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DL Day Info

Will take place Thursday, December 11th

Poster sessions will take place in the third floor atrium of the CIT

Two separate sections:

1) 9:30-10:45
2) 11:00-12:15

If you can’t make an entire section, I can visit your poster for the part of the 
section when you are there.



Actor Critic Algorithms Review

Idea: Learn policy (actor) and value 
function (critic) side-by-side

Compute Temporal Difference Error 
(TD-Error) to train Value network

Compute policy gradient update 
to train actor

Source: Sutton and Barto, Reinforcement Learning



Advantage Actor Critic

Instead of using V(s), use 
A(s, a) = Q(s, a) – V(s)

A(s, a): What is the 
advantage of taking action a 
over the average value of 
the state

Learn estimate of V(s)

𝐴 𝑠, 𝑎 = 𝑟 + 𝛾𝑉 𝑠’ – 𝑉 𝑠



Actor Critic Algorithms

Source: Wikipedia

Note: Wikipedia uses 𝑅𝑖 for returns



On-Policy and Off-Policy Learning

RL algorithms collect experiences and learn from these 
experiences

On-Policy Algorithms have to collect experiences with the policy 
they are learning

Off-Policy Algorithms can use any policy to collect experiences



Review: On + Off-Policy Learning

On-Policy Off Policy

Summary Learns policy/value function based on 
policy used during training

Learns policy independent of 
policy used to collect experiences 
during training

Algorithms SARSA, Policy Gradient, Actor Critic, PPO Q-Learning, Off-policy Actor-
Critic, Deep Deterministic Policy 
Gradient (DDPG)



Off-Policy Learning

Most of the time in RL, collecting 
the data is computationally 
expensive.

So far, we’ve looked at an example, 
learned from it, and discarded it.

In all our other problems, we 
always learned from data multiple 
times (i.e., epochs)

Maybe we shouldn’t throw away useful 
data immediately…

Isaac Gym



Experience Replay and Replay Buffers

Keep a memory of experiences 
(state, action, reward, 
next_state)

As you collect new 
experiences, remove oldest 
experiences from buffer

To train model, sample batch 
of data from buffer



On-Policy Learning

Can we use Replay Buffers with On-
Policy learning algorithms (e.g., 
REINFORCE, Actor-Critic, etc.)?



On-Policy Learning

Can we use Replay Buffers with On-
Policy learning algorithms (e.g., 
REINFORCE, Actor-Critic, etc.)?

Not Really! Data in the buffer was collected 
with an older policy and we can only learn 
on experiences collected using the current 
policy…





But what if we actually could…

Off-Policy Policy Gradient:
Data collected under policy 𝛽(𝑎|𝑠) (i.e., older version of policy)

We can re-weight our gradient according to the old policy:

𝜌 =
𝜋 𝑎 𝑠

𝛽 𝑎 𝑠

∇𝜃𝐽 𝜃 = ෍

𝑠,𝑎 ∈𝑏𝑎𝑡𝑐ℎ

𝜌 ⋅ 𝑄𝜋 𝑠, 𝑎 ∇𝜃ln 𝜋(𝑠, 𝑎)

Off-Policy Actor Critic: https://arxiv.org/pdf/1205.4839

Actor-Critic with Importance Sampling
How much should we weigh each experience?



Importance Sampling

We’d like to calculate the expected value of f(x), with x drawn from 
some probability distribution p. However, distribution p may be 
hard to sample from.

𝐸 𝑥~𝑝 [𝑓 𝑥 ]

𝐸 𝑥~𝑝 [𝑓 𝑥 ] =  න𝑓 𝑥 𝑝 𝑥  𝑑𝑥

𝐸 𝑥~𝑝 [𝑓 𝑥 ] =  න 𝑓 𝑥
𝑝 𝑥

𝑞 𝑥
𝑞 𝑥  𝑑𝑥 = 𝐸 𝑥~𝑞 𝑝 𝑥 /𝑞 𝑥 ⋅ 𝑓 𝑥



Importance Sampling

We can compute our original objective by including an importance 
sampling ratio that corrects for the fact that x is drawn from a 
different distribution.

𝐸 𝑥~𝑝 [𝑓 𝑥 ] =𝐸 𝑥~𝑞 𝑝 𝑥 /𝑞 𝑥 ⋅ 𝑓 𝑥



A (short) Journey Into Convex Optimization Theory

Source and further reading: Parikh and Boyd, Proximal Algorithms. 2013.



Proximal Optimization

Let 𝑓 be a convex function:
𝑓: 𝓡 → 𝓡

Takes in a vector Outputs a vector Compromises between minimizing 
𝑓 𝑥  and the right term



What’s the intuition?

Our original objective is to minimize 𝑓 𝑥 , we’d like to take a step 
towards an optimal solution

However, f may not be differentiable and we may have constraints 
on the domain of f. 

Idea: take a (small) step in the direction of your objective or towards 
the feasible region

Limit the size of the step

Minimize our objective



The Proximal Operator

Blue points: u’s
Red points: x’s

Applying the proximal 
operator moves from blue 
to red



Relationship to Gradient Descent

If f is differentiable and λ is small, then the proximal 
operator is approximately a step of gradient descent



Another Example Operator



Proximal Optimization Algorithm

A Proximal Optimization 
algorithm is one that 
repeatedly applies the 
proximal operator



Trust Region Problems

Where ρ is the radius of the trust region

These problems typically arise when f(x) is an approximation to some more complex function

f(x) can be a Taylor approximation of some “hard-to-optimize” function
Taylor approximations are good approximations locally.



