


DL Day Info

Will take place Thursday, December 11t

Poster sessions will take place in the third floor atrium of the CIT

Two separate sections:

1) 9:30-10:45
2) 11:00-12:15

If you can’t make an entire section, | can visit your poster for the part of the
section when you are there.



Actor Critic Algorithms Review

One-step Actor—Critic (episodic), for estimating mg ~ ,

Idea: Learn policy (actor) and value Input: a differentiable policy parameterization 7(als, )
function (critic) side-by-side Input: a differentiable state-value function parameterization o(s,w)
Parameters: step sizes a® > 0, a™ > 0
Initialize policy parameter @ € R? and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I+1
Loop while S is not terminal (for each time step):
A~ m(-|S,0)
Take action A, observe S’, R
d — R+~9(S",w) — 9(S,w) (if S’ is terminal, then 9(S’,w) = 0)

Compute Temporal Difference Error W w+avl ;
P p. — —0+a°I5VInm(A|S,0)
(TD-Error) to train Value network

S« 5
Compute policy gradient update <

to train actor Fig 13.3. One step actor critic

Source: Sutton and Barto, Reinforcement Learning



Advantage Actor Critic

Instead of using V(s), use
A(S’ a) = Q(S’ a) _V(S)

A(s, a): What is the
advantage of taking action a
over the average value of
the state

Learn estimate of V(s)

A(s,a) =r+yV(s)-V(s)

One-step Actor—Critic (episodic), for estimating g ~ m,

Input: a differentiable policy parameterization 7(als, )
Input: a differentiable state-value function parameterization o(s,w)
Parameters: step sizes a® > 0, a%¥ > 0
Initialize policy parameter @ € R? and state-value weights w € R (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I+1
Loop while S is not terminal (for each time step):
A~ 7(-]S,0)
Take action A, observe S, R
§ « R+~9(S",w) — 9(S,w) (if S’ is terminal, then 9(S’,w) = 0)

w—w+aVIéVo(S,w)
0+ 0+a°I5VIinn(A|S,0)
I —~qI

S« 5

Fig 13.3. One step actor critic




Actor Critic Algorithms

Note: Wikipedia uses R; for returns
* EogigT(’YiRi)-
* ¥ 3 i (777 R;): the REINFORCE algorithm.
o E;<2<T( “"JR;) — b(S;): the REINFORCE with baseline algorithm. Here b is an arbitrary function.
e ¥ (Rj + V™ (S;11) — V™ (S;)): TD(1) learning.
+ Y Q™ (S), 4;).
« v/ A™ (S;, A;): Advantage Actor-Critic (A2C)."!
« v (Rj +YRj+1 +¥* V™ (Sj12) — V™ (S;)): TD(2) learning.
. v (Z:;S YR g + 4" V™ (S;n) — V(S )) TD(n) learning.

« V3 )f:\l (Zk 0 YRk + 9" V™ (Sjin) — V™ (S; )) TD(M) learning, also known as GAE (generalized

advantage estimate)./*! This is obtained by an exponentially decaying sum of the TD(n) learning terms.

Source: Wikipedia



On-Policy and Off-Policy Learning

RL algorithms collect experiences and learn from these
experiences

On-Policy Algorithms have to collect experiences with the policy
they are learning

Off-Policy Algorithms can use any policy to collect experiences



Review: On + Off-Policy Learning

Summary

Algorithms

On-Policy

Learns policy/value function based on
policy used during training

SARSA, Policy Gradient, Actor Critic, PPO

Off Policy

Learns policy independent of
policy used to collect experiences
during training

Q-Learning, Off-policy Actor-
Critic, Deep Deterministic Policy
Gradient (DDPG)



Off-Policy Learning

Most of the time in RL, collecting
the data is computationally
expensive.

So far, we’ve looked at an example,
learned from it, and discarded it.

In all our other problems, we
always learned from data multiple
times (i.e., epochs)

Maybe we shouldn’t throw away useful
data immediately...

