
Deep
Learning

Eric Ewing

CSCI 1470

Thursday,
11/13/25

Day 20: Policy Gradient and Actor Critic

Terminology Review

MDP: Markov Decision Process
 <States, Actions, Reward Function, Transition Probabilities, Discount Factor>

Episode: Single run-through of an MDP (from start to terminal state)
Trajectory: states, actions, and rewards received in an episode
Returns: Total (discounted) rewards of a trajectory
Value: Expected Returns from a specific state
Q-Value: Expected Returns from a specific state when taking a
specific action

Deep-Q Network

State: s Deep Q-Network

𝑄(𝑠, 𝑎1)

𝑄(𝑠, 𝑎𝑛)

𝑄(𝑠, 𝑎2)

…

Deep Q-Networks (DQNs):
1. Take in a state
2. Return Q-values for each action

Deep-Q Learning

Initialize DQN to approximate Q

Maintain estimates of Q(s, a) for all (s, a) pairs

 Collect experiences, update Q estimates with:

 Compute 𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ − 𝑄𝜃 𝑠, 𝑎
2

 update 𝜃 with SGD on Loss function

Gymnasium

Provides a common
implementation of MDPs for
RL.

A gym environment has a
current state that can be
updated by calling
environment.step(action)

Implementing DQNs

Source: Torch DQN tutorial https://docs.pytorch.org/tutorials/intermediate/reinforcement_q_learning.html

https://docs.pytorch.org/tutorials/intermediate/reinforcement_q_learning.html

Policies

Why learn Q-values first and turn them into a policy? Why not just
learn a policy?

Policies

Why learn Q-values first and turn them into a policy? Why not just
learn a policy?

State: s Policy Network

𝜋(𝑎1|𝑠)

𝜋(𝑎𝑛|𝑠)

𝜋(𝑎2|𝑠)

…

Policies

Why learn Q-values first and turn them into a policy? Why not just
learn a policy?

State: s Policy Network

𝜋(𝑎1|𝑠)

𝜋(𝑎𝑛|𝑠)

𝜋(𝑎2|𝑠)

…

What should the
activation function be
for the final layer?

How do we train a policy network?

How do we train a policy network?

Need to find an appropriate loss function.

How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy 𝜋 such that the value of the start state is maximized:

How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy 𝜋 such that the value of the start state is maximized:

𝜋 = argmax𝜋 (𝑉 𝑠0)

How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy 𝜋 such that the value of the start state is maximized:

𝜋 = argmax𝜋 (𝑉 𝑠0)

How can we maximize 𝑉(𝑠0)?

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

Probability of a
trajectory occurring

Returns of a specific
trajectory

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

Probability of a
trajectory occurring

Returns of a specific
trajectory

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

Probability of a
trajectory occurring

Returns of a specific
trajectory

State transition
Probability

Probability of taking an
action for a given state

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

Probability of a
trajectory occurring

Returns of a specific
trajectory

State transition
Probability

Probability of taking an
action for a given state

Sum over all possible
trajectories

Log-Derivative Trick

We can rewrite the derivative of a function using the derivative of
the natural log function:

∇ ln 𝑓(𝑥) =
∇f 𝑥

𝑓 𝑥

∇𝑓 𝑥 = 𝑓 𝑥 ∇ln f x

When applied to Pr 𝜏 𝜃 :
∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)

Log Probability Trick

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

Log Probability Trick

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)

This gradient term is
what we want to
calculate

Log Probability Trick

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

This gradient term is
what we want to
calculate

Log Probability Trick

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

This gradient term is
what we want to
calculate

Log Probability Trick

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ෍

𝑡=0

𝑇

∇𝜃ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

This gradient term is
what we want to
calculate

Log of product -> sum of logs

Log of product -> sum of logs

Derivative of sum -> sum of derivative

Gradient of a trajectory

∇𝜃 ln Pr 𝜏 𝜃 = ෍

𝑡=0

𝑇

∇𝜃ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

State transition function
does not depend on 𝜃!

Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏) Our Objective

Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

∇𝜃 Pr 𝜏|𝜃 𝐺(𝜏)

Our Objective

Take the gradient

Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

∇𝜃 Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)∇𝜃 ln Pr(𝜏|𝜃)

Our Objective

Take the gradient

Log-Derivative Trick

Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

∇𝜃 Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃𝐽 𝜃 = ෍

𝜏

[Pr 𝜏|𝜃 𝐺 𝜏 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Our Objective

Take the gradient

Log-Derivative Trick

Gradient of a Trajectory

Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

∇𝜃 Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃𝐽 𝜃 = ෍

𝜏

[Pr 𝜏|𝜃 𝐺 𝜏 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

∇𝜃𝐽 𝜃 = 𝔼[𝐺0 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Our Objective

Take the gradient

Log-Derivative Trick

Gradient of a Trajectory

Convert back to Expectation

Policy Gradient

∇𝜃𝐽 𝜃 = 𝔼[𝐺0 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

We will never be able to sum over all possible trajectories…
How do we get around this?

Direction to move in to increase
probability of trajectoryBigger step if better returns

Policy Gradient

∇𝜃𝐽 𝜃 = 𝔼[𝐺0 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

We will never be able to sum over all possible trajectories…
How do we get around this?

Sampling!
1. Collect n trajectories following policy 𝜋𝜃

2. Pr 𝜏 𝜃 = 1/𝑛 for each trajectory
3. Calculate the total return for each trajectory 𝐺(𝜏)

Direction to move in to increase
probability of trajectoryBigger step if better returns

Reward-To-Go Policy Gradient

You can also do the policy gradient derivation such that the gradient
does not depend on 𝐺0, but on 𝐺𝑡

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝐺𝑡 ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Or

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝑄(𝑠𝑡 , 𝑎𝑡) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

REINFORCE (Policy Gradient Learning)

Source: Sutton and Barto, Reinforcement Learning: An Introduction

REINFORCE (Policy Gradient Learning)

Why is the update
adding the gradient
instead of subtracting?

Source: Sutton and Barto, Reinforcement Learning: An Introduction

REINFORCE (Policy Gradient Learning)

Why is the update
adding the gradient
instead of subtracting?

Source: Sutton and Barto, Reinforcement Learning: An Introduction

When 𝜋 is based on a softmax, ∇𝜃 ln 𝜋𝜃(𝑎|𝑠) is
actually easy to compute by hand using log rules
and the fact that ln 𝑒𝑥 = 𝑥

Variance of REINFORCE

Variance of REINFORCE

REINFORCE has high variance

Variance of REINFORCE

REINFORCE has high variance

It depends heavily on the
returns of a single episode

Variance of REINFORCE

REINFORCE has high variance

It depends heavily on the
returns of a single episode

We can reduce variance by
collecting more than one
trajectory

Variance of REINFORCE

REINFORCE has high variance

It depends heavily on the
returns of a single episode

We can reduce variance by
collecting more than one
trajectory

Or…

Baseline Functions

Baseline Functions

Subtracting a baseline function from 𝐺𝑡 does not change the expected
gradient

Baseline Functions

Subtracting a baseline function from 𝐺𝑡 does not change the expected
gradient

A baseline function 𝑏 𝑠 is any function that depends only on the state
(not on actions)

Baseline Functions

Subtracting a baseline function from 𝐺𝑡 does not change the expected
gradient

A baseline function 𝑏 𝑠 is any function that depends only on the state
(not on actions)

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

(𝐺𝑡−𝑏(𝑠)) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Baseline Functions

Subtracting a baseline function from 𝐺𝑡 does not change the expected
gradient

A baseline function 𝑏 𝑠 is any function that depends only on the state
(not on actions)

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

(𝐺𝑡−𝑏(𝑠)) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Baseline functions can reduce the variance of the gradient estimate

Baseline Functions

Subtracting a baseline function from 𝐺𝑡 does not change the expected
gradient

A baseline function 𝑏 𝑠 is any function that depends only on the state
(not on actions)

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

(𝐺𝑡−𝑏(𝑠)) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Baseline functions can reduce the variance of the gradient estimate

The value function V(s) is the ideal baseline function

Derivation: https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/

Derivation of REINFORCE w/ Baseline Function
∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

(𝐺𝑡−𝑏(𝑠)) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Source: Sutton and Barto Chapter 13

REINFORCE with Baseline

Pseudocode uses SGD, but you can just as easily use any
other optimizer (e.g., Adam)

Source: Sutton and Barto Chapter 13

REINFORCE with Baseline

Gradient of L =
1

2
𝛿^2

Pseudocode uses SGD, but you can just as easily use any
other optimizer (e.g., Adam)

Key Idea for RL: Variance is the enemy

Policy Collapse: https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse

Cartpole

https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse
https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse
https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse
https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse
https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse
https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse
https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse

Let’s do an example with Multi-Arm Bandits

What’s a one-armed bandit?

Multi-Arm Bandits

Multi-Arm Bandits

Single-armed bandit

Multi-Arm Bandits

Single-armed bandit

Multi-Arm Bandits

Single-armed bandit

Multi-Arm Bandits

Single-armed bandit

Multi-Arm Bandits

Single-armed bandit

Multi-Arm Bandits

Single-armed bandit

Multi-Arm Bandits

Single-armed bandit

Multi-Arm Bandits

Single-armed bandit

Multi-Arm Bandits

Single-armed bandit

Multi-Arm Bandits

Single-armed bandit

When an arm is pulled, the
rewards are random.

Each arm returns a reward
with (different) unknown
mean and variance

Multi-Arm Bandits

Single-armed bandit

When an arm is pulled, the
rewards are random.

Each arm returns a reward
with (different) unknown
mean and variance

Bandit Problems are essentially
MDPs with a single state.

Useful testbed for a number of
algorithms and very useful for theory

Policy Gradient on Multi-Arm Bandits

Action 1

Action 2

Action 3

𝜃1

𝜃2

𝜃3

Maintain parameter for each action, 𝜃𝑖

Policy Gradient on Multi-Arm Bandits

Action 1

Action 2

Action 3

𝜃1

𝜃2

𝜃3

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

Maintain parameter for each action, 𝜃𝑖

Policy Gradient on Multi-Arm Bandits

Action 1

Action 2

Action 3

𝜃1 = 1

𝜃2=−1

𝜃3 = 0

Maintain parameter for each action, 𝜃𝑖

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

Policy Gradient on Multi-Arm Bandits

Action 1

Action 2

Action 3

𝜃1 = 1

𝜃2=−1

𝜃3 = 0

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

Maintain parameter for each action, 𝜃𝑖

𝜋𝜃 𝑎1 =
𝑒

𝑒 +
1
𝑒

+ 1
= 0.66

Policy Gradient on Multi-Arm Bandits

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

T

Policy Gradient on Multi-Arm Bandits

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take 5 actions according to 𝜋𝜃:
𝜏 = (𝑎1, 3), 𝑎2, −1 , (𝑎3, 2), 𝑎1, 4 , (𝑎3, 1)

T

Policy Gradient on Multi-Arm Bandits

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take 1 action according to 𝜋𝜃:
𝜏 = (𝑎1, 3)

Policy Gradient (without states): ∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎)
T

∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎)

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

𝜏 = (𝑎1, 3)

∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎)

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem
(no future rewards to worry about), so
it’s just the observed reward for
taking the first action, 𝑎1.

𝜏 = (𝑎1, 3)

∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎)

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem
(no future rewards to worry about), so
it’s just the observed reward for
taking the first action, 𝑎1.

𝜏 = (𝑎1, 3)

𝐺𝑡 = 3

∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎)

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem
(no future rewards to worry about), so
it’s just the observed reward for
taking the first action, 𝑎1.

𝜏 = (𝑎1, 3)

𝐺𝑡 = 3

What is ∇𝜃 ln 𝜋𝜃(𝑎1)?

∇𝜃 ln 𝜋𝜃(𝑎1) = ∇𝜃 ln
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎)

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem
(no future rewards to worry about), so
it’s just the observed reward for
taking the first action, 𝑎1.

𝜏 = (𝑎1, 3)

𝐺𝑡 = 3

What is ∇𝜃 ln 𝜋𝜃(𝑎1)?

∇𝜃 ln 𝜋𝜃(𝑎1) = ∇𝜃 ln
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

= ∇𝜃 [ln 𝑒𝜃1 − ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3]

= ∇𝜃𝜃1 − ∇𝜃 ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎)

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem
(no future rewards to worry about), so
it’s just the observed reward for
taking the first action, 𝑎1.

𝜏 = (𝑎1, 3)

𝐺𝑡 = 3

What is ∇𝜃 ln 𝜋𝜃(𝑎1)?

∇𝜃 ln 𝜋𝜃(𝑎1) = ∇𝜃 ln
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

= ∇𝜃 [ln 𝑒𝜃1 − ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3]

= ∇𝜃𝜃1 − ∇𝜃 ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is the shape of ∇𝜃𝐽 𝜃 ?

∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎)

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem
(no future rewards to worry about), so
it’s just the observed reward for
taking the first action, 𝑎1.

𝜏 = (𝑎1, 3)

𝐺𝑡 = 3

What is ∇𝜃 ln 𝜋𝜃(𝑎1)?

∇𝜃 ln 𝜋𝜃(𝑎1) = ∇𝜃 ln
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

= ∇𝜃 [ln 𝑒𝜃1 − ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3]

= ∇𝜃𝜃1 − ∇𝜃 ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is the shape of ∇𝜃𝐽 𝜃 ?
=.

1
0
0

 −

𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3
…
…

∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎)

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem
(no future rewards to worry about), so
it’s just the observed reward for
taking the first action, 𝑎1.

𝜏 = (𝑎1, 3)

𝐺𝑡 = 3

What is ∇𝜃 ln 𝜋𝜃(𝑎1)?

∇𝜃 ln 𝜋𝜃(𝑎1) = ∇𝜃 ln
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

= ∇𝜃 [ln 𝑒𝜃1 − ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3]

= ∇𝜃𝜃1 − ∇𝜃 ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is the shape of ∇𝜃𝐽 𝜃 ?
=.

1
0
0

 −

𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3
…
…

𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1) = 3 ⋅
0.34

−0.09
−0.25

REINFORCE

What if 𝜃 is the output of a
neural network?

How to compute:
𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)?

Action 1

Action 2

Action 3

𝜃1 = 1

𝜃2=−1

𝜃3 = 0

REINFORCE

What if 𝜃 is the output of a
neural network?

How to compute:
𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)?

Action 1

Action 2

Action 3

𝜃1 = 1

𝜃2=−1

𝜃3 = 0

Compute ln 𝜋𝜃(𝑎𝑡|𝑠𝑡) in gradient tape context.

REINFORCE

What if 𝜃 is the output of a
neural network?

How to compute:
𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)?

Action 1

Action 2

Action 3

𝜃1 = 1

𝜃2=−1

𝜃3 = 0

Compute ln 𝜋𝜃(𝑎𝑡|𝑠𝑡) in gradient tape context.

But also, remember, you have to perform gradient ASCENT.
If an optimizer minimizes by default, you can use −∇𝜃𝐽(𝜃)

REINFORCE Variance

Results on Cartpole
Image Source: https://medium.com/@fork.tree.ai/understanding-baseline-techniques-for-reinforce-53a1e2279b57

If we could calculate ∇𝜃𝐽 𝜃 exactly
(not just for single trajectory/sample),
then Policy Gradient would be a great
algorithm! (with some minor flaws)

Actor-Critic Methods

Actor-Critic Methods

REINFORCE uses the return for a trajectory 𝐺𝑡:

Actor-Critic Methods

REINFORCE uses the return for a trajectory 𝐺𝑡:

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝐺𝑡 ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Actor-Critic Methods

REINFORCE uses the return for a trajectory 𝐺𝑡:

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝐺𝑡 ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]
Variance of Returns is
always a problem…

Actor-Critic Methods

REINFORCE uses the return for a trajectory 𝐺𝑡:

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝐺𝑡 ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Actor-Critic Methods learn an approximation of 𝐺𝑡

Variance of Returns is
always a problem…

Actor-Critic Methods

REINFORCE uses the return for a trajectory 𝐺𝑡:

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝐺𝑡 ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Actor-Critic Methods learn an approximation of 𝐺𝑡
𝑄𝜋 𝑠𝑡 , 𝑎𝑡 = 𝔼[𝐺𝑡]

Variance of Returns is
always a problem…

Actor-Critic Methods

REINFORCE uses the return for a trajectory 𝐺𝑡:

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝐺𝑡 ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Actor-Critic Methods learn an approximation of 𝐺𝑡
𝑄𝜋 𝑠𝑡 , 𝑎𝑡 = 𝔼[𝐺𝑡]

Variance of Returns is
always a problem…

𝑉 𝑠𝑡 = 𝔼[𝐺𝑡] as well, but
technically it’s not a critic
function. Critic functions
critique actions.

Actor-Critic Methods

REINFORCE uses the return for a trajectory 𝐺𝑡:

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝐺𝑡 ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Actor-Critic Methods learn an approximation of 𝐺𝑡
𝑄𝜋 𝑠𝑡 , 𝑎𝑡 = 𝔼[𝐺𝑡]

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝑄𝜋𝜃(𝑠𝑡 , 𝑎𝑡) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Variance of Returns is
always a problem…

𝑉 𝑠𝑡 = 𝔼[𝐺𝑡] as well, but
technically it’s not a critic
function. Critic functions
critique actions.

Actor-Critic Algorithm: Learn 𝑄𝜋 and 𝜋(𝑎|𝑠)

Actor-Critic Algorithm: Learn 𝑄𝜋 and 𝜋(𝑎|𝑠)

Actor (policy): Takes actions

Actor-Critic Algorithm: Learn 𝑄𝜋 and 𝜋(𝑎|𝑠)

Actor (policy): Takes actions Critic: Scores the action

Actor-Critic Algorithm: Learn 𝑄𝜋 and 𝜋(𝑎|𝑠)

Actor (policy): Takes actions Critic: Scores the action

That’s not even
how that piece

moves, Q(s,a)=-5

Initialize 𝜋𝜃, 𝑄𝑤 , 𝛼𝜃 , 𝛼𝑤

Repeat forever:
 Take action 𝑎, get new state 𝑠′ and reward r
 Sample next action 𝑎′~𝜋𝜃(𝑎|𝑠)

 update 𝜃 ← 𝜃 + 𝛼𝜃𝑄𝑤 𝑠, 𝑎 ∇𝜃 ln 𝜋𝜃(𝑎|𝑠)

 Calculate TD Error: 𝛿 = 𝑟 + 𝛾𝑄𝑤 𝑠′, 𝑎′ − 𝑄𝑤(𝑠, 𝑎)

 update 𝑤 ← 𝑤 + 𝛼𝑤𝛿∇𝑤𝑄𝑤(𝑠, 𝑎)

 𝑎 ← 𝑎′, 𝑠 ← 𝑠′

Actor-Critic Algorithm: Learn 𝑄𝜋 and 𝜋(𝑎|𝑠)

Policy network has parameters 𝜃
Q network has parameters w

Initialize 𝜋𝜃, 𝑄𝑤 , 𝛼𝜃 , 𝛼𝑤

Repeat forever:
 Take action 𝑎, get new state 𝑠′ and reward r
 Sample next action 𝑎′~𝜋𝜃(𝑎|𝑠)

 update 𝜃 ← 𝜃 + 𝛼𝜃𝑄𝑤 𝑠, 𝑎 ∇𝜃 ln 𝜋𝜃(𝑎|𝑠)

 Calculate TD Error: 𝛿 = 𝑟 + 𝛾𝑄𝑤 𝑠′, 𝑎′ − 𝑄𝑤(𝑠, 𝑎)

 update 𝑤 ← 𝑤 + 𝛼𝑤𝛿∇𝑤𝑄𝑤(𝑠, 𝑎)

 𝑎 ← 𝑎′, 𝑠 ← 𝑠′

Actor-Critic Algorithm: Learn 𝑄𝜋 and 𝜋(𝑎|𝑠)

Like Q-learning and REINFORCE at the same time

Policy network has parameters 𝜃
Q network has parameters w

Variations on a Theme…

Source: https://en.wikipedia.org/wiki/Actor-critic_algorithm

(Wikipedia uses 𝑅𝑡 instead of 𝐺𝑡)How to estimate 𝐽 𝜃

https://en.wikipedia.org/wiki/Actor-critic_algorithm
https://en.wikipedia.org/wiki/Actor-critic_algorithm
https://en.wikipedia.org/wiki/Actor-critic_algorithm

Actor-Critic Networks

Actor

Critic

State

actions

Value

Actor-Critic Networks

Actor-CriticState
actions

Value

Just make sure you use the correct activation function for the different outputs

Deep Q-Learning Revisited

Compute TD-Error: 𝛿 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

Loss Function: 𝐿 = 𝛿2

Update model with Gradient Descent

Deep Q-Learning Revisited

Compute TD-Error: 𝛿 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

Loss Function: 𝐿 = 𝛿2

Update model with Gradient Descent

Q-Learning uses:
𝛿 = 𝑟 + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

Actor-Critic Uses:
𝛿 = 𝑟 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 (𝑠, 𝑎)

Deep Q-Learning Revisited

Compute TD-Error: 𝛿 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

Loss Function: 𝐿 = 𝛿2

Update model with Gradient Descent

Q-Learning uses:
𝛿 = 𝑟 + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

Actor-Critic Uses:
𝛿 = 𝑟 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 (𝑠, 𝑎)

Q-Learning is learning Optimal Q-values

Actor-Critic is learning the Q-values for
following a specific policy 𝑄𝜋

On-Policy Vs. Off-Policy Learning

RL algorithms collect experiences and learn from these
experiences

On-Policy Algorithms have to collect experiences with the policy
they are learning

Off-Policy Algorithms can use any policy to collect experiences

DQNs Are Off-Policy

In Q-Learning, we typically collect experiences using an 𝜖-greedy policy
in training

With probability 𝜖, take random action.
Else, take action argmax𝑎 𝑄(𝑠, 𝑎)

At test time, we should take the best actions, not the 𝜖-greedy actions
argmax𝑎 𝑄(𝑠, 𝑎)

DQNs Are Off-Policy

In Q-Learning, we typically collect experiences using an 𝜖-greedy policy
in training

With probability 𝜖, take random action.
Else, take action argmax𝑎 𝑄(𝑠, 𝑎)

At test time, we should take the best actions, not the 𝜖-greedy actions
argmax𝑎 𝑄(𝑠, 𝑎)

These are different policies! DQNs can be trained with any data collection policy at training time

Initialize 𝜋𝜃, 𝑄𝑤 , 𝛼𝜃 , 𝛼𝑤

Repeat forever:
 Take action 𝑎, get new state 𝑠′ and reward r
 Sample next action 𝑎′~𝜋𝜃(𝑎|𝑠)

 update 𝜃 ← 𝜃 + 𝛼𝜃𝑄𝑤 𝑠, 𝑎 ∇𝜃 ln 𝜋𝜃(𝑎|𝑠)

 Calculate TD Error: 𝛿 = 𝑟 + 𝛾𝑄𝑤 𝑠′, 𝑎′ − 𝑄𝑤(𝑠, 𝑎)

 update 𝑤 ← 𝑤 + 𝛼𝑤𝛿∇𝑤𝑄𝑤(𝑠, 𝑎)

 𝑎 ← 𝑎′, 𝑠 ← 𝑠′

Actor-Critic Algorithm: Learn 𝑄𝜋 and 𝜋(𝑎|𝑠)

On Policy: Have to take actions according to 𝜋𝜃

On-Policy vs Off-Policy Learning

On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:

On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:
• More sample efficient, tend to converge faster

On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:
• More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:

On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:
• More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:
• Can get stuck in local minima

• Is there a simple policy that performs ok? Would small changes to that policy cause
returns to go down temporarily?

