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Terminology Review

MDP: Markov Decision Process
 <States, Actions, Reward Function, Transition Probabilities, Discount Factor>

Episode: Single run-through of an MDP (from start to terminal state)
Trajectory: states, actions, and rewards received in an episode
Returns: Total (discounted) rewards of a trajectory
Value: Expected Returns from a specific state
Q-Value: Expected Returns from a specific state when taking a 
specific action



Deep-Q Network

State: s Deep Q-Network

𝑄(𝑠, 𝑎1)

𝑄(𝑠, 𝑎𝑛)

𝑄(𝑠, 𝑎2)

…

Deep Q-Networks (DQNs):
1. Take in a state
2. Return Q-values for each action



Deep-Q Learning

Initialize DQN to approximate Q

Maintain estimates of Q(s, a) for all (s, a) pairs

 Collect experiences, update Q estimates with: 

  Compute 𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′  − 𝑄𝜃 𝑠, 𝑎
2

  update 𝜃 with SGD on Loss function



Gymnasium

Provides a common 
implementation of MDPs for 
RL.

A gym environment has a 
current state that can be 
updated by calling 
environment.step(action)



Implementing DQNs

Source: Torch DQN tutorial https://docs.pytorch.org/tutorials/intermediate/reinforcement_q_learning.html 

https://docs.pytorch.org/tutorials/intermediate/reinforcement_q_learning.html


Policies

Why learn Q-values first and turn them into a policy? Why not just 
learn a policy?



Policies

Why learn Q-values first and turn them into a policy? Why not just 
learn a policy?

State: s Policy Network

𝜋(𝑎1|𝑠)

𝜋(𝑎𝑛|𝑠)

𝜋(𝑎2|𝑠)

…



Policies

Why learn Q-values first and turn them into a policy? Why not just 
learn a policy?

State: s Policy Network

𝜋(𝑎1|𝑠)

𝜋(𝑎𝑛|𝑠)

𝜋(𝑎2|𝑠)

…

What should the 
activation function be 
for the final layer?
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How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy 𝜋 such that the value of the start state is maximized:

𝜋 = argmax𝜋 (𝑉 𝑠0 )

How can we maximize 𝑉(𝑠0)?
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Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

Probability of a 
trajectory occurring

Returns of a specific 
trajectory

State transition 
Probability

Probability of taking an 
action for a given state

Sum over all possible 
trajectories



Log-Derivative Trick

We can rewrite the derivative of a function using the derivative of 
the natural log function:

∇ ln 𝑓(𝑥) =
∇f 𝑥

𝑓 𝑥

∇𝑓 𝑥 = 𝑓 𝑥 ∇ln f x

When applied to Pr 𝜏 𝜃 :
∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)
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Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ෍

𝑡=0

𝑇

∇𝜃ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

This gradient term is 
what we want to 
calculate

Log of product -> sum of logs

Log of product -> sum of logs

Derivative of sum -> sum of derivative



Gradient of a trajectory

∇𝜃 ln Pr 𝜏 𝜃 = ෍

𝑡=0

𝑇

∇𝜃ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

State transition function 
does not depend on 𝜃!
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Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏
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Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

∇𝜃 Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃𝐽 𝜃 = ෍

𝜏

[Pr 𝜏|𝜃 𝐺 𝜏 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡  ]

∇𝜃𝐽 𝜃 = 𝔼[𝐺0 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]

Our Objective

Take the gradient

Log-Derivative Trick

Gradient of a Trajectory

Convert back to Expectation



Policy Gradient

∇𝜃𝐽 𝜃 = 𝔼[𝐺0 ෍

𝑡=0

𝑇
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Policy Gradient

∇𝜃𝐽 𝜃 = 𝔼[𝐺0 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]

We will never be able to sum over all possible trajectories…
How do we get around this?