Isaac Gym




Experience Replay and Replay Buffers

Keep a memory of experiences
(state, action, reward,
next_state)

Store experience

As you collect new tuples
experiences, remove oldest | >
experiences from buffer (59,0, r®,, s

To train model, sample batch
of data from buffer

AT
L

1) (1) "f.l] jlj)
( «”f .Fr_i‘_l-hr_'_l

|
.Hi.
(2) (2) _(2) (2)
[.‘Hf .(I, "f’rl'hf}l)
Ii:i} (3) (3) I[.‘ij
['Hi' .{Iil ..’f+l‘h'+l)

Replay Buffer (D)

Sample minibatch
(uniformly) for
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On-Policy Learning

Can we use Replay Buffers with On-
Policy learning algorithms (e.g.,
REINFORCE, Actor-Critic, etc.)?

\_/ Sample minibatch
Store experience (uniformly) for

tuples : rainin
P ORECRRON training
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On-Policy Learning

Can we use Replay Buffers with On-
Policy learning algorithms (e.g.,
REINFORCE, Actor-Critic, etc.)?

Store experience

Not Really! Data in the buffer was collected

with an older policy and we can only learn
on experiences collected using the current
policy...

®
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But what if we actually could...

Off-Policy Policy Gradient:
Data collected under policy f(al|s) (i.e., older version of policy)

We can re-weight our gradient according to the old policy:
(als)

P~ Bals)

Vo] (0) = 2 p:Q"™(s,a)Vgln (s, a)
(s,a)eEbatch

How much should we weigh each experience?

Actor-Critic with Importance Sampling I

Off-Policy Actor Critic: https://arxiv.org/pdf/1205.4839



Importance Sampling

We’d like to calculate the expected value of f(x), with x drawn from
some probability distribution p. However, distribution p may be
hard to sample from.

E(xe~py [f (x)]

Eeom [ (0)] = f FOOP(e) dx

Ee~p)[f (X)] = ff(x)pg ﬁq(x) dx = Eqe-qylp(x)/q(x) - f(x)]



Importance Sampling

We can compute our original objective by including an importance
sampling ratio that corrects for the fact that x is drawn from a
different distribution.

EGe-p) [f (O] =E(x~qy[p(x) /q(x) - f(x)]



A (short) Journey Into Convex Optimization Theory

Source and further reading: Parikh and Boyd, Proximal Algorithms. 2013.



Proximal Optimization

Let f be a convex function:
[fR->R

The prozimal operator prox; : R" — R" of f is defined by

. 2
prox,(v) = argmin (f(:n) + (1/20) ||z — 'u||2) :
Takes in avector Qutputs avector Compromises between minimizing
f(x) and the right term



What,S the inturtion? Limit the size of the step

Minimize our objective
b

prox, ;(v) = argmin ( f(z) + (1/2))[lz — v[3) ,

Our original objective is to minimize f(x), we’d like to take a step
towards an optimal solution

However, f may not be differentiable and we may have constraints
on the domain of f.

|dea: take a (small) step in the direction of your objective or towards
the feasible region



The Proximal Operator

prox, ;(v) = argmin (f(z) + (1/2))[} — v[}3) .

X

Blue points: u’s
Red points: x’s

Applying the proximal

operator moves from blue
to red

Figure 1.1: Evaluating a proximal operator at various points.



Relationship to Gradient Descent

If fis differentiable and A is small, then the proximal
operator is approximately a step of gradient descent

prox,(v) =~ v — AV f(v)



Another Example Operator

prox;(v) = argmin ( f(z) + (1/2))[|z — v|3)

X

proximal operator of an indicator function of a convex set is
projection:
0 xeC

Ie(x) = prox v) = llg(v) = argmin ||z — v
@ {+OO oy e (v) = Tl (v) = argmin |z — o]



Proximal Optimization Algorithm

A Proximal Optimization
algorithm is one that

repeatedly applies the
proximal operator

prox, s (v) = argmin (f(z) + (1/23)]lz — v]).