• How do balance exploration in our policy?

On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:
• More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:
• Can get stuck in local minima

• Is there a simple policy that performs ok? Would small changes to that policy cause
returns to go down temporarily?

• How do balance exploration in our policy?
Advantages of Off-Policy Learning:

On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:
• More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:
• Can get stuck in local minima

• Is there a simple policy that performs ok? Would small changes to that policy cause
returns to go down temporarily?

• How do balance exploration in our policy?
Advantages of Off-Policy Learning:
• Can learn from any policy

On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:
• More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:
• Can get stuck in local minima

• Is there a simple policy that performs ok? Would small changes to that policy cause
returns to go down temporarily?

• How do balance exploration in our policy?
Advantages of Off-Policy Learning:
• Can learn from any policy
• More likely to learn an optimal policy

On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:
• More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:
• Can get stuck in local minima

• Is there a simple policy that performs ok? Would small changes to that policy cause
returns to go down temporarily?

• How do balance exploration in our policy?
Advantages of Off-Policy Learning:
• Can learn from any policy
• More likely to learn an optimal policy
Disadvantages of Off-Policy Learning:

On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:
• More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:
• Can get stuck in local minima

• Is there a simple policy that performs ok? Would small changes to that policy cause
returns to go down temporarily?

• How do balance exploration in our policy?
Advantages of Off-Policy Learning:
• Can learn from any policy
• More likely to learn an optimal policy
Disadvantages of Off-Policy Learning:
• Slower…

For the Record: On-Policy Q-Learning (SARSA)

There is an On-Policy Q-learning algorithm:

𝛿 = 𝑟 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

Why is it called SARSA?
𝛿 = 𝛾𝑄 𝑠′, 𝑎′ + 𝑟 − 𝑄 (𝑠, 𝑎)

