
Deep
Learning

Eric Ewing

CSCI 1470

Tuesday,
11/18/25

Day 21: TRPO and PPO

DL Day Info

Will take place Thursday, December 11th

Poster sessions will take place in the third floor atrium of the CIT

Two separate sections:

1) 9:30-10:45
2) 11:00-12:15

If you can’t make an entire section, I can visit your poster for the part of the
section when you are there.

Actor Critic Algorithms Review

Idea: Learn policy (actor) and value
function (critic) side-by-side

Compute Temporal Difference Error
(TD-Error) to train Value network

Compute policy gradient update
to train actor

Source: Sutton and Barto, Reinforcement Learning

Advantage Actor Critic

Instead of using V(s), use
A(s, a) = Q(s, a) – V(s)

A(s, a): What is the
advantage of taking action a
over the average value of
the state

Learn estimate of V(s)

𝐴 𝑠, 𝑎 = 𝑟 + 𝛾𝑉 𝑠’ – 𝑉 𝑠

Actor Critic Algorithms

Source: Wikipedia

Note: Wikipedia uses 𝑅𝑖 for returns

On-Policy and Off-Policy Learning

RL algorithms collect experiences and learn from these
experiences

On-Policy Algorithms have to collect experiences with the policy
they are learning

Off-Policy Algorithms can use any policy to collect experiences

Review: On + Off-Policy Learning

On-Policy Off Policy

Summary Learns policy/value function based on
policy used during training

Learns policy independent of
policy used to collect experiences
during training

Algorithms SARSA, Policy Gradient, Actor Critic, PPO Q-Learning, Off-policy Actor-
Critic, Deep Deterministic Policy
Gradient (DDPG)

Off-Policy Learning

Most of the time in RL, collecting
the data is computationally
expensive.

So far, we’ve looked at an example,
learned from it, and discarded it.

In all our other problems, we
always learned from data multiple
times (i.e., epochs)

Maybe we shouldn’t throw away useful
data immediately…

Isaac Gym

Experience Replay and Replay Buffers

Keep a memory of experiences
(state, action, reward,
next_state)

As you collect new
experiences, remove oldest
experiences from buffer

To train model, sample batch
of data from buffer

On-Policy Learning

Can we use Replay Buffers with On-
Policy learning algorithms (e.g.,
REINFORCE, Actor-Critic, etc.)?

On-Policy Learning

Can we use Replay Buffers with On-
Policy learning algorithms (e.g.,
REINFORCE, Actor-Critic, etc.)?

Not Really! Data in the buffer was collected
with an older policy and we can only learn
on experiences collected using the current
policy…



But what if we actually could…

Off-Policy Policy Gradient:
Data collected under policy 𝛽(𝑎|𝑠) (i.e., older version of policy)

We can re-weight our gradient according to the old policy:

𝜌 =
𝜋 𝑎 𝑠

𝛽 𝑎 𝑠

∇𝜃𝐽 𝜃 = ෍

𝑠,𝑎 ∈𝑏𝑎𝑡𝑐ℎ

𝜌 ⋅ 𝑄𝜋 𝑠, 𝑎 ∇𝜃ln 𝜋(𝑠, 𝑎)

Off-Policy Actor Critic: https://arxiv.org/pdf/1205.4839

Actor-Critic with Importance Sampling
How much should we weigh each experience?

Importance Sampling

We’d like to calculate the expected value of f(x), with x drawn from
some probability distribution p. However, distribution p may be
hard to sample from.

𝐸 𝑥~𝑝 [𝑓 𝑥]

𝐸 𝑥~𝑝 [𝑓 𝑥] = න𝑓 𝑥 𝑝 𝑥 𝑑𝑥

𝐸 𝑥~𝑝 [𝑓 𝑥] = න 𝑓 𝑥
𝑝 𝑥

𝑞 𝑥
𝑞 𝑥 𝑑𝑥 = 𝐸 𝑥~𝑞 𝑝 𝑥 /𝑞 𝑥 ⋅ 𝑓 𝑥

Importance Sampling

We can compute our original objective by including an importance
sampling ratio that corrects for the fact that x is drawn from a
different distribution.

𝐸 𝑥~𝑝 [𝑓 𝑥] =𝐸 𝑥~𝑞 𝑝 𝑥 /𝑞 𝑥 ⋅ 𝑓 𝑥

A (short) Journey Into Convex Optimization Theory

Source and further reading: Parikh and Boyd, Proximal Algorithms. 2013.

Proximal Optimization

Let 𝑓 be a convex function:
𝑓: 𝓡 → 𝓡

Takes in a vector Outputs a vector Compromises between minimizing
𝑓 𝑥 and the right term

What’s the intuition?

Our original objective is to minimize 𝑓 𝑥 , we’d like to take a step
towards an optimal solution

However, f may not be differentiable and we may have constraints
on the domain of f.

Idea: take a (small) step in the direction of your objective or towards
the feasible region

Limit the size of the step

Minimize our objective

The Proximal Operator

Blue points: u’s
Red points: x’s

Applying the proximal
operator moves from blue
to red

Relationship to Gradient Descent

If f is differentiable and λ is small, then the proximal
operator is approximately a step of gradient descent

Another Example Operator

Proximal Optimization Algorithm

A Proximal Optimization
algorithm is one that
repeatedly applies the
proximal operator

Trust Region Problems

Where ρ is the radius of the trust region

These problems typically arise when f(x) is an approximation to some more complex function

f(x) can be a Taylor approximation of some “hard-to-optimize” function
Taylor approximations are good approximations locally.

An Ideal RL Algorithm

𝑉𝜋 𝑠0
under new policy

Probability of
reaching a state s
Under new policy

Probability of
taking an action
with old policy

Advantage of
that action
under old policy

So long as 𝜋𝑖and 𝜋𝑖+1 are “close”,
this algorithm provides a
guarantee that 𝜋𝑖+1 has better
expected returns than 𝜋𝑖

How do we solve that maximization
problem?

Trust Region Policy Optimization

Want to solve:

Which is equivalent to a hard constraint problem for some δ

KL Divergence

Source: https://medium.com/@yian.chen261/introduction-to-kullback-leibler-divergence-2d76979d1d8c

https://medium.com/@yian.chen261/introduction-to-kullback-leibler-divergence-2d76979d1d8c
https://medium.com/@yian.chen261/introduction-to-kullback-leibler-divergence-2d76979d1d8c
https://medium.com/@yian.chen261/introduction-to-kullback-leibler-divergence-2d76979d1d8c
https://medium.com/@yian.chen261/introduction-to-kullback-leibler-divergence-2d76979d1d8c
https://medium.com/@yian.chen261/introduction-to-kullback-leibler-divergence-2d76979d1d8c
https://medium.com/@yian.chen261/introduction-to-kullback-leibler-divergence-2d76979d1d8c
https://medium.com/@yian.chen261/introduction-to-kullback-leibler-divergence-2d76979d1d8c
https://medium.com/@yian.chen261/introduction-to-kullback-leibler-divergence-2d76979d1d8c
https://medium.com/@yian.chen261/introduction-to-kullback-leibler-divergence-2d76979d1d8c
https://medium.com/@yian.chen261/introduction-to-kullback-leibler-divergence-2d76979d1d8c
https://medium.com/@yian.chen261/introduction-to-kullback-leibler-divergence-2d76979d1d8c

The maximum KL divergence limits how different the two policies
can be at any state.

That is a constraint for every state in the state space… (that’s a lot)
It’s easier to work with the expected KL Divergence as an
approximation for the true constraint

Trust Region Policy Optimization

Unfortunately, solving this constrained optimization (with
the conjugate gradient algorithm) problem involves
computing the Hessian matrix (matrix of second
derivatives), which is very expensive.

TRPO

Competitive with Deep-Q Learning and Human level performance in some Atari domains

Proximal Policy Optimization

The original objective of TRPO Clipped probability ratio

PPO Optimizes a lower
bound of the TRPO
objective without the
need for constrained
optimization methods!

Source: Schulman et al., “Proximal Policy Optimization Algorithms”

PPO

PPO

When 𝑟𝑡(θ) > 1, then the new policy is more likely to select the current action than the old policy

When 0 ≤ 𝑟𝑡(θ) ≤ 1, then the new policy is less likely to select the current action than the old policy

𝑟𝑡(θ) estimates the divergence between the old and new policy

When that divergence is large (i.e., far from 1), we are no longer confident in our estimates of 𝐴̂𝑡.

Clipping makes our updates conservative.

PPO and TRPO are on-policy learning algorithms!

Do not be fooled by the presence old and new policies, the old
policy refers to the policy that collected the data and the new policy
is the decision variable of the optimization problem

PPO is an
approximation
of TRPO, but
outperforms it!

PPO

PPO is (basically) State-Of-The-Art (SOTA)

Provides fast, sample-efficient, and stable training

PPO

PPO is (basically) State-Of-The-Art (SOTA)

Provides fast, sample-efficient, and stable training

PPO: OpenAI5

OpenAI Five: team of
bots trained to play
DOTA 2.

Defeated professional
teams when first
released.

PPO

For tips and tricks to get PPO to train well: https://costa.sh/blog-
the-32-implementation-details-of-ppo.html

https://costa.sh/blog-the-32-implementation-details-of-ppo.html
https://costa.sh/blog-the-32-implementation-details-of-ppo.html
https://costa.sh/blog-the-32-implementation-details-of-ppo.html
https://costa.sh/blog-the-32-implementation-details-of-ppo.html
https://costa.sh/blog-the-32-implementation-details-of-ppo.html
https://costa.sh/blog-the-32-implementation-details-of-ppo.html
https://costa.sh/blog-the-32-implementation-details-of-ppo.html
https://costa.sh/blog-the-32-implementation-details-of-ppo.html
https://costa.sh/blog-the-32-implementation-details-of-ppo.html
https://costa.sh/blog-the-32-implementation-details-of-ppo.html
https://costa.sh/blog-the-32-implementation-details-of-ppo.html
https://costa.sh/blog-the-32-implementation-details-of-ppo.html
https://costa.sh/blog-the-32-implementation-details-of-ppo.html

PPO

Final phase of training ChatGPT

Was the default RL algorithm used by
OpenAI and most researchers for
many years.

