Eric Ewing

e

Thursday, or e §:
NN3/25 =




Terminology Review

MDP: Markov Decision Process

<States, Actions, Reward Function, Transition Probabilities, Discount Factor>
Episode: Single run-through of an MDP (from start to terminal state)
Trajectory: states, actions, and rewards received in an episode
Returns: Total (discounted) rewards of a trajectory
Value: Expected Returns from a specific state

Q-Value: Expected Returns from a specific state when taking a
specific action



Deep-Q Network

Q(S; al)

Deep Q-Networks (DQNSs):
1. Takein a state

Q(Sr aZ) .
2. Return Q-values for each action

State: s

Deep Q-Network

Q(s,an)



Deep-Q Learning

Initialize DQN to approximate Q
Maintain estimates of Q(s, a) for all (s, a) pairs
Collect experiences, update Q estimates with:

2
Compute Lg = [r + ymaxQy(s’,a’) — Qg(s, a)]
a

update 8 with SGD on Loss function



Gymnasium @ Gymnasium

import gymnasium as gym

# Initialise the environment

. env = gym.make("LunarLander-v3", render_mode="human")
Provides a common
implementation of MDPs for # Reset the environment to generate the first observation
RL. observation, info = env.reset(seed=42)
for _ in range(1000):
. # this is where you would insert your policy
A gym environmenthas a action = env.action_space.sample()
current state that can be
updated by calling # step'(t.ransition) through t!?e environment w1:th the ac.tion |
) ) # receiving the next observation, reward and 1If the episode has terminated or truncated
enVIronment'Step(aCtlon) observation, reward, terminated, truncated, info = env.step(action)
# If the episode has ended then we can reset to start a new episode
if terminated or truncated:

observation, info = env.reset()

env.close()



Implementing DQNs

# Compute Q(s_t, a) - the model computes Q(s_t), then we select the

# columns of actions taken. These are the actions which would've been taken
# for each batch state according to policy_net

state_action_values = policy_net(state_batch).gather(1l, action_batch)

# Compute V(s_{t+1}) for all next states.
# Expected values of actions for non_final_next_states are computed based
# on the "older" target_net; selecting their best reward with max(1).values
# This is merged based on the mask, such that we'll have either the expected
# state value or @ in case the state was final.
next_state_values = torch.zeros(BATCH_SIZE, device=device)
with torch.no grad():
next_state_values[non_final_mask] = target_net(non_final_next_states).max(1).values
# Compute the expected Q values
expected_state_action_values = (next_state_values *x GAMMA) + reward_batch

# Compute Huber loss
criterion = nn.SmoothL1Loss()
loss = criterion(state_action_values, expected_state_action_values.unsqueeze(1))

Source: Torch DQN tutorial h



https://docs.pytorch.org/tutorials/intermediate/reinforcement_q_learning.html

Policies

Why learn Q-values first and turn them into a policy? Why not just
learn a policy?



Policies

Why learn Q-values first and turn them into a policy? Why not just
learn a policy?

m(als)

r(a;|s)

State: s

Policy Network

r(anls)



Policies

Why learn Q-values first and turn them into a policy? Why not just
learn a policy?

m(aqls)
State° S m(az|s) What should the
) Policy Network activation function be
for the final layer?

r(anls)



How do we train a policy network?



How do we train a policy network?

Need to find an appropriate loss function.



How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?



How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy T such that the value of the start state is maximized:



How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy T such that the value of the start state is maximized:

T = argmax, (V(SO))



How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy T such that the value of the start state is maximized:

T = argmax, (V(SO))

I How can we maximize V (sq)? I




Let /(0) be our objective function:

J(6) =V (so)



Let /(0) be our objective function:

J(8) =V (so)
](9) — IE:[Go]



Let /(0) be our objective function:

J(8) =V (so)
](9) — IE:[Go]

J(©) = ) Pr(]6) G(r)



Let /(0) be our objective function:

J(8) = V(s0)
J(8) = IE:[Go]
J(8) = 2 Pr(/rw) o

Probability of a
trajectory occurring



Let /(0) be our objective function:

J(8) = V(s0)
J(8) = IE:[Go]
J(8) = 2 Pr(/rw) o

Probability of a
trajectory occurring

Pr(z|8) = HZ=0P(St+1|St: a)mg(az|se)



Let /(0) be our objective function:

J(8) = V(s0)
J(8) = IE:[Go]
J(8) = 2 Pr(/rw) o

Probability of a
trajectory occurring

Pr(z|8) = HZ=0P(St+1|St: a)mg(az|se)

/ oy
Probability of taking an
State transition action for a given state

Probability



Let /(0) be our objective function:

J(6) =V (so)
J(6) = E[G,]
J0) =Y Pr(z]0) G(x)
\
/ T / Ezfgg?srsfa specific

Sum over all possible  Probability of a
trajectories trajectory occurring

Pr(z|8) = HZ=OP(St+1|Str a)mg(az|se)

/ oy
Probability of taking an
State transition action for a given state

Probability



Log-Derivative Trick

We can rewrite the derivative of a function using the derivative of
the natural log function:

v
Vinf() = o3

Vf(x) = f(x)VIn f(x)

When applied to Pr(z|0):
Vg Pr(z]|6) = Pr(z]|0) Vg InPr(z|6)




Log Probability Trick

Pr(z|6) = HZ=OP(St+1|St: a.)mg(ag|se)



Log Probability Trick

Pr(z|0) = M=o P(St41lSt, a)mg(aclse) This gradient term is

what we want to

R
Vo Pr(z|6) = Pr(t|6) Vg In Pr(z|60) calculate



Log Probability Trick

Pr(z|0) = M=o P(St41lSt, a)mg(aclse) This gradient term is

what we want to

R
Vo Pr(z|6) = Pr(t|6) Vg In Pr(z|60) calculate

Vg In PF(T'H) — VQ
t

In P(s¢iqlse, a)mg(aelse)

T
=0



Log Probability Trick

Pr(z|0) = M=o P(St41lSt, a)mg(aclse) This gradient term is

what we want to

R
Vo Pr(z|6) = Pr(t|6) Vg In Pr(z|60) calculate

Vg In PF(T'H) — VQ
-
Vo InPr(t|0) =Vy ) InP(sitqlse, ar) +Inmg(as|sy)
t=0

In P(s¢iqlse, a)mg(aelse)

T
=0



Log Probability Trick

Pr(z|0) = M=o P(St41lSt, a)mg(aclse) This gradient term is

what we want to

R
Vo Pr(z|6) = Pr(t|6) Vg In Pr(z|60) calculate

Log of product -> sum of logs

In P(s¢iqlse, a)mg(aelse)
0

Vg In PF(T'H) — VQ

T
T t=

Log of product -> sum of logs

Vo InPr(t|0) =Vy ) InP(sitqlse, ar) +Inmg(as|sy)

t=0
r Derivative of sum -> sum of derivative

VoInPr(z|0) = ) Voln P(siiqlss, ar) + Vglnmg(ag|s,)
t=0



Gradient of a trajectory

T
Vo InPr(7|0) = Z Voln P(si+11S, a:) + Vglnmg(ag|sy)

o]

State transition function
does not depend on 6!

T
V, In Pr(z|0) = z Voln 1y (a,|s,)
t=0



Policy Gradient Derivation

Putting it all back together:

](9) = z Pr(r|9) G(T) Our Objective



Policy Gradient Derivation

Putting it all back together:

J(6) = z Pr(z|0) G(1) Our Objective

T
VH](H) — 2 Vg PI‘(T|9) G(T) Take the gradient
T



Policy Gradient Derivation

Putting it all back together:

J(0) = z Pr(t|0) G(7) Our Objective
Vo (0) = 2 Vg Pr(z|0) G(7) Take the gradient

VQI(H) — z PI‘(T|9)G(T)V9 In PI‘(T|3) Log-Derivative Trick
T



Policy Gradient Derivation

Putting it all back together:

J(6) = z Pr(z|0) G(1) Our Objective
VH](H) — 2 Vg PI‘(T|9) G(T) Take the gradient

VQ](H) = z PI‘(T|9)G(T)V9 InPr(z|@) Log-Derivative Trick

VHI(Q) — z [PI‘(T|9)G(T) z Voln g (at|5t) | Gradient of a Trajectory

T t=0



Policy Gradient Derivation

Putting it all back together:

J(6) = z Pr(z|0) G(1) Our Objective
VH](H) — 2 Vg PI‘(T|9) G(T) Take the gradient

VQ](H) = z PI‘(T|9)G(T)V9 InPr(z|@) Log-Derivative Trick

VHI(Q) — z [PI‘(T|9)G(T) z Voln g (at|5t) | Gradient of a Trajectory

T t=0

Vo] (0) = E[G, z Volnmg(a;|sy)] Convert back to Expectation



Direction to move in to increase

POliCy G ra d ie nt Bigger step if better returns probability of trajectory

fo [/

T
Vo) (6) = E[Gy ) VolnTo(aclso))
t=0

We will never be able to sum over all possible trajectories...
How do we get around this?



Direction to move in to increase

Policy G ra d ie nt Bigger step if better returns probability of trajectory

T
Vo) (6) = E[Gy ) VolnTo(aclso))
t=0

We will never be able to sum over all possible trajectories...
How do we get around this?

Sampling!

1. Collectn trajectories following policy g

2. Pr(z|0) = 1/n for each trajectory

3. Calculate the total return for each trajectory G (1)




Reward-To-Go Policy Gradient

You can also do the policy gradient derivation such that the gradient
does not depend on G, but on G;

T
Vo) (6) = E[)_ G Volnmy(als,)]
t=0

Or

T
Vo) (6) = EL) Q(st,a,) Volnmg(aclsy)]
t=0



REINFORCE (Policy Gradient Learning)

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization 7(als, @)
- - - - ’

Initialize policy parameter 8 € RY

Repeat forever:

Generate an episode Sy, Ag, Ry,...,Sr_1,Ar_1, Ry, following 7 (-|-, 0)
For each step of the episode t =0,...,7T — 1:

G + return from step ¢
0 «— 0 + ay' GV Inw(A;|S:, 0)

Source: Sutton and Barto, Reinforcement Learning: An Introduction



REINFORCE (Policy Gradient Learning)

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization 7(als, @)
Initialize policy parameter @ € RY
Repeat forever:
Generate an episode Sy, Ag, Ry,...,Sr_1,Ar_1, Ry, following 7 (-|-, 0)
For each step of the episode t =0,...,7T — 1:
G + return from step ¢
0 — 0+ ay'GVgInn(A,|S;,0)

Why is the update
adding the gradient
instead of subtracting?

Source: Sutton and Barto, Reinforcement Learning: An Introduction



REINFORCE (Policy Gradient Learning)

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization m(al|s, @)
Initialize policy parameter @ € RY
Repeat forever:
Generate an episode Sy, Ag, Ry,...,Sr_1,Ar_1, Ry, following 7 (-|-, 0)
For each step of the episode t =0,...,7T — 1:
G + return from step ¢

0 — 0+ ay'GVgInn(A,|S;,0)

Why is the update When 1t is based on a softmax, Vg Inmg(als) is
adding the gradient actually easy to compute by hand using log rules
instead of subtracting? and the factthatlne* = x

Source: Sutton and Barto, Reinforcement Learning: An Introduction



Variance of REINFORCE

100
-1000
10

Starting State Trajectories Return

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization m(als, 0)

Initialize policy parameter 8 € RY
Repeat forever:
Generate an episode Sy, Ag, Ry, ...,. St_1,Ar_y1, Ry, following 7 (-|-, 0)
For each step of the episode t =0, ..., T-1:
G + return from step ¢
0 — 0+ ay' GV Inn(A|S;,0)




Variance of REINFORCE

REINFORCE has high variance

100
-1000
10

Starting State Trajectories Return

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization m(a|s, 8)

.-, . . . ’
Initialize policy parameter 6 € R4

Repeat forever:
Generate an episode Sy, Ag, Ry, ...,. St_1,Ar_y1, Ry, following 7 (-|-, 0)
For each step of the episode t =0, ..., T-1:

G + return from step ¢
0 — 0+ ay' GV Inn(A|S;,0)




Variance of REINFORCE

REINFORCE has high variance

. 100
: -1000
) 10
It depends heavily on the 0
returns of a single episode
Starting State Trajectories Return

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization m(a|s, 8)

Initialize policy parameter 8 € RY

Repeat forever:
Generate an episode Sy, Ag, Ry, ...,. St_1,Ar_y1, Ry, following 7 (-|-, 0)
For each step of the episode t =0, ..., T-1:

G + return from step ¢
0 — 0+ ay' GV Inn(A|S;,0)




Variance of REINFORCE

REINFORCE has high variance

100
-1000
10
It depends heavily on the o
returns of a single episode
Starting State Trajectories Return

1 SIN CE, A Monte-Car icy-Gradient Me spisodic
We Ca n re d u Ce Va rl a n C e by REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)
C O l leCti n g m O re t h a n O n e Input: a differentiable policy parameterization m(a|s, 8)

Initialize policy parameter 8 € RY
tra M e CtO r Repeat forever: : . .
J y Generate an episode Sy, Ag, Ry, ...,. St_1,Ar_y1, Ry, following 7 (-|-, 0)
For each step of the episode t = 0,. .., T-1:
G + return from step ¢
0 — 0+ ay' GV Inn(A|S;,0)




Variance of REINFORCE

REINFORCE has high variance

100
-1000
10
It depends heavily on the o
returns of a single episode
Starting State Trajectories Return

We canre d uce va ri ance by REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

C O l leCti n g m O re t h a n O n e Input: a differentiable policy parameterization m(a|s, 8)

Initialize policy parameter 8 € RY
tra M e CtO r Repeat forever: : . .
J y Generate an episode Sy, Ag, Ry, ...,. St_1,Ar_y1, Ry, following 7 (-|-, 0)
For each step of the episode t = 0,. .., T-1:
G + return from step ¢
0 — 0+ ay' GV Inn(A|S;,0)

Or...



Baseline Functions



Baseline Functions

Subtracting a baseline function from G; does not change the expected
gradient



Baseline Functions

Subtracting a baseline function from G; does not change the expected
gradient

A baseline function b(s) is any function that depends only on the state
(not on actions)



Baseline Functions

Subtracting a baseline function from G; does not change the expected
gradient

A baseline function b(s) is any function that depends only on the state
(not on actions)

T
V) (6) = E[ ) (Ge=b(s)) Volnmg(acs)]
t=0



Baseline Functions

Subtracting a baseline function from G; does not change the expected
gradient

A baseline function b(s) is any function that depends only on the state
(not on actions)

T
V) (6) = E[ ) (Ge=b(s)) Volnmg(acs)]
t=0

Baseline functions can reduce the variance of the gradient estimate



Baseline Functions

Subtracting a baseline function from G; does not change the expected
gradient

A baseline function b(s) is any function that depends only on the state
(not on actions)

T
V) (6) = E[ ) (Ge=b(s)) Volnmg(acs)]
t=0

Baseline functions can reduce the variance of the gradient estimate

I The value function V(s) is the ideal baseline function I




Derivation of REINFORCE w/ Baseline Function

V6J(6) = EL) (Ge=b(s)) VolnT(aclsy)]
t=0
First, let’'s show that the gradient estimate is unbiased. We see that with the baseline, we can distribute
and rearrange and get:

VoErry | R(T)] = Erer,

]
Zva log mg(at|st) (Z%’) — Zve 108779(04&‘395(30]

t= t=0

Due to linearity of expectation, all we need to show is that for any single time £, the gradient of
log mg(az |s:) multiplied with b(s;) is zero. This is true because

Erery | Vo log o ac]0)b(51) | = B [Eairaer-: [V log ma(aulse)b(s.)]

— Esozt,a&t—l b(sf) ) E3t+1:Tsat:T—l [V9 log 7T9(a’t |St)l:|

B [Vologmo(a]s)] = [ TS 1y (alsdar = Vo [ mofar]sidas =T -1 =0 \ ~
= Euyon. 1 |b(52) - o, [V log mo(ar]s,)]|
= Esozt,a&t—l —b(st) ) O] =0

Derivation: https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/



REINFORCE with Baseline

REINFORCE with Baseline (episodic), for estimating mg ~ 7.

Input: a differentiable policy parameterization 7(als, @)

Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes o > 0, a%¥ > 0

Initialize policy parameter 6 € R? and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7_1,Ar_1, Ry, following 7(-|-, 0)
Loop for each step of the episode t =0,1,...,7T — 1:
G Ypora VT R (Gr)
0 — G —0(S;,w)
w < w+aVoVo(S,,w)
0 — 0 + a4t 5V Inn(As|Ss, 0)

Pseudocode uses SGD, but you can just as easily use any

other optimizer (e.g., Adam)
Source: Sutton and Barto Chapter 13



REINFORCE with Baseline

REINFORCE with Baseline (episodic), for estimating mg ~ 7.

Input: a differentiable policy parameterization 7(als, @)

Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes o > 0, a%¥ > 0

Initialize policy parameter 6 € R? and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7_1,Ar_1, Ry, following 7(-|-, 0)
Loop for each step of the episode t =0,1,...,7T — 1:
G Ypora VT R (Gr)
0 — G —0(S;,w)
w — w+ a™oVo(S,,w) |+
0 — 0 + a?+" 3V Inn(4;|S;, 0)

Gradientof L = %6"2

Pseudocode uses SGD, but you can just as easily use any

other optimizer (e.g., Adam)
Source: Sutton and Barto Chapter 13



Key Idea for RL: Variance is the enemy

350

300 ¢
250
200 t
150 ¢
100 +

950

Policy Collapse: https://sta ackexchange.com/q

trial-0
trial-1
trial-2
trial-3
trial-4
trial-5
trial-6
trial-7

Programmers: You can't just rerun your program
without changing it and expect it to work

Reinforcement Learning Practitioners:

500 1000 1500 2000 2500

Cartpole

3000

Jestion 685/policy-gradient-reward-collapse


https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse
https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse
https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse
https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse
https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse
https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse
https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse

Let’s do an example with Multi-Arm Bandits

What’s a one-armed bandit?



Multi-Arm Bandits




Multi-Arm Bandits

Single-armed bandit




Multi-Arm Bandits

Single-armed bandit




Multi-Arm Bandits

Single-armed bandit




Multi-Arm Bandits

Single-armed bandit




Multi-Arm Bandits

Single-armed bandit




Multi-Arm Bandits

Single-armed bandit



Multi-Arm Bandits

Single-armed bandit



Multi-Arm Bandits

Single-armed bandit



Multi-Arm Bandits

Single-armed bandit



Multi-Arm Bandits

When an arm s pulled, the
rewards are random.

Each arm returns a reward
with (different) unknown
mean and variance

Single-armed bandit




Multi-Arm Bandits

When an arm s pulled, the
rewards are random.

Each arm returns a reward
with (different) unknown
mean and variance

Bandit Problems are essentially
MDPs with a single state.

Useful testbed for a number of
algorithms and very useful for theory

Single-armed bandit




Policy Gradient on Multi-Arm Bandits

Action 1

Maintain parameter for each action, 6;

Action 2

Action 3




Policy Gradient on Multi-Arm Bandits

Action 1
Maintain parameter for each action, 6;
04
0, .
. . Action 2
Take Action according to Softmax:
ef1 64

mola1) = eb1 + e%2 + s

Action 3




Policy Gradient on Multi-Arm Bandits

Action 1
Maintain parameter for each action, 6;
. . Action 2
Take Action according to Softmax:
ef1

mola1) = eb1 + e%2 + s

Action 3




Policy Gradient on Multi-Arm Bandits

Action 1
Maintain parameter for each action, 6;
. ) Action 2
Take Action according to Softmax:
0
e 1
mola1) = eb1 + e%2 + s
e Action 3
me(a;) = ———— = 0.66

e-l-z-l-l



Policy Gradient on Multi-Arm Bandits

91 — 1, T[@(Cll) = 0.66
82 — _1,7'[3(612) = 0.09
93 — O, 7T9(Cl3) = (0.25



Policy Gradient on Multi-Arm Bandits

91 — 1, T[@(Cll) = 0.66
82 — _1,7'[3(612) = 0.09
93 — O, 7T9(Cl3) = (0.25

Take 5 actions according to 7y:
T = (a]_; 3)) (a’ZJ _1)1 (a3) 2)) (al) 4)) (a3; 1)

T



Policy Gradient on Multi-Arm Bandits

91 — 1, T[Q(Cll) = 0.66
82 — _1,7'[3(612) = 0.09
93 — O, 7T9(Cl3) = (0.25

Take 1 action according to my:
T = (al, 3)

.
Policy Gradient (without states): V5 J(8) = G, Vglnmg(a )



Take Action according to Softmax:
91 =1, T[Q(al) = 0.66
e 92 = —1, ﬂg(az) = 0.09
e%1 + %2 + b3 05 = 0,mg(az) = 0.25

61

mg(ay) =

At timestep 1, a, got a reward of 3:
Need to compute: G;Vg Inmg(a,)

Vo] (8) = G:Vylnmy(a )

T = (ayq,3)



Take Action according to Softmax:

0, =1,mg(a;) = 0.66 Vg](@) = Gthln Tlg (Cl )

0 92 = —1, ﬂg(az) = 0.09
1

€ 6; = 0,mg(az) = 0.25

ef1 4+ 02 4 b3

mg(ay) =

T = (ayq,3)

At timestep 1, a, got a reward of 3:
Need to compute: G;Vg Inmg(a,)

What is Go?

