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Day 2: Linear Regression and Perceptrons

Mt Washington, the tallest mountain in the northeast



Recap from Last Class

Machine Learning:
• Can we learn to approximate a function f?
• Deep Learning is machine learning with a specific class of 

functions (neural networks)



Some Notation

ℝ: The set of real numbers
𝑣 ∈ ℝ𝑑: A vector in dimension  𝑑
𝑉 ∈ ℝ𝐻×𝑊: A matrix of dimensions 𝐻 × 𝑊

𝑉 ∈ ℝ𝐻×𝑊×𝐶: A tensor of dimensions 𝐻 × 𝑊 × 𝐶

𝕏: A set of input data
𝕐: A set of target variables (outputs/labels) for supervised learning
𝑥(𝑘): k’th example (input) from dataset
𝑦(𝑘): k’th example (output) associated with 𝑥(𝑘)
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What makes a good approximation?

Loss Function: A function that describes how closely our 
approximation matches our data

The standard loss function for Linear Regression is Mean Squared 
Error (MSE)

Error

ErrorError

𝑀𝑆𝐸 =
σ𝑖

𝑛 𝑓 𝑥 𝑖 − 𝑦 𝑖 2

𝑛 Error = 𝑓 𝑥 𝑖 − 𝑦 𝑖



What is the best approximation?

• https://brown-deep-learning.github.io/dl-website-
s25/visualizations/visualizations.html 
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Model Complexity

• Model complexity refers to… the model’s complexity
• Polynomial regressions are more complex than linear regressions

• Models with higher complexity can approximate more function 
types well

• More complex functions also tend to overfit

Important Question: A 100 degree polynomial tends 
to be way overfit. Neural Networks will be even more 

complex, why do neural networks not overfit?



How to know which function is the best?
𝕏

𝑥 1

𝑥 2

𝑥 3

𝑥 4

𝑥 5

𝑥 6

𝑥 7

𝑥 8

f1 or f2?



How to know which function is the best?
𝕏

𝑥 1

𝑥 2

𝑥 3

𝑥 4

𝑥 5

𝑥 6

𝑥 7

𝑥 8

f1 or f2?
Compare MSE between 

them?



How to know which function is the best?
𝕏

𝑥 1

𝑥 2

𝑥 3

𝑥 4

𝑥 5

𝑥 6

𝑥 7

𝑥 8

f1 or f2?

Training Set

Test Set



How to know which function is the best?
𝕏

𝑥 1

𝑥 2

𝑥 3

𝑥 4

𝑥 5

𝑥 6

𝑥 7

𝑥 8

f1 or f2?

Training Set

Test Set

Compare MSE on what 
data?



How to know which function is the best?
𝕏

𝑥 1

𝑥 2

𝑥 3

𝑥 4

𝑥 5

𝑥 6

𝑥 7

𝑥 8

f1 or f2?

Training Set

Test Set

Compare MSE on what 
data?

When might we want to 
overfit?



How to know which function is the best?
𝕏

𝑥 1

𝑥 2

𝑥 3

𝑥 4

𝑥 5

𝑥 6

𝑥 7

𝑥 8

f1 or f2?

Training Set

Test Set

Validation Set

1. Train model on training set
2. Validate performance on validation set
3. Report results on test set



How to know which function is the best?
𝕏

𝑥 1

𝑥 2

𝑥 3

𝑥 4

𝑥 5

𝑥 6

𝑥 7

𝑥 8

Training Set

Test Set

Validation Set

1. Train model on provided training data
2. Validate your model locally with validation set
3. Submit to Gradescope and we have a separate test set 

In this class

1. Train model on provided training data
2. Validate your model locally with validation set
3. Deploy your model to real world and track performance

In real world



How to know which function is the best?
𝕏

𝑥 1

𝑥 2

𝑥 3

𝑥 4

𝑥 5

𝑥 6

𝑥 7

𝑥 8

Training Set

Test Set

Validation Set

1. Train model on provided training data
2. Validate your model locally with validation set
3. Submit to Gradescope and we have a separate test set 

In this class

1. Train model on provided training data
2. Validate your model locally with validation set
3. Deploy your model to real world and track performance

In real world



Other ways to improve performance
Collect additional information

Temperature Sunny? Day of Week Profit

90
80
62

Yes
No
No

Sat
Mon
Wed

$200
$91
$54

𝑥 1

𝑥 2

𝑥 3

𝑥1
𝑥3𝑥2 𝑦



Other ways to improve performance
Collect additional information

Temperature Sunny? Day of Week Profit

90
80
62

Yes
No
No

Sat
Mon
Wed

$200
$91
$54

𝑥 1

𝑥 2

𝑥 3

𝑥1
𝑥3𝑥2 𝑦

How can we 
represent binary 

variables?



Other ways to improve performance
Collect additional information

Temperature Sunny? Day of Week Profit

90
80
62

Yes
No
No

Sat
Mon
Wed

$200
$91
$54

𝑥 1

𝑥 2

𝑥 3

𝑥1
𝑥3𝑥2 𝑦

How can we 
represent binary 

variables?

𝑥2
𝑘

∈ {0, 1}



Other ways to improve performance
Collect additional information

Temperature Sunny? Day of Week Profit

90
80
62

Yes
No
No

Sat
Mon
Wed

$200
$91
$54

𝑥 1

𝑥 2

𝑥 3

𝑥1
𝑥3𝑥2 𝑦

How can we 
represent binary 

variables?

𝑥2
𝑘

∈ {0, 1}

How can we represent 
categorical variables?



Other ways to improve performance
Collect additional information

Temperature Sunny? Day of Week Profit

90
80
62

Yes
No
No

Sat
Mon
Wed

$200
$91
$54

𝑥 1

𝑥 2

𝑥 3

𝑥1
𝑥3𝑥2 𝑦

How can we 
represent binary 

variