

Most data efficient approach (of our options):

1. Predict missing digits
2. Optimize for accuracy of predicted digits using Cross Entropy
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But now our loss function is misaligned with our actual objective...
We are optimizing for accuracy when our primary concern is our decision making quality

Deep Learning predictions are very frequently used in decision making
processes, but we aren’t optimizing for decision making quality!




Decision-Focused Learning

We should train our models to make
predictions that lead to good decisions.

This is not the same thing as training our
models to make accurate predictions.



Decision-Focused Learning

We know Sudoku involves a constraint optimization problem.

In essence, if we can learn to solve Sudoku, we’ve learned to solve
this constraint optimization problem.

Can we give our network the knowledge that its outputs correspond
to a constraint optimization problem?



OptNet: Differentiable Optimization as a Layer

= Conv Train Conv Test = OptNet Train OptNet Test

Loss: MSE

L TN -] Loss is not perfectly
0 2 4 e e 10712 14 16 18 correlated with number
of puzzles solved!

Error: percentage of
puzzles not solved

0 27a e T8 10 12 14 16 18
Epoch

Figure 5. Sudoku training plots.

ldea: Construct a layer that solves Quadratic Programs



OptNet Layer

Quadratic Program: Optimization problem with quadratic objective, linear constraints, and inequality constraints

Solution to Quadratic Program

Output of layeri+1 /

\ 1
Zi+1 = argmin EZTQ(Zz‘)Z +q(2)" 2

subject to A(z;)z = b(z;)
G(z;)z < h(z;)

Input to layer

Q(z)),q(z;),A(z),b(z;),G(z;), and h(z;) are parameters of the optimization problem

General ldea: Learn objective function parameters Q or g or learn constraints A,b,G,h



1
Zi+1 = argmin §ZTQ(21')Z +q(2:)" 2

subject to A(z;)z = b(z;)

Quadratic Program
G(zi)z < h(z;)

Objective level sets shown with dashes

Feasible region (where constraints
are satisfied) shaded dark gray

Solution x* is point in feasible

region where objective is minimized
Figure 5.1: Geometric interpretation of quadratic optimization. At the optimal point z* the

hyperplane {z | a7z = b} is tangential to an ellipsoidal level curve.

Source: Boyd, Convex Optimization



KKT Conditions

What do we know must be true at an optimal solution?

Unconstrained Optimization: Constrained Optimization:

What must the derivative be at
What must the derivative be at an optimal solution?

an optimal solution?

Vi(x*) = 0

This is the first order optimality condition If x" lies on a constraint, then
for unconstrained optimization! VF(x*) #0




KKT Conditions

x" is the optimal solution to the constrained
problem.

We are unable to move to a better solution
because of the first constraint.

Imagine the objective function is gravity pulling
on our point (typically how we imagine gradient
descent) and the constraint is a wall

If our objective exerts a force on our point (i.e.,
Vf(x*)) how much force must the constraint
wall be pushing back with?




KKT Conditions

Amount of force applied by constraint
1. Stationarity: /

VF(x) + X 4Va(x7)  + Zi Vi = 0
[ Direction Nor\malto constraint j

“force+direction of gravity”

Inequality constraints
Equality constraints



KKT Conditions

Necessary conditions for optimality in constrained optimization problems!

1. Stationarity:

—

Vi(x™) + 2 4Va;(x*) + X uVgixn) =

2. Primal Feasibility (solution satisfies constraints):
Ax* =b,g(x) < h

3. Dual Feasibility (inequality constraints push with positive force):
pi =0

4. Complementary Slackness

Z _ u g PR — If x* is on a constraint (the constraintis actively
l igi(x") pushing), then y; is non-zero. Any other time, u; is 0.



1
Zi+1 = argmin §ZTQ(Zz')Z +q(z)" 2

Quadratic Program Layers subject to A(z;)z = b(z)
G(z:)z < h(z;)

We know how to solve QPs (at least someone else does)

What do we need to turn it into a neural network layer?

Forward Pass: solve QP

Zi+1

It’s not obvious how to take the
derivative of an argmin or a
problem with constraints...

Backwards Pass: Find the gradient...




Implicit Differentiation

What is the derivative of x? + y? = 1, w.rt x?
Let’s treaty as an implicit function of x. How does y change as x changes”?

d
—(x*+y =1
dx
a o, d -
—x2+—y2=0
dx dxy
— — dy
Implicit differentiation lets us A
take derivatives of constraints! ZX + Zy d.X' T O
dy X
The KKT conditions are a set of —_— = ——
constraints! dX y




OptNet

Forward Pass

1

Z;+1 = argmin §ZTQ(Zz')Z + Q(zi)TZ Note: The backward pass is
z independent of how the
subject to A(z;)z = b(2;) forward pass is solved
G(zi)z < h(z;)
Backward Pass
oY or
8_(] - dz % - _du
o/ o/ 1
—— — —_D()\* = dz T dT
5 = ~DOd o = 5 (dee” + zd)
o/ T r Of T T
—— =d, T D()\*
EY dyz® + vd, BYe (A")(drz" + Ad})



Sudoku Linear Program

9

L Each cell has
ints: i k) =1. .
Constraints ; X, J, k) exactly one digit

1
Zi41 = argmin §ZTQ(Z¢)Z +q(z:)" 2

9
subject to A(z;i)z = b(z;) Z x(i, j, k) = 1.
G(zi)z < h(z) j=1

Each row has exactly
one of value k

Sudoku formulation only contains 9
equality constraints, no objective 2 x(i, j, k) = 1. Each column has
function. i=1 exactly one of value k

Y Xi+U,j+V,k) =1, where U,V e {0,3,6).  -ach33subgridhas

3
i=1 j=1 exactly one of value k



OptNet

Benefit: Works better than pure prediction

= Conv Train Conv Test = QOptNet Train OptNet Test

Downside: it’s slower
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Figure 5. Sudoku training plots.



SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver

Model Train Test Model Train Test Model Train Test
ConvNet 72.6% 0.04% ConvNet 0% 0% ConvNet 0.31% 0%
ConvNetMask 91.4% 15.1% ConvNetMask 0.01% 0% ConvNetMask 89% 0.1%
SATNet (ours) 99.8% 98.3% SATNet (ours) 99.7% 98.3% SATNet (ours) 93.6% 63.2%
(a) Original Sudoku. (b) Permuted Sudoku. (c) Visual Sudoku. (Note: the theoretical
“best” test accuracy for our architecture is
74.7%.)

Table 1. Results for 9 x 9 Sudoku experiments with 9K train/1K test examples. We compare our SATNet model against a vanilla convolu-
tional neural network (ConvNet) as well as one that receives a binary mask indicating which bits need to be learned (ConvNetMask).

061270 %0

0230|008|1250

. : o TOOIOOK|OCY D
SATNet: Differentiable Satisfiability Solver ocolosel720
Y49 |06 Ol0O2 3

sQO03#0|/00

Similar approach, but with a different problem 00JOG 7|01 O
formulation and optimization procedure. | 70|00 O|J 0 &
O85 0000 6 6

Figure 3. An example visual Sudoku image input, i.e. an image of
a Sudoku board constructed with MNIST digits. Cells filled with
the numbers 1-9 are fixed, and zeros represent unknowns.



Decision-Focused Learning

There are many ways to add differentiable components to a neural
network for specific problems

Solving quadratic programs is just one such component

Deep Learning trend #1: Deep Learning trend #2:
Bigger, more general networks We can add very specific
with more data do better components to networks to make

them more data efficient



End-to-end Learning in Stackelberg
Security Games




The Plan

1. Background Info and problem set up 2.
Equations 3. Small examples with
numbers 4. A very important table 5.

Results



 Stackleberg Game: One player goes first, second player observes
the first players (mixed) action and responds.

Quantal Response: Player responses are not fully rational, but
are still functions of utilities (e.g. Logit OR is a Softmax of

utilities for actions)



Maximum Likelihood

Suppose you have some events X that are sample from a probability
distribution P(8), where 0 is an unknown parameter. MLE is the
problem of finding the 6 that fits the known samples b est.

Example: You flip an unfair (but with unknown probabilities) coin
10 times and it comes up heads 8 times.

Example: You pick 4 balls from a bag with an unknown number of
balls in it. Three of the balls are red and white is black. What is

the most likely ratio of red to white balls?