Bandits is not a sequential problem
(no future rewards to worry about), so
it’s just the observed reward for
taking the first action, a;.



Take Action according to Softmax: 0, = 1,m9(ay) = 0.66

0 92 = —1, ﬂg(az) = 0.09
1

€ 6; = 0,mg(az) = 0.25

ef1 + eb2 4 0

mg(ay) =

At timestep 1, a, got a reward of 3:
Need to compute: G;Vg Inmg(a,)

What is Go?

Bandits is not a sequential problem
(no future rewards to worry about), so
it’s just the observed reward for
taking the first action, a;.

Gt=3

VoJ(0) = G Vglnmg(a )

T = (ayq,3)



Take Action according to Softmax:

0, =1,mg(a;) = 0.66 Vg](@) = Gthln Tlg (Cl )

0 92 = —1, ﬂg(az) = 0.09
1

€ 6; = 0,mg(az) = 0.25

ef1 4+ 02 4 b3

mg(ay) =

T = (ayq,3)

At timestep 1, a, got a reward of 3:
Need to compute: G;Vg Inmg(a,)

What is Go? What is Vg Inmg(a)?
o . 6
Bandits is not a sequential problem et
] =
(no future rewards to worry about), so Vo Inmg(as) = Vg lne‘91 + 92 4 05

it’s just the observed reward for
taking the first action, a;.

Gt=3



Take Action according to Softmax:

0, =1,mg(a;) = 0.66 Vg](@) = Gthln Tlg (Cl )

0 92 = —1, ﬂg(az) = 0.09
1

€ 6; = 0,mg(az) = 0.25

ef1 4+ 02 4 b3

mg(ay) =

T = (ayq,3)

At timestep 1, a, got a reward of 3:
Need to compute: G;Vg Inmg(a,)

What is Go? What is Vg Inmg(a)?
. . 6
Bandits is not a sequential problem et
] =
(no future rewards to worry about), so Vo Inmg(as) = Vg lne‘91 + 92 4 05
it’s just the observed reward for
taking the first action, a;. =V [Inefr — ln(e‘91 +ef2 + 663)]

= Vgb; — Vg In(ef + e%2 + %)
Gt =3



Take Action according to Softmax: 0, = 1,my(ay) = 0.66 VH](H) = Gtveln g (a )
0, 92 = —1, ﬂg(az) = 0.09
€ 6; = 0,mg(az) = 0.25
ef1 + eP2 + s

mg(ay) =

T = (ayq,3)

At timestep 1, a, got a reward of 3:
Need to compute: G;Vg Inmg(a,)

What is G? Whatis Vg Inmg(a;)?
Bandits is not a sequential problem
(no future rewards to worry about), so
it’s just the observed reward for
taking the first action, a;. =V [Inefr — ln(e‘91 +ef2 + 663)]
= Vgb; — Vg In(ef + e%2 + %)

801

Vg lnng(al) = V@ ln391 n 692 n 693

Gt=3

What is the shape of V4] (6)?




Take Action according to Softmax: 0, = 1,my(ay) = 0.66 VH](H) = Gtveln g (a )
0, 92 = —1, ﬂg(az) = 0.09
€ 6; = 0,mg(az) = 0.25
ef1 + eP2 + s

mg(ay) =

T = (ayq,3)

At timestep 1, a, got a reward of 3:
Need to compute: G;Vg Inmg(a,)

What is G? Whatis Vg Inmg(a;)?
Bandits is not a sequential problem
(no future rewards to worry about), so
it’s just the observed reward for
taking the first action, a;. =V [Inefr — ln(e‘91 +ef2 + 663)]
= Vgb; — Vg In(ef + e%2 + %)

1
0_
0

801

Vg lnng(al) = Vg ln391 n 892 n 693

Gt=3 691

ef1 + 92 + 0

What is the shape of V4] (6)?




Take Action according to Softmax: 0, = 1,my(ay) = 0.66 VH](H) = Gtveln g (a )
0, 92 = —1, ﬂg(az) = 0.09
€ 6; = 0,mg(az) = 0.25
ef1 + eP2 + s

mg(ay) =

T = (ay,3)

At timestep 1, a, got a reward of 3: 034
Need to compute: G:Vg Inmg(a,) G:VgInmg(ay) = 3 -[—0.09]

~0.25

What is G? Whatis Vg Inmg(a;)?
Bandits is not a sequential problem
(no future rewards to worry about), so
it’s just the observed reward for
taking the first action, a;. =V [Inefr — ln(e‘91 +ef2 + 663)]
= Vgb; — Vg In(ef + e%2 + %)

1
0_
0

801

Vg lnng(al) = Vg ln391 n 892 n 693

Gt=3 691

ef1 + 92 + 0

What is the shape of V4] (6)?




REINFORCE

What if 8_is the output of a
neural network?

How to compute:
GtVan T[Q (at |St)?