Sampling! 
1. Collect n trajectories following policy 𝜋𝜃

2. Pr 𝜏 𝜃 = 1/𝑛 for each trajectory 
3. Calculate the total return for each trajectory 𝐺(𝜏)

Direction to move in to increase 
probability of trajectoryBigger step if better returns



Reward-To-Go Policy Gradient

You can also do the policy gradient derivation such that the gradient 
does not depend on 𝐺0, but on 𝐺𝑡

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝐺𝑡 ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]

Or

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝑄(𝑠𝑡 , 𝑎𝑡) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]
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Source: Sutton and Barto, Reinforcement Learning: An Introduction
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REINFORCE (Policy Gradient Learning)

Why is the update 
adding the gradient 
instead of subtracting?

Source: Sutton and Barto, Reinforcement Learning: An Introduction

When 𝜋 is based on a softmax, ∇𝜃 ln 𝜋𝜃(𝑎|𝑠) is 
actually easy to compute by hand using log rules 
and the fact that ln 𝑒𝑥 = 𝑥
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Variance of REINFORCE

REINFORCE has high variance

It depends heavily on the 
returns of a single episode

We can reduce variance by 
collecting more than one 
trajectory

Or…
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Baseline Functions

Subtracting a baseline function from 𝐺𝑡  does not change the expected 
gradient

A baseline function 𝑏 𝑠  is any function that depends only on the state 
(not on actions)

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

(𝐺𝑡−𝑏(𝑠)) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]

Baseline functions can reduce the variance of the gradient estimate

The value function V(s) is the ideal baseline function



Derivation:  https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/

Derivation of REINFORCE w/ Baseline Function
∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

(𝐺𝑡−𝑏(𝑠)) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]



Source: Sutton and Barto Chapter 13

REINFORCE with Baseline

Pseudocode uses SGD, but you can just as easily use any 
other optimizer (e.g., Adam)



Source: Sutton and Barto Chapter 13

REINFORCE with Baseline

Gradient of L =
1

2
𝛿^2

Pseudocode uses SGD, but you can just as easily use any 
other optimizer (e.g., Adam)



Key Idea for RL: Variance is the enemy

Policy Collapse: https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse 

Cartpole

https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse
https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse
https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse
https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse
https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse
https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse
https://stats.stackexchange.com/questions/252685/policy-gradient-reward-collapse


Let’s do an example with Multi-Arm Bandits

What’s a one-armed bandit?
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Multi-Arm Bandits

Single-armed bandit

When an arm is pulled, the 
rewards are random. 

Each arm returns a reward 
with (different) unknown 
mean and variance

Bandit Problems are essentially 
MDPs with a single state.

Useful testbed for a number of 
algorithms and very useful for theory
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Policy Gradient on Multi-Arm Bandits

Action 1

Action 2

Action 3

𝜃1 = 1

𝜃2=−1

𝜃3 = 0

Maintain parameter for each action, 𝜃𝑖

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1
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Policy Gradient on Multi-Arm Bandits

Action 1

Action 2

Action 3

𝜃1 = 1

𝜃2=−1

𝜃3 = 0

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

Maintain parameter for each action, 𝜃𝑖

𝜋𝜃 𝑎1 =
𝑒

𝑒 +
1
𝑒

+ 1
= 0.66



Policy Gradient on Multi-Arm Bandits

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

T



Policy Gradient on Multi-Arm Bandits

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take 5 actions according to 𝜋𝜃:
𝜏 = (𝑎1, 3), 𝑎2, −1 , (𝑎3, 2), 𝑎1, 4 , (𝑎3, 1)

T



Policy Gradient on Multi-Arm Bandits

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take 1 action according to 𝜋𝜃:
𝜏 = (𝑎1, 3)

Policy Gradient (without states): ∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎 )
T



∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎 )

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

𝜏 = (𝑎1, 3)



∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎 )

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem 
(no future rewards to worry about), so 
it’s just the observed reward for 
taking the first action, 𝑎1. 

𝜏 = (𝑎1, 3)



∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎 )

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem 
(no future rewards to worry about), so 
it’s just the observed reward for 
taking the first action, 𝑎1. 

𝜏 = (𝑎1, 3)

𝐺𝑡 = 3



∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎 )

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem 
(no future rewards to worry about), so 
it’s just the observed reward for 
taking the first action, 𝑎1. 

𝜏 = (𝑎1, 3)

𝐺𝑡 = 3

What is ∇𝜃 ln 𝜋𝜃(𝑎1)?