Trust Region Problems

A trust region problem has the form

minimize f(x)
subject to || — v|2 < p,

Where p is the radius of the trust region

These problems typically arise when f(x) is an approximation to some more complex function

f(x) can be a Taylor approximation of some “hard-to-optimize” function
Taylor approximations are good approximations locally.

The proximal problem

minimize f(x) + (1/2)\)||z — v||3



An ldeal RL Algorithm

Algorithm 1 Policy iteration algorithm guaranteeing non-
decreasing expected return 7
Initialize
So long as r;jand ;.1 are “close”, ) 0- )
& ' t+1 fori =0,1,2,... until convergence do

this algorithm provides a
guarantee that 17, ; has better Compute all advantage values A, (s, a).

Solve the constrained optimization problem
expected returns than ;

Ti4+1 — argmax [Lﬂ"z, (ﬂ-) - CDEEX(TI};, ﬂ-)]

T

How do we solve that maximization where C' = 4ey/(1 — 7)2

problem? and L, (7)=n(r;) _|_Z pm-(S)Z’f'T(a|3)Am (s,a)

end for / / \ Advantage of

L Probabilityof ~thataction
V™(so) Prol?ablhty of taking an action uUnderold policy
reaching a state s

Under new policy

under new policy with old policy



Trust Region Policy Optimization

Want to solve:

max;lgmize [L9o1d (9) — CDII?EX(QOM, 9)] .

Which is equivalent to a hard constraint problem for some 6

ma,x‘igmize Lg_,(0)

subject to Dt (0o1a,0) < 0.



KL Divergence

Source: h

KL Divergence Between Two Gaussians
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https://medium.com/@yian.chen261/introduction-to-kullback-leibler-divergence-2d76979d1d8c
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ma,xtigmize Lg_,.(0)
subject to Dt (fo1a, 0) < 0.

The maximum KL divergence limits how different the two policies
can be at any state.

That is a constraint for every state in the state space... (that’s a lot)

It’s easier to work with the expected KL Divergence as an
approximation for the true constraint

Dy, (61,02) := Es~p [Dxcr (7, (-]5) || 7o, (-5))]



Trust Region Policy Optimization

ma’Xigmize Zpﬂold (3) Z o (a’| 3)A901d (S: CL)

subject to Efff‘d (0o14,0) < 6.

Unfortunately, solving this constrained optimization (with
the conjugate gradient algorithm) problem involves
computing the Hessian matrix (matrix of second
derivatives), which is very expensive.



TRPO

B. Rider Breakout Enduro Pong Q*bert Seaquest S. Invaders
Random 354 1.2 0 —20.4 157 110 179
Human (Mnih et al., 2013) 7456 31.0 368 —-3.0 18900 28010 3690
Deep Q Learning (Mnih et al., 2013) 4092 168.0 470 20.0 1952 1705 581
UCC-I (Guo et al., 2014) 5702 380 741 21 20025 2995 692
TRPO - single path 1425.2 10.8 534.6 20.9 1973.5 1908.6 568.4
TRPO - vine 859.5 34.2 430.8 20.9 7732.5 788.4 450.2

Competitive with Deep-Q Learning and Human level performance in some Atari domains



Proximal Policy Optimization

Let r,(8) denote the probability ratio ry(0) = -2l g5 r(gq) = 1. TRPO maximizes a

Togq (0t | 5¢)

“surrogate” objective

LCPL () =I@Jt[ mo(a4 | 5t) At} ~ &, [’rt(Q)}it]. (6)

ﬂ-eold (a't | St)

The main objective we propose is the following: PPO Optimizes a lower
. . . bound of the TRPO
LOEIP(6) = B, [min(ry(0) As, clip(r(6), 1 — €, 1+ €) Ay) | objective without the
/ \ need for constrained
optimization methods!
The original objective of TRPO Clipped probability ratio

Source: Schulman et al., “Proximal Policy Optimization Algorithms”



PPO

Algorithm 1 PPO, Actor-Critic Style

for iteration=1,2,... do
for actor=1,2,..., N do
Run pohcy Tg,,4 1 environment for T° tlmesteps