Maximum Likelihood

Often easiest to minimize Negative Log Likelihood (NLL). Why?

Likelihood often has many probabilities multiplied together,
taking the log separates them. Logs also help with numerical

stability for small probability events. Sometimes you can find

algebraic and exact answers, other times
not. We primarily use gradient descent because it had better

numerical stability than the exact method.



Problem Set Up




Stackelberg Security Games (SSGSs)

Stackelberg Security Game
SSGs are played between a defender and an attacker. The defender
allocates k resources to defend T targets. The attacker observes the
allocation and attacks a target.

* Motivating example: anti-poaching
. Defender = Park Rangers

e Attacker = Poachers



« Each target is an area in the park Each target has known utility
 values for the defender The utility values for the attacker are

* unknown to the
defender, but known to be based on observable features for
each target (e.g. distance from nearest road, animals,
proximity to ranger station, etc.)

- The rangers can’t observe all attacks the adversaries
make/attackers make infrequent attacks. (There is some

amount of noise in observations)



General

* Most poaching activity is along the border of the national park
and targets boars for food

An attack against a boar is much less concerning for Rangers
than an attack against a rhino

Defender and Attacker utilities are not necessarily tied
together and is therefore modeled as a general sum (non-zero

sum) game.



Given a set of targets T, the defender is trying to maximize their
expected utility.

The defender can allocate a resource (or a fraction of a
resource) to a target to defend that target.

The attacker observes the allocation and makes an attack on
a target.

If the attack target is covered by the defender the attacker
receives a negative utility, if the attack is not covered, the

defender receives the negative utility.
Defender Expected Utility (DEU): is the probability a target is

covered times the probability it is attacked times the utility of
that target.



Variable Usage The defender’s allocated resources to target t
o (proba- bility of covering t) The utility gained for the
defender for target tif it is
Ug covered and attacked
The utility gained™ for the defender for target t if is
U4 uncovered and attacked. (negative)
The attacker’s probability of attacking target t
qt The features of target t
yt The attacker preference function. Maps from features
o(y ) to attacker utility for target t.
t




The Defender’s Optimization

DEU: Defender’s Expected Utility

ma DEU= St xtqt g +(1 - xt)qt 4 (1)
eT U U

.0 (2)

b 2SRk ®)

teT

10



Subjective Utility Quantal Response: SUQR

Humans are only sort of rational... SUQR is one way of quantifying this.

gt is a softmax of an attractiveness function: wxt + ¢(yi),
where w is how strongly the attacker takes into account the

coverage.

~ ewxti)
B Z (I) eVVJX"'(P(yj)

JeT

G

11



Why SUQR and not QR

Why use wxt + @(yt) as an attractivness function rather than
wxte'(yt) (where ©°( ) is the attacker’s utility)?

- In general: Better fit to data collected in security games.
Human’s don’t actually compute explicit utilities for their

actions and our behavior may more closely match a SUQR
model than traditional Logit QR models.

- In this paper: Need to separate decision variable x from ¢( ).

The effects of a change in coverage need to be decomposable
from the inherent attractiveness of a target.

12



w is how much the adversary responds to coverage and should be
non-p ositive

« w = 0: The attacker does not consider coverage
« W > 0: The attacker is more likely to attack a covered

target(???)

* W - The attacker selects the least covered target

w can be computed with MLE if the attacker makes attacks under
two different coverage schemes. W= _4 has been found

empirically before for some experiments, so we generally use that
value.

13
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Learning Attacker

If we knew o(.) exactly, the problem would be easier. You can use
MLE to compute ¢~ (y) exactly for the targets you observe attacks
on. You could use your favorite non-convex optimizer to solve for

X,
The Problem: We may only be able to observe attacks on some
targets or we want to transfer our methods to new parks/airports
with new targets.

ldea: Two-Stage Approach Fit a Neural Network to predict
-)). Optimize

By DEV elverou b RERciRtions Rt tb learning o

14



Two-Stage Approach

What’s wrong with this predict-then-optimize approach? Our loss
function is optimizing for accuracy of prediction, not the end
objective value of DEU.

We have bounds for DEU of a target for some given error in
prediction €2 in Logit QR in general sum and zero sum games.

Key Idea: the defender needs to be pessimistic on predictions for
targets that are high value to the defender.