Action 1

Action 2

Action 3



REINFORCE

What if 8_is the output of a
neural networ

How to compute:
G:Vglnmg(ag|s;)?

Compute Inmg(a;|s;) in gradient tape context.

Action 1

Action 2

Action 3



REINFORCE

What if 8_is the output of a
neural networ

How to compute:
GtVan 77:6 (at |St)?

Compute Inmg(a;|s;) in gradient tape context.

But also, remember, you have to perform gradient ASCENT.
If an optimizer minimizes by default, you can use —VgJ(60)

Action 1

Action 2

Action 3



If we could calculate VgJ(0) exactly
(not just for single trajectory/sample),

R EI N FO RC E Va rl a n Ce then Policy Gradient would be a great

algorithm! (with some minor flaws)

Mean episode length over training iterations Mean episode length over interactions
500 == e 500 f__.;..,_..—-.-_-,—f' e e NP e,
.\u"”f B n : ey . J P e
g— -

400 400
= =
o 300 o 300
= -
@ @
D D
=] =]
o} 0
0 0
o 200 o 200
L L
100 100 ¢
i
; Y, — REINFORCE E:I — REINFORCE
3 e — REINFORCE learned baseline 3 — REINFORCE learned baseline
0 200 400 600 800 1000 0 50000 100000 150000 200000 250000
lterations Interactions with environment

Results on Cartpole

Image Source: https://medium.com/@fork.tree.ai/understanding-baseline-techniques-for-reinforce-53a1e2279b57



Actor-Critic Methods



Actor-Critic Methods

REINFORCE uses the return for a trajectory G;:



Actor-Critic Methods

REINFORCE uses the return for a trajectory G;:

T
Vo) (6) = E[)_GeVglnmy(als,)]
t=0



Actor-Critic Methods

REINFORCE uses the return for a trajectory G;:

T
Vo) (6) = E[)_GeVglnmy(als,)]
t=0

Variance of Returns is
always a problem...




Actor-Critic Methods

REINFORCE uses the return forTa trajectory Gy:
Vo](0) = E[ ) G, Volnrg(acls)]
t=0

Actor-Critic Methods learn an approximation of G,

Variance of Returns is
always a problem...




Actor-Critic Methods

REINFORCE uses the return forTa trajectory Gy:
Vo](0) = E[ ) G, Volnrg(acls)]
t=0

Actor-Critic Methods learn an approximation of G,
Q" (st ar) = E[Gy]

Variance of Returns is
always a problem...




Actor-Critic Methods

REINFORCE uses the return forTa trajectory Gy:
Vo](0) = E[ ) G, Volnrg(acls)]
t=0

Actor-Critic Methods learn an approximation of G,
Q" (st ar) = E[Gy]

Variance of Returns is
always a problem...

V(s;) = E[G;] aswell, but
technically it’s not a critic
function. Critic functions
critique actions.




Actor-Critic Methods

REINFORCE uses the return forTa trajectory Gy:
Vo](0) = E[ ) G, Volnrg(acls)]
t=0

Actor-Critic Methods learn an approximation of G,
Q" (st ar) = E[Gy]

T

Variance of Returns is
always a problem...

V(s;) = E[G;] aswell, but
technically it’s not a critic
function. Critic functions
critique actions.

Vo) (6) = E[ ) Q" (st,a,) Volnmg(als,)]

t=0




Actor-Critic Algorithm: Learn Q™ and (a|s)



Actor-Critic Algorithm: Learn Q™ and (a|s)

Actor (policy): Takes actions




Actor-Critic Algorithm: Learn Q™ and (a|s)

Actor (policy): Takes actions Critic: Scores the action




Actor-Critic Algorithm: Learn Q™ and (a|s)

Actor (policy): Takes actions Critic: Scores the action

""
A ~’;/7
A
.

That’s not even
how that piece
moves, Q(s,a)=-5




Actor-Critic Algorithm: Learn Q™ and (a|s)

.. Policy network has parameters 6
Initialize Tlg, QW, dg, Ay, Q network has parameters w

Repeat forever:
Take action a, get new state s’ and reward r
Sample next action a’'~mg (als)
update 8 « 0 + agQ,,(s,a)VyInmg(als)
Calculate TD Error: 6 = r +y0Q,,(s',a’) — Q,,(s,a)
updatew <« w + «,,8V,,0,,(s, a)
a—a',s<s'



Actor-Critic Algorithm: Learn Q™ and (a|s)

.. Policy network has parameters 6
Initialize Tlg, QW, dg, Ay, Q network has parameters w

Repeat forever:
Take action a, get new state s’ and reward r
Sample next action a’'~mg (als)
update 8 « 0 + agQ,,(s,a)VyInmg(als)
Calculate TD Error: 6 = r +y0Q,,(s',a’) — Q,,(s,a)
updatew <« w + «,,8V,,0,,(s, a)
a—a',s<s'

Like Q-learning and REINFORCE at the same time




Variations on a Theme...

I How to estimate J(0) I (Wikipedia uses R; instead of G;)

* Docicr (V' Ri).

* ¥ 3 icicr (777 R;): the REINFORCE algorithm.

o v Z;<3<T( ““JR;) — b(S;): the REINFORCE with baseline algorithm. Here b is an arbitrary function.
e Y (R + V™ (S;11) — V™ (S;)): TD(1) learning.

+ Y Q™ (), 4;).

« v/ A™ (S}, A;): Advantage Actor-Critic (A2C)."°!

e ¥ (Rj + YRj+1 +¥* V™ (Sjs2) — V™ (S;)): TD(2) learning.

.y (Zk 0V Rjk + "V (Sjn) — V(S )) TD(n) learning.

0 DR )‘n : (Zk oY Rk VT (S10) — V(S )) TD(M) learning, also known as GAE (generalized

advantage estlmate).[4] This is obtained by an exponentially decaying sum of the TD(n) learning terms.


https://en.wikipedia.org/wiki/Actor-critic_algorithm
https://en.wikipedia.org/wiki/Actor-critic_algorithm
https://en.wikipedia.org/wiki/Actor-critic_algorithm

Actor-Critic Networks

actions

State

» Value




Actor-Critic Networks

State

actions

Value

Just make sure you use the correct activation function for the different outputs




Deep Q-Learning Revisited

Compute TD-Error: § = r + yma,\XQ(s’, a') —Q(s,a)
a

Loss Function: L = §°
Update model with Gradient Descent



Deep Q-Learning Revisited

Compute TD-Error: § = r + yma,\XQ(s’, a') —Q(s,a)
a

Loss Function: L = §°
Update model with Gradient Descent

Q-Learning uses:
6 =7 +ymaxQ(s',a") — Q(s,a)
a

Actor-Critic Uses:
§=r+yQ(s’,a’) —Q(s,a)



Deep Q-Learning Revisited

Compute TD-Error: § = r + yma,\XQ(s’, a') —Q(s,a)
a

Loss Function: L = §°
Update model with Gradient Descent

Q-Learning uses: Q-Learningis learning Optimal Q-values
6 =7 +ymaxQ(s',a") — Q(s,a)
. Actor-Critic is learning the Q-values for

Actor-Critic Uses: following a specific policy Q™

§=r+yQ(s’,a’) —Q(s,a)



On-Policy Vs. Off-Policy Learning

RL algorithms collect experiences and learn from these
experiences

On-Policy Algorithms have to collect experiences with the policy
they are learning

Off-Policy Algorithms can use any policy to collect experiences



DQNs Are Off-Policy

In Q-Learning, we typically collect experiences using an e-greedy policy
In training

With probability €, take random action.
Else, take action argmax, Q(s,a)

At test time, we should take the best actions, not the e-greedy actions
argmax, Q(s,a)



DQNs Are Off-Policy

In Q-Learning, we typically collect experiences using an e-greedy policy
In training

With probability €, take random action.
Else, take action argmax, Q(s,a)

At test time, we should take the best actions, not the e-greedy actions
argmax, Q(s,a)

These are different policies! DQNs can be trained with any data collection policy at training time




Actor-Critic Algorithm: Learn Q™ and (a|s)

Initialize g, Q,,, @y, @y,
Repeat forever:

Take action a, get new state s’ and reward r

Sample next action Cl”"Tl,'g ((llS) I On Policy: Have to take actions according to mg

update 8 « 0 + agQ,,(s,a)VyInmg(als)
Calculate TD Error: 6 = r +y0Q,,(s’,a’) — Q,,(s,a)
updatew <« w + «,,8V,,0,,(s, a)

a—a',s<s'



On-Policy vs Off-Policy Learning



On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:



On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:
* More sample efficient, tend to converge faster



On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:
* More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:



On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:

* More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:
* Can get stuck in local minima

* Is there a simple policy that performs ok? Would small changes to that policy cause
returns to go down temporarily?

 How do balance exploration in our policy?



On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:

* More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:
* Can get stuck in local minima

* Is there a simple policy that performs ok? Would small changes to that policy cause
returns to go down temporarily?

 How do balance exploration in our policy?

Advantages of Off-Policy Learning:



On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:

* More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:
* Can get stuck in local minima

* Is there a simple policy that performs ok? Would small changes to that policy cause
returns to go down temporarily?

 How do balance exploration in our policy?
Advantages of Off-Policy Learning:
 Can learn from any policy



On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:

* More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:
* Can get stuck in local minima

* Is there a simple policy that performs ok? Would small changes to that policy cause
returns to go down temporarily?

 How do balance exploration in our policy?
Advantages of Off-Policy Learning:
 Can learn from any policy

* More likely to learn an optimal policy



On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:

* More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:

* Can get stuck in local minima

* Is there a simple policy that performs ok? Would small changes to that policy cause
returns to go down temporarily?

 How do balance exploration in our policy?
Advantages of Off-Policy Learning:
 Can learn from any policy
* More likely to learn an optimal policy
Disadvantages of Off-Policy Learning:



On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:

* More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:
* Can get stuck in local minima

* Is there a simple policy that performs ok? Would small changes to that policy cause
returns to go down temporarily?

 How do balance exploration in our policy?
Advantages of Off-Policy Learning:
 Can learn from any policy

* More likely to learn an optimal policy

Disadvantages of Off-Policy Learning:
* Slowetr...