An Ideal RL Algorithm

𝑉𝜋 𝑠0  
under new policy

Probability of 
reaching a state s
Under new policy

Probability of 
taking an action 
with old policy

Advantage of 
that action 
under old policy

So long as 𝜋𝑖and 𝜋𝑖+1 are “close”, 
this algorithm provides a 
guarantee that 𝜋𝑖+1 has better 
expected returns than 𝜋𝑖 

How do we solve that maximization 
problem?



Trust Region Policy Optimization

Want to solve:

Which is equivalent to a hard constraint problem for some δ



KL Divergence

Source: https://medium.com/@yian.chen261/introduction-to-kullback-leibler-divergence-2d76979d1d8c 
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The maximum KL divergence limits how different the two policies 
can be at any state.

That is a constraint for every state in the state space… (that’s a lot)
It’s easier to work with the expected KL Divergence as an 
approximation for the true constraint



Trust Region Policy Optimization

Unfortunately, solving this constrained optimization (with 
the conjugate gradient algorithm) problem involves 
computing the Hessian matrix (matrix of second 
derivatives), which is very expensive.



TRPO

Competitive with Deep-Q Learning and Human level performance in some Atari domains



Proximal Policy Optimization

The original objective of TRPO Clipped probability ratio

PPO Optimizes a lower 
bound of the TRPO 
objective without the 
need for constrained 
optimization methods!

Source: Schulman et al., “Proximal Policy Optimization Algorithms”



PPO



PPO

When 𝑟𝑡(θ) > 1, then the new policy is more likely to select the current action than the old policy

When 0 ≤ 𝑟𝑡(θ) ≤ 1, then the new policy is less likely to select the current action than the old policy

𝑟𝑡(θ) estimates the divergence between the old and new policy

When that divergence is large (i.e., far from 1), we are no longer confident in our estimates of 𝐴̂𝑡. 

Clipping makes our updates conservative.



PPO and TRPO are on-policy learning algorithms!

Do not be fooled by the presence old and new policies, the old 
policy refers to the policy that collected the data and the new policy 
is the decision variable of the optimization problem



PPO is an 
approximation 
of TRPO, but 
outperforms it!



PPO

PPO is (basically) State-Of-The-Art (SOTA)

Provides fast, sample-efficient, and stable training



PPO

PPO is (basically) State-Of-The-Art (SOTA)

Provides fast, sample-efficient, and stable training



PPO: OpenAI5

OpenAI Five: team of 
bots trained to play 
DOTA 2. 

Defeated professional 
teams when first 
released.



PPO

For tips and tricks to get PPO to train well: https://costa.sh/blog-
the-32-implementation-details-of-ppo.html 
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PPO

Final phase of training ChatGPT

Was the default RL algorithm used by 
OpenAI and most researchers for 
many years.



RL Hierarchy

Source and helpful explanations: https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html 

Model is essentially the Transition 
Function and Reward function

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html




Language Modelling Revisited

Input a sequence

Output next token prediction

Typically framed as supervised 
learning-style problem:

1. Given some context (e.g., a 
question)

2. Predict the next token.



Turning Language modelling into an MDP

MDP: <S, A, P, R, 𝛾>

States: 
Actions:
Transition Function:
Reward Function:

Each state is a sequence of tokens

LLM adds the next token

Transitions are deterministic, given a state and next token, the next state is just 
the token appended to the previous state

The LLM should be rewarded for good responses, but how do we know what the 
quality of response is?



Reward Modeling 

In MDPs, the reward function is a mapping from states to rewards

Reward Modeling: Learn a reward function



Reward Modeling

Source: https://huggingface.co/blog/rlhf 

https://huggingface.co/blog/rlhf


Bradley-Terry Preference Modeling

Human labelers output a ranking of potential responses from the 
language model

Our reward model needs to produce a (scalar) reward

How can we figure out scalar rewards from (many) rankings?



Bradley-Terry Preference Modeling

Bradley-Terry model:
P(i > j) =

𝑝𝑖

𝑝𝑖 + 𝑝𝑗

The probability that response i will be ranked higher than response j
Our model is trained to predict a score for each response. 
For every pair of responses, you can calculate the probability of 
each response being chosen from those scores.
The loss function is ensuring your predicted P(i > j) aligns with 
human rankings



RL+Human Feedback (RLHF)

Source: https://huggingface.co/blog/rlhf 

https://huggingface.co/blog/rlhf


Chat-GPT Training Revisited

Source: https://openai.com/index/chatgpt/ 

https://openai.com/index/chatgpt/


Robots!

Robots are the most concrete example of autonomous agents

So where are all of the robots trained with RL?



Don’t specify algorithm, but have PPO examples in unitree_rl_gym



Challenges in RL and Robotics

• Simulation environment and real world won’t match perfectly 
(Sim2Real Gap)
• Hard to collect enough data in the real world
• Impossible to simulate physics perfectly

• No guarantees of safe policies
• If you follow a learned and cause an accident, that’s very expensive

• Sparse/Delayed rewards
• It is challenging for a robot to know if it is doing well until a task is complete

• Partial Observability in the real world
• Robots do not have access to the entire world state, just what they can observe 

with their sensors.



Why don’t we see more RL in deployed robots?



Why don’t we see more RL in deployed robots?

Deep Learning is not the answer to every problem

We already know optimal-control algorithms for certain types of 
problems, Deep RL cannot be better than optimal solutions...
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