Compute advantage estimates A1, e AT
end for
Optimize surrogate L wrt 6, with K epochs and minibatch size M < NT
90]d +— 6

end for




PPO

LEHP (9) = B, | min(rs(0) Ay, clip(re(0),1 — €, 1 + €) Ay)

When 1:(0) > 1, then the new policy is more likely to select the current action than the old policy

When 0 < 14(0) < 1, then the new policy is less likely to select the current action than the old policy
1:(0) estimates the divergence between the old and new policy

When that divergence is large (i.e., far from 1), we are no longer confident in our estimates of A;.

Clipping makes our updates conservative.



PPO and TRPO are on-policy learning algorithms!

Do not be fooled by the presence old and new policies, the old
policy refers to the policy that collected the data and the new policy
IS the decision variable of the optimization problem
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Figure 3: Comparison of several algorithms on several MuJoCo environments, training for one million
timesteps.



PPO

PPO is (basically) State-Of-The-Art (SOTA) 1000
Provides fast, sample-efficient, and stable training T 800
L
>
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Q
=
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PPO

PPO is (basically) State-Of-The-Art (SOTA) 1000
Provides fast, sample-efficient, and stable training T 300
L
>
@ 600
oC
S 400
Q
=
200

0 100 200 300 400 500
# lteration




PPO: OpenAlS5

OpenAl Five: team of
bots trained to play
DOTA 2.

Defeated professional
teams when first
released.

0

Py

Rerun

7

vs OpenAl Five




PPO

For tips and tricks to get PPO to train well: https://costa.sh/blog-
the-32-implementation-details-of-ppo.html



https://costa.sh/blog-the-32-implementation-details-of-ppo.html
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PPO

Final phase of training ChatGPT

Was the default RL algorithm used by
OpenAl and most researchers for
many years.

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

AW

Write a story
about otters.

Once upon a time...




RL Hierarchy

Policy Optimization

- -

RL Algorithms

!

¢

Model-Free RL

{

Policy Gradient

A2C / A3C

PPO

A

TRPO

>

\

Model-Based RL Model is essentially the Transition

| Function and Reward function

Q-Learning Learn the Model Given the Model
> DQN > World Models L> AlphaZero
DDPG < ) h
. > C51 > 12A
TD3 < g )
—>  QR-DQN >  MBMF
SAC <
—> HER > MBVE

Source and helpful explanations: https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html


https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

RL Agent Training Architecture

Off-Policy (e.g., DQN, SAC)

Environment

state

o

-4

Agent
(Policy )

action

Y

|

Replay Buffer
(s,a, rs')

experiences

update
weights

sample t*ch

Q-Network or
Value Network

On-Policy (e.g., TRPO, PPO)

state

Environment

collect

-

-

action

Y

¢

Agent
(Policy m)

Trajectory Buffer

Full episodes

(T4, Tz, ...)

all data +

Policy

Optimization

K

update
policy

clear after update



Language Modelling Revisited

Typically framed as supervised
learning-style problem:

1. Given some context (e.g., a
question)
2. Predictthe next token.

Output next token prediction

Output Token

Vectors I|T| [ Ny O

r

Layer Norm

( Decoder Block
( Decoder Block
( Decoder Block

o i f i
Position Embedding

T
()~

i

Masked Self-Attention

L5 6T ¢

put Tok i

*

Input a sequence

Layer Norm

A




Turning Language modelling into an MDP
MDP: <S, A, P, R, y>

States: Each state is a sequence of tokens

Actions: LLM adds the nexttoken

Transitions are deterministic, given a state and next token, the next state is just

Transition Function: the token appended to the previous state

Reward Function: TheLLM should be rewarded for good responses, but how do we know what the
quality of response is?