For the Record: On-Policy Q-Learning (SARSA)

There is an On-Policy Q-learning algorithm:

6§ =r+yQ(s’,a") —Q(s,a)

Why is it called SARSA?
5 =yQ(s',a")+r —Q (s,a)



	Slide 1
	Slide 2: Terminology Review
	Slide 3: Deep-Q Network
	Slide 4: Deep-Q Learning
	Slide 5: Gymnasium
	Slide 6: Implementing DQNs
	Slide 7: Policies
	Slide 8: Policies
	Slide 9: Policies
	Slide 10: How do we train a policy network?
	Slide 11: How do we train a policy network?
	Slide 12: How do we train a policy network?
	Slide 13: How do we train a policy network?
	Slide 14: How do we train a policy network?
	Slide 15: How do we train a policy network?
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Log-Derivative Trick
	Slide 24: Log Probability Trick
	Slide 25: Log Probability Trick
	Slide 26: Log Probability Trick
	Slide 27: Log Probability Trick
	Slide 28: Log Probability Trick
	Slide 29: Gradient of a trajectory
	Slide 30: Policy Gradient Derivation
	Slide 31: Policy Gradient Derivation
	Slide 32: Policy Gradient Derivation
	Slide 33: Policy Gradient Derivation
	Slide 34: Policy Gradient Derivation
	Slide 35: Policy Gradient
	Slide 36: Policy Gradient
	Slide 37: Reward-To-Go Policy Gradient
	Slide 38: REINFORCE (Policy Gradient Learning)
	Slide 39: REINFORCE (Policy Gradient Learning)
	Slide 40: REINFORCE (Policy Gradient Learning)
	Slide 41: Variance of REINFORCE
	Slide 42: Variance of REINFORCE
	Slide 43: Variance of REINFORCE
	Slide 44: Variance of REINFORCE
	Slide 45: Variance of REINFORCE
	Slide 46: Baseline Functions
	Slide 47: Baseline Functions
	Slide 48: Baseline Functions
	Slide 49: Baseline Functions
	Slide 50: Baseline Functions
	Slide 51: Baseline Functions
	Slide 52: Derivation of REINFORCE w/ Baseline Function
	Slide 53: REINFORCE with Baseline
	Slide 54: REINFORCE with Baseline
	Slide 55
	Slide 56: Let’s do an example with Multi-Arm Bandits
	Slide 57: Multi-Arm Bandits
	Slide 58: Multi-Arm Bandits
	Slide 59: Multi-Arm Bandits
	Slide 60: Multi-Arm Bandits
	Slide 61: Multi-Arm Bandits
	Slide 62: Multi-Arm Bandits
	Slide 63: Multi-Arm Bandits
	Slide 64: Multi-Arm Bandits
	Slide 65: Multi-Arm Bandits
	Slide 66: Multi-Arm Bandits
	Slide 67: Multi-Arm Bandits
	Slide 68: Multi-Arm Bandits
	Slide 69: Policy Gradient on Multi-Arm Bandits
	Slide 70: Policy Gradient on Multi-Arm Bandits
	Slide 71: Policy Gradient on Multi-Arm Bandits
	Slide 72: Policy Gradient on Multi-Arm Bandits
	Slide 73: Policy Gradient on Multi-Arm Bandits
	Slide 74: Policy Gradient on Multi-Arm Bandits
	Slide 75: Policy Gradient on Multi-Arm Bandits
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84: REINFORCE
	Slide 85: REINFORCE
	Slide 86: REINFORCE
	Slide 87: REINFORCE Variance
	Slide 88: Actor-Critic Methods
	Slide 89: Actor-Critic Methods
	Slide 90: Actor-Critic Methods
	Slide 91: Actor-Critic Methods
	Slide 92: Actor-Critic Methods
	Slide 93: Actor-Critic Methods
	Slide 94: Actor-Critic Methods
	Slide 95: Actor-Critic Methods
	Slide 96: Actor-Critic Algorithm: Learn cap Q to the pi  and pi open paren a. vertical bar s close paren 
	Slide 97: Actor-Critic Algorithm: Learn cap Q to the pi  and pi open paren a. vertical bar s close paren 
	Slide 98: Actor-Critic Algorithm: Learn cap Q to the pi  and pi open paren a. vertical bar s close paren 
	Slide 99: Actor-Critic Algorithm: Learn cap Q to the pi  and pi open paren a. vertical bar s close paren 
	Slide 100: Actor-Critic Algorithm: Learn cap Q to the pi  and pi open paren a. vertical bar s close paren 
	Slide 101: Actor-Critic Algorithm: Learn cap Q to the pi  and pi open paren a. vertical bar s close paren 
	Slide 102: Variations on a Theme…
	Slide 103: Actor-Critic Networks
	Slide 104: Actor-Critic Networks
	Slide 105: Deep Q-Learning Revisited
	Slide 106: Deep Q-Learning Revisited
	Slide 107: Deep Q-Learning Revisited
	Slide 108: On-Policy Vs. Off-Policy Learning
	Slide 109: DQNs Are Off-Policy
	Slide 110: DQNs Are Off-Policy
	Slide 111: Actor-Critic Algorithm: Learn cap Q to the pi  and pi open paren a. vertical bar s close paren 
	Slide 112: On-Policy vs Off-Policy Learning
	Slide 113: On-Policy vs Off-Policy Learning
	Slide 114: On-Policy vs Off-Policy Learning
	Slide 115: On-Policy vs Off-Policy Learning
	Slide 116: On-Policy vs Off-Policy Learning
	Slide 117: On-Policy vs Off-Policy Learning
	Slide 118: On-Policy vs Off-Policy Learning
	Slide 119: On-Policy vs Off-Policy Learning
	Slide 120: On-Policy vs Off-Policy Learning
	Slide 121: On-Policy vs Off-Policy Learning
	Slide 122: For the Record: On-Policy Q-Learning (SARSA)