	Slide 1
	Slide 2: Terminology Review
	Slide 3: Deep-Q Network
	Slide 4: Deep-Q Learning
	Slide 5: Gymnasium
	Slide 6: Implementing DQNs
	Slide 7: Policies
	Slide 8: Policies
	Slide 9: Policies
	Slide 10: How do we train a policy network?
	Slide 11: How do we train a policy network?
	Slide 12: How do we train a policy network?
	Slide 13: How do we train a policy network?
	Slide 14: How do we train a policy network?
	Slide 15: How do we train a policy network?
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Log-Derivative Trick
	Slide 24: Log Probability Trick
	Slide 25: Log Probability Trick
	Slide 26: Log Probability Trick
	Slide 27: Log Probability Trick
	Slide 28: Log Probability Trick
	Slide 29: Gradient of a trajectory
	Slide 30: Policy Gradient Derivation
	Slide 31: Policy Gradient Derivation
	Slide 32: Policy Gradient Derivation
	Slide 33: Policy Gradient Derivation
	Slide 34: Policy Gradient Derivation
	Slide 35: Policy Gradient
	Slide 36: Policy Gradient
	Slide 37: Reward-To-Go Policy Gradient
	Slide 38: REINFORCE (Policy Gradient Learning)
	Slide 39: REINFORCE (Policy Gradient Learning)
	Slide 40: REINFORCE (Policy Gradient Learning)
	Slide 41: Variance of REINFORCE
	Slide 42: Variance of REINFORCE
	Slide 43: Variance of REINFORCE
	Slide 44: Variance of REINFORCE
	Slide 45: Variance of REINFORCE
	Slide 46: Baseline Functions
	Slide 47: Baseline Functions
	Slide 48: Baseline Functions
	Slide 49: Baseline Functions
	Slide 50: Baseline Functions
	Slide 51: Baseline Functions
	Slide 52: Derivation of REINFORCE w/ Baseline Function
	Slide 53: REINFORCE with Baseline
	Slide 54: REINFORCE with Baseline
	Slide 55
	Slide 56: Let’s do an example with Multi-Arm Bandits
	Slide 57: Multi-Arm Bandits
	Slide 58: Multi-Arm Bandits
	Slide 59: Multi-Arm Bandits
	Slide 60: Multi-Arm Bandits
	Slide 61: Multi-Arm Bandits
	Slide 62: Multi-Arm Bandits
	Slide 63: Multi-Arm Bandits
	Slide 64: Multi-Arm Bandits
	Slide 65: Multi-Arm Bandits
	Slide 66: Multi-Arm Bandits
	Slide 67: Multi-Arm Bandits
	Slide 68: Multi-Arm Bandits
	Slide 69: Policy Gradient on Multi-Arm Bandits
	Slide 70: Policy Gradient on Multi-Arm Bandits
	Slide 71: Policy Gradient on Multi-Arm Bandits
	Slide 72: Policy Gradient on Multi-Arm Bandits
	Slide 73: Policy Gradient on Multi-Arm Bandits
	Slide 74: Policy Gradient on Multi-Arm Bandits
	Slide 75: Policy Gradient on Multi-Arm Bandits
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84: REINFORCE
	Slide 85: REINFORCE
	Slide 86: REINFORCE
	Slide 87: REINFORCE Variance
	Slide 88: Actor-Critic Methods
	Slide 89: Actor-Critic Methods
	Slide 90: Actor-Critic Methods
	Slide 91: Actor-Critic Methods
	Slide 92: Actor-Critic Methods
	Slide 93: Actor-Critic Methods
	Slide 94: Actor-Critic Methods
	Slide 95: Actor-Critic Methods
	Slide 96: Actor-Critic Algorithm: Learn cap Q to the pi and pi open paren a. vertical bar s close paren
	Slide 97: Actor-Critic Algorithm: Learn cap Q to the pi and pi open paren a. vertical bar s close paren
	Slide 98: Actor-Critic Algorithm: Learn cap Q to the pi and pi open paren a. vertical bar s close paren
	Slide 99: Actor-Critic Algorithm: Learn cap Q to the pi and pi open paren a. vertical bar s close paren
	Slide 100: Actor-Critic Algorithm: Learn cap Q to the pi and pi open paren a. vertical bar s close paren
	Slide 101: Actor-Critic Algorithm: Learn cap Q to the pi and pi open paren a. vertical bar s close paren
	Slide 102: Variations on a Theme…
	Slide 103: Actor-Critic Networks
	Slide 104: Actor-Critic Networks
	Slide 105: Deep Q-Learning Revisited
	Slide 106: Deep Q-Learning Revisited
	Slide 107: Deep Q-Learning Revisited
	Slide 108: On-Policy Vs. Off-Policy Learning
	Slide 109: DQNs Are Off-Policy
	Slide 110: DQNs Are Off-Policy
	Slide 111: Actor-Critic Algorithm: Learn cap Q to the pi and pi open paren a. vertical bar s close paren
	Slide 112: On-Policy vs Off-Policy Learning
	Slide 113: On-Policy vs Off-Policy Learning
	Slide 114: On-Policy vs Off-Policy Learning
	Slide 115: On-Policy vs Off-Policy Learning
	Slide 116: On-Policy vs Off-Policy Learning
	Slide 117: On-Policy vs Off-Policy Learning
	Slide 118: On-Policy vs Off-Policy Learning
	Slide 119: On-Policy vs Off-Policy Learning
	Slide 120: On-Policy vs Off-Policy Learning
	Slide 121: On-Policy vs Off-Policy Learning
	Slide 122: For the Record: On-Policy Q-Learning (SARSA)