15



Decision Focused

Better Idea: Decision Focused Learning

We shouldn’t be agnostic to the fact that our learning has an
optimization after it. We want to optimize for decision quality, not
accuracy in predicting attack probabilities.

The Plan: Learn ¢(.) that optimizes for solution quality by

differentiating through the optimization problem as well and using
decision quality as a loss rather than prediction accuracy.

16
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Assume a game with 2 targets, with utilities U= _1,U3= _2
and one defender resource k =1

The defender seeks to optimize DEU:

max _ _ _ _
xﬁl(l x1) - 292(1
st x1+x2=1

If the attacker has uniform preference (p(y1) = @(y2)), then the
optimal defender coverage is

x* = (.244, .755)

The resulting attack probabilities would be g = (.885, 115).

17



But what if not equal

Say the defender observes a number of attacks with their coverage
and observes q~ = (.5, .5). The attack distribution was different than
what the defender assumed (i.e. attacker has non-uniform
preferences).

The defender can use MLE to estimate ¢ (y) = (0, 2).

But how can the defender use this attack data to generalize to other
targets with different sets of features? Let’s fit a neural network to

¢ (y)

18



More Numerical

What happens if we don’t fit the true attacker preferences correctly?

Description Observed Preferences @ (y) X* q Cross Entropyof o | L = DE
Overestimating Valuable Target 0,2) (O, (.25, 75) (., b .693 0.625
Underestimating Valuable Target 3)0,1) | (18, 82) | (@&, 36) 957 .650
Overestimating at Same Cross Entropy (0,2.5) (31; 69) (38, 62) 723 647
(19, 81) | (62, 38) 723 645

19



Decision-focused

 If we want to include the optimization problem in our
gradients, we need to differentiate through a non-convex
optimization problem.

* Want to know how the decision quality (| = DEU) changes

. with changes in our model parameters ©. l
Follow the gradient Oﬁiehe{a to train our model.

20



One big Chain Rule

Our overall gradient is made up of a few different components:

oL _ 9L ox* g
d  0x 0q 0
*

Which one of these termses)eems difficult 190 compute?

21



Gradients of non-convex

Theorem: Let x be a strict local minimizer of f over X. Then,

except on a measure zero set, there exists a convexset 1 around x
I(6) = arg minxeInX f (x, 6) is differentiable. The

gk&ﬁﬁélﬂ%é OF X4 with respect to 6 are given by the gradients of the

solutions to the local quadratic approximation
minx€XL/2xXTV2f(x @)x+xT Vi(x.0)

(OPTNet Paper contains differentiable QP solver [Amos & Kolter
2017])

22



Does it matter?

™ D1 e 0 X
8 Targets Yl b scaamaniicrict NN |5 e Y I
— N3 - : - v — -
ik 5 0 L | 20 X ) 1" W
oa e
S —— 10«
25.GT g 0% ///’ Y e —ses———— _
e 0.25 1 -'4'/ ,—"—/ 0l .‘/\
24 Targets S Lz == B
v m——— - — 4
5 ' ! » W W N X N 150 . s
Attacks (Games = 50, Features = 100) Games (Attacks = 5. Feateres = 100) Features (Games = 50, Attacks = 5)

Figure 1: Game focused Learning vs 2 Stage learning on synthetic data
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Human Data

i —

10 ) ) ( 10 1] M)

3 ) ) ¥yl | 2 Ly
Attacks (Targets = 8, Games = 22) Artacks (Targets » 24, Gaers = 22) Games (Targets = 8, Astacks = 10)

Games (Targets = 24, Artacks = 10)

Figure 2: Game focused Learning vs 2 Stage learning on human data
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Comparison of Prediction error and

performance

; 1.0 ' 1.0 + “
§ ‘ " .:§ . ® o 0.‘.{':
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_§ 010 - && ., . 0.0 b ® o
< L} 1 1 T | T
IR 0.5 1.0 IR 0.5 1.0
Target contribution to DEU Target contribution to DEU

Figure 6: Target contribution to DEU vs. the absolute error in
the predicted attacker g. GF (left) has lower estimation errors
for targets with high DEU contributions and higher errors for
targets with low DEU contributions. 2S (right) estimation
errors do not vary with target importance.
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