Reward Modeling

In MDPs, the reward function is a mapping from states to rewards

|
Q

Reward Modeling: Learn a reward function




Reward Modeling

Prompts Dataset

Sample many prompts

Reward (Preference)

text

Train on
{sample, reward} pairs

Outputs are ranked
(relative, ELO, etc.)

f

Initial Language Model

Lorem ipsum dolor
sit amet, consectet
adipiscing elit. Aen
Donec quam felis

vulputate eget, arc

Nam quam nunc

eros faucibus tincid Human Scoring
luctus pulvinar, herl

W
JIVRN

Generated text



https://huggingface.co/blog/rlhf

Bradley-Terry Preference Modeling

Human labelers output a ranking of potential responses from the
language model

Our reward model needs to produce a (scalar) reward

How can we figure out scalar rewards from (many) rankings?



Bradley-Terry Preference Modeling

Bradley-Terry model:
Pi

P(i > j) =
( ) Pi t Dj

The probability that response / will be ranked higher than response j
Our modelis trained to predict a score for each response.

For every pair of responses, you can calculate the probability of
each response being chosen from those scores.

The loss function is ensuring your predicted P(i > j) aligns with
human rankings



Source: https://huggingface.co/blog/rlhf

RL+Human Feedback (RLHF)

Prompts Dataset

AN X: Adogis... N
'd N\ /" Tuned Language )
Initial Language Model Model (RL Policy)
% Reinforcement Learning
0@\~ Update (e.g. PPO)
Z
< 0 0+ VyJ(0)
N
POD® RLHF ®®®® Reward (Preference)
Base Text ®® ®® Tuned Text ®@®® Model
y: a furry mammal y. man’s best friend > % (8%\
g A\
>

—AkL DxL (7ppo (y]) || Thase(y|2))
KL prediction shift penalty



https://huggingface.co/blog/rlhf

Chat-GPT Training Revisited

Source: htt

Step 1

Collect demonstration data
and train a supervised policy.

F "
A prompt is sample from (84

our prompt dataset. Explain reinforcement
learning to a 6 year old.

'

A labeler demonstrates @

the desired output 2
behavior. .=
We give treats and
punishments to teach...
SFT
o 0
/. \Y

This data is used to \'%‘
fine-tune GPT-3.5 with L
supervised learning. V4

l.com/index/chat

Step 2

Collect comparison data and
train a reward model.

~
A prompt and several {_J

model outputs are Explain reinforcement
sampled. learning to a 6 year old.

o

In reinforcement Explain rewards...
learning, the
agents...

o

In machine ‘We give treats and
learning... punishments to
teach..

. Y 7
A labeler ranks the
outputs from best
to worst. °>°,°>e
RM

o._0
This data is used to o@o;&}
train our reward model. o e

0-0-0-0

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is v ¢
sampled from Write a story
the dataset. about otters.
. PPO
The PPO model is -~
initialized from the ./)?.5%.
supervised policy. A% 5

The policy generates

an output.

The reward model .RM.
calculates a reward ./)?‘7\\.
for the output. =

The reward is used
to update the policy rk
using PPO.



https://openai.com/index/chatgpt/

Robots!

Robots are the most concrete example of autonomous agents
So where are all of the robots trained with RL?

| ’_[Agent]

state reward action
S, R A

R [
- "
*~+| Enwmnment]<




Don’t specify algorithm, but have PPO examples in unitree_rl_gym



Challenges in RL and Robotics

* Simulation environment and real world won’t match perfectly
(Sim2Real Gap)

* Hard to collect enough data in the real world
* Impossible to simulate physics perfectly

* No guarantees of safe policies
* |[fyou follow a learned and cause an accident, that’s very expensive

* Sparse/Delayed rewards
* |tis challenging for a robot to know if itis doing well until a task is complete

* Partial Observability in the real world

* Robots do not have access to the entire world state, just what they can observe
with their sensors.



Why don’t we see more RL in deployed robots?

;!' 1-}"_ B

6 WAREHOUSES
ROBOTS |




Why don’t we see more RL in deployed robots?

Deep Learning is not the answer to every problem

We already know optimal-control algorithms for certain types of
problems, Deep RL cannot be better than optimal solutions...
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