RL Hierarchy

Source and helpful explanations: https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Model is essentially the Transition
Function and Reward function

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Language Modelling Revisited

Input a sequence

Output next token prediction

Typically framed as supervised
learning-style problem:

1. Given some context (e.g., a
question)

2. Predict the next token.

Turning Language modelling into an MDP

MDP: <S, A, P, R, 𝛾>

States:
Actions:
Transition Function:
Reward Function:

Each state is a sequence of tokens

LLM adds the next token

Transitions are deterministic, given a state and next token, the next state is just
the token appended to the previous state

The LLM should be rewarded for good responses, but how do we know what the
quality of response is?

Reward Modeling

In MDPs, the reward function is a mapping from states to rewards

Reward Modeling: Learn a reward function

Reward Modeling

Source: https://huggingface.co/blog/rlhf

https://huggingface.co/blog/rlhf

Bradley-Terry Preference Modeling

Human labelers output a ranking of potential responses from the
language model

Our reward model needs to produce a (scalar) reward

How can we figure out scalar rewards from (many) rankings?

Bradley-Terry Preference Modeling

Bradley-Terry model:
P(i > j) =

𝑝𝑖

𝑝𝑖 + 𝑝𝑗

The probability that response i will be ranked higher than response j
Our model is trained to predict a score for each response.
For every pair of responses, you can calculate the probability of
each response being chosen from those scores.
The loss function is ensuring your predicted P(i > j) aligns with
human rankings

RL+Human Feedback (RLHF)

Source: https://huggingface.co/blog/rlhf

https://huggingface.co/blog/rlhf

Chat-GPT Training Revisited

Source: https://openai.com/index/chatgpt/

https://openai.com/index/chatgpt/

Robots!

Robots are the most concrete example of autonomous agents

So where are all of the robots trained with RL?

Don’t specify algorithm, but have PPO examples in unitree_rl_gym

Challenges in RL and Robotics

• Simulation environment and real world won’t match perfectly
(Sim2Real Gap)
• Hard to collect enough data in the real world
• Impossible to simulate physics perfectly

• No guarantees of safe policies
• If you follow a learned and cause an accident, that’s very expensive

• Sparse/Delayed rewards
• It is challenging for a robot to know if it is doing well until a task is complete

• Partial Observability in the real world
• Robots do not have access to the entire world state, just what they can observe

with their sensors.

Why don’t we see more RL in deployed robots?

Why don’t we see more RL in deployed robots?

Deep Learning is not the answer to every problem

We already know optimal-control algorithms for certain types of
problems, Deep RL cannot be better than optimal solutions...

	Slide 1
	Slide 2: DL Day Info
	Slide 3: Actor Critic Algorithms Review
	Slide 4: Advantage Actor Critic
	Slide 5: Actor Critic Algorithms
	Slide 6: On-Policy and Off-Policy Learning
	Slide 7: Review: On + Off-Policy Learning
	Slide 8: Off-Policy Learning
	Slide 9: Experience Replay and Replay Buffers
	Slide 10: On-Policy Learning
	Slide 11: On-Policy Learning
	Slide 12: But what if we actually could…
	Slide 13: Importance Sampling
	Slide 14: Importance Sampling
	Slide 15: A (short) Journey Into Convex Optimization Theory
	Slide 16: Proximal Optimization
	Slide 17: What’s the intuition?
	Slide 18: The Proximal Operator
	Slide 19: Relationship to Gradient Descent
	Slide 20: Another Example Operator
	Slide 21: Proximal Optimization Algorithm
	Slide 22: Trust Region Problems
	Slide 23: An Ideal RL Algorithm
	Slide 24: Trust Region Policy Optimization
	Slide 25: KL Divergence
	Slide 26
	Slide 27: Trust Region Policy Optimization
	Slide 28: TRPO
	Slide 29: Proximal Policy Optimization
	Slide 30: PPO
	Slide 31: PPO
	Slide 32
	Slide 33
	Slide 34: PPO
	Slide 35: PPO
	Slide 36: PPO: OpenAI5
	Slide 37: PPO
	Slide 38: PPO
	Slide 39: RL Hierarchy
	Slide 40
	Slide 41: Language Modelling Revisited
	Slide 42: Turning Language modelling into an MDP
	Slide 43: Reward Modeling
	Slide 44: Reward Modeling
	Slide 45: Bradley-Terry Preference Modeling
	Slide 46: Bradley-Terry Preference Modeling
	Slide 47: RL+Human Feedback (RLHF)
	Slide 48: Chat-GPT Training Revisited
	Slide 49: Robots!
	Slide 50
	Slide 51: Challenges in RL and Robotics
	Slide 52: Why don’t we see more RL in deployed robots?
	Slide 53: Why don’t we see more RL in deployed robots?