∇𝜃 ln 𝜋𝜃(𝑎1) = ∇𝜃 ln
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3



∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎 )

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem 
(no future rewards to worry about), so 
it’s just the observed reward for 
taking the first action, 𝑎1. 

𝜏 = (𝑎1, 3)

𝐺𝑡 = 3

What is ∇𝜃 ln 𝜋𝜃(𝑎1)?

∇𝜃 ln 𝜋𝜃(𝑎1) = ∇𝜃 ln
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

= ∇𝜃 [ln 𝑒𝜃1 − ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3 ]

= ∇𝜃𝜃1 − ∇𝜃 ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3



∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎 )

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem 
(no future rewards to worry about), so 
it’s just the observed reward for 
taking the first action, 𝑎1. 

𝜏 = (𝑎1, 3)

𝐺𝑡 = 3

What is ∇𝜃 ln 𝜋𝜃(𝑎1)?

∇𝜃 ln 𝜋𝜃(𝑎1) = ∇𝜃 ln
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

= ∇𝜃 [ln 𝑒𝜃1 − ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3 ]

= ∇𝜃𝜃1 − ∇𝜃 ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is the shape of ∇𝜃𝐽 𝜃 ?



∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎 )

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem 
(no future rewards to worry about), so 
it’s just the observed reward for 
taking the first action, 𝑎1. 

𝜏 = (𝑎1, 3)

𝐺𝑡 = 3

What is ∇𝜃 ln 𝜋𝜃(𝑎1)?

∇𝜃 ln 𝜋𝜃(𝑎1) = ∇𝜃 ln
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

= ∇𝜃 [ln 𝑒𝜃1 − ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3 ]

= ∇𝜃𝜃1 − ∇𝜃 ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is the shape of ∇𝜃𝐽 𝜃 ?
=. 
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0
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𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3
…
…



∇𝜃𝐽 𝜃 = 𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎 )

At timestep 1, 𝑎1 got a reward of 3:
Need to compute: 𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1)

𝜃1 = 1, 𝜋𝜃 𝑎1 = 0.66
𝜃2 = −1, 𝜋𝜃 𝑎2 = 0.09
𝜃3 = 0, 𝜋𝜃 𝑎3 = 0.25

Take Action according to Softmax:

𝜋𝜃 𝑎1 =
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is 𝐺0?
Bandits is not a sequential problem 
(no future rewards to worry about), so 
it’s just the observed reward for 
taking the first action, 𝑎1. 

𝜏 = (𝑎1, 3)

𝐺𝑡 = 3

What is ∇𝜃 ln 𝜋𝜃(𝑎1)?

∇𝜃 ln 𝜋𝜃(𝑎1) = ∇𝜃 ln
𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

= ∇𝜃 [ln 𝑒𝜃1 − ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3 ]

= ∇𝜃𝜃1 − ∇𝜃 ln 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3

What is the shape of ∇𝜃𝐽 𝜃 ?
=. 

1
0
0

 −

𝑒𝜃1

𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3
…
…

𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎1) = 3 ⋅
0.34

−0.09
−0.25



REINFORCE

What if 𝜃 is the output of a 
neural network?

How to compute: 
𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)?

Action 1

Action 2

Action 3

𝜃1 = 1

𝜃2=−1

𝜃3 = 0



REINFORCE

What if 𝜃 is the output of a 
neural network?

How to compute: 
𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)?

Action 1

Action 2

Action 3

𝜃1 = 1

𝜃2=−1

𝜃3 = 0

Compute ln 𝜋𝜃(𝑎𝑡|𝑠𝑡) in gradient tape context.



REINFORCE

What if 𝜃 is the output of a 
neural network?

How to compute: 
𝐺𝑡∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)?

Action 1

Action 2

Action 3

𝜃1 = 1

𝜃2=−1

𝜃3 = 0

Compute ln 𝜋𝜃(𝑎𝑡|𝑠𝑡) in gradient tape context.

But also, remember, you have to perform gradient ASCENT.
If an optimizer minimizes by default, you can use −∇𝜃𝐽(𝜃)



REINFORCE Variance

Results on Cartpole
Image Source: https://medium.com/@fork.tree.ai/understanding-baseline-techniques-for-reinforce-53a1e2279b57

If we could calculate ∇𝜃𝐽 𝜃  exactly 
(not just for single trajectory/sample), 
then Policy Gradient would be a great 
algorithm! (with some minor flaws)
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always a problem…
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REINFORCE uses the return for a trajectory 𝐺𝑡:
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𝑉 𝑠𝑡 = 𝔼[𝐺𝑡] as well, but 
technically it’s not a critic 
function. Critic functions 
critique actions.



Actor-Critic Methods

REINFORCE uses the return for a trajectory 𝐺𝑡:

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝐺𝑡 ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]

Actor-Critic Methods learn an approximation of 𝐺𝑡
𝑄𝜋 𝑠𝑡 , 𝑎𝑡 = 𝔼[𝐺𝑡]

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝑄𝜋𝜃(𝑠𝑡 , 𝑎𝑡) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]

Variance of Returns is 
always a problem…

𝑉 𝑠𝑡 = 𝔼[𝐺𝑡] as well, but 
technically it’s not a critic 
function. Critic functions 
critique actions.



Actor-Critic Algorithm: Learn 𝑄𝜋 and 𝜋(𝑎|𝑠)
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Actor-Critic Algorithm: Learn 𝑄𝜋 and 𝜋(𝑎|𝑠)

Actor (policy): Takes actions Critic: Scores the action

That’s not even 
how that piece 

moves, Q(s,a)=-5



Initialize 𝜋𝜃, 𝑄𝑤 , 𝛼𝜃 , 𝛼𝑤

Repeat forever:
 Take action 𝑎, get new state 𝑠′ and reward r
 Sample next action 𝑎′~𝜋𝜃(𝑎|𝑠)

 update 𝜃 ← 𝜃 + 𝛼𝜃𝑄𝑤 𝑠, 𝑎 ∇𝜃 ln 𝜋𝜃(𝑎|𝑠)

 Calculate TD Error: 𝛿 = 𝑟 + 𝛾𝑄𝑤 𝑠′, 𝑎′  − 𝑄𝑤(𝑠, 𝑎)

 update 𝑤 ← 𝑤 + 𝛼𝑤𝛿∇𝑤𝑄𝑤(𝑠, 𝑎)

 𝑎 ← 𝑎′, 𝑠 ← 𝑠′

Actor-Critic Algorithm: Learn 𝑄𝜋 and 𝜋(𝑎|𝑠)

Policy network has parameters 𝜃
Q network has parameters w



Initialize 𝜋𝜃, 𝑄𝑤 , 𝛼𝜃 , 𝛼𝑤

Repeat forever:
 Take action 𝑎, get new state 𝑠′ and reward r
 Sample next action 𝑎′~𝜋𝜃(𝑎|𝑠)

 update 𝜃 ← 𝜃 + 𝛼𝜃𝑄𝑤 𝑠, 𝑎 ∇𝜃 ln 𝜋𝜃(𝑎|𝑠)

 Calculate TD Error: 𝛿 = 𝑟 + 𝛾𝑄𝑤 𝑠′, 𝑎′  − 𝑄𝑤(𝑠, 𝑎)

 update 𝑤 ← 𝑤 + 𝛼𝑤𝛿∇𝑤𝑄𝑤(𝑠, 𝑎)

 𝑎 ← 𝑎′, 𝑠 ← 𝑠′

Actor-Critic Algorithm: Learn 𝑄𝜋 and 𝜋(𝑎|𝑠)

Like Q-learning and REINFORCE at the same time

Policy network has parameters 𝜃
Q network has parameters w



Variations on a Theme…

Source: https://en.wikipedia.org/wiki/Actor-critic_algorithm 

(Wikipedia uses 𝑅𝑡 instead of 𝐺𝑡)How to estimate 𝐽 𝜃

https://en.wikipedia.org/wiki/Actor-critic_algorithm
https://en.wikipedia.org/wiki/Actor-critic_algorithm
https://en.wikipedia.org/wiki/Actor-critic_algorithm


Actor-Critic Networks

Actor

Critic

State

actions

Value



Actor-Critic Networks

Actor-CriticState
actions

Value

Just make sure you use the correct activation function for the different outputs



Deep Q-Learning Revisited

Compute TD-Error: 𝛿 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

Loss Function: 𝐿 = 𝛿2

Update model with Gradient Descent



Deep Q-Learning Revisited

Compute TD-Error: 𝛿 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

Loss Function: 𝐿 = 𝛿2

Update model with Gradient Descent

Q-Learning uses:
𝛿 = 𝑟 + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

Actor-Critic Uses:
𝛿 = 𝑟 + 𝛾𝑄 𝑠′, 𝑎′  − 𝑄 (𝑠, 𝑎)



Deep Q-Learning Revisited

Compute TD-Error: 𝛿 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

Loss Function: 𝐿 = 𝛿2

Update model with Gradient Descent

Q-Learning uses:
𝛿 = 𝑟 + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

Actor-Critic Uses:
𝛿 = 𝑟 + 𝛾𝑄 𝑠′, 𝑎′  − 𝑄 (𝑠, 𝑎)

Q-Learning is learning Optimal Q-values

Actor-Critic is learning the Q-values for 
following a specific policy 𝑄𝜋



On-Policy Vs. Off-Policy Learning

RL algorithms collect experiences and learn from these 
experiences

On-Policy Algorithms have to collect experiences with the policy 
they are learning

Off-Policy Algorithms can use any policy to collect experiences



DQNs Are Off-Policy

In Q-Learning, we typically collect experiences using an 𝜖-greedy policy 
in training

With probability 𝜖, take random action.
Else, take action argmax𝑎 𝑄(𝑠, 𝑎)

At test time, we should take the best actions, not the 𝜖-greedy actions
argmax𝑎 𝑄(𝑠, 𝑎)



DQNs Are Off-Policy

In Q-Learning, we typically collect experiences using an 𝜖-greedy policy 
in training

With probability 𝜖, take random action.
Else, take action argmax𝑎 𝑄(𝑠, 𝑎)

At test time, we should take the best actions, not the 𝜖-greedy actions
argmax𝑎 𝑄(𝑠, 𝑎)

These are different policies! DQNs can be trained with any data collection policy at training time



Initialize 𝜋𝜃, 𝑄𝑤 , 𝛼𝜃 , 𝛼𝑤

Repeat forever:
 Take action 𝑎, get new state 𝑠′ and reward r
 Sample next action 𝑎′~𝜋𝜃(𝑎|𝑠)

 update 𝜃 ← 𝜃 + 𝛼𝜃𝑄𝑤 𝑠, 𝑎 ∇𝜃 ln 𝜋𝜃(𝑎|𝑠)

 Calculate TD Error: 𝛿 = 𝑟 + 𝛾𝑄𝑤 𝑠′, 𝑎′  − 𝑄𝑤(𝑠, 𝑎)

 update 𝑤 ← 𝑤 + 𝛼𝑤𝛿∇𝑤𝑄𝑤(𝑠, 𝑎)

 𝑎 ← 𝑎′, 𝑠 ← 𝑠′

Actor-Critic Algorithm: Learn 𝑄𝜋 and 𝜋(𝑎|𝑠)

On Policy: Have to take actions according to 𝜋𝜃
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On-Policy vs Off-Policy Learning

Advantage of On-Policy Learning:
• More sample efficient, tend to converge faster
Disadvantages of On-Policy Learning:
• Can get stuck in local minima 

• Is there a simple policy that performs ok? Would small changes to that policy cause 
returns to go down temporarily?

• How do balance exploration in our policy?
Advantages of Off-Policy Learning:
• Can learn from any policy
• More likely to learn an optimal policy
Disadvantages of Off-Policy Learning:
• Slower…



For the Record: On-Policy Q-Learning (SARSA)

There is an On-Policy Q-learning algorithm:

𝛿 = 𝑟 + 𝛾𝑄 𝑠′, 𝑎′  − 𝑄(𝑠, 𝑎)

Why is it called SARSA?
𝛿 = 𝛾𝑄 𝑠′, 𝑎′ + 𝑟 − 𝑄 (𝑠, 𝑎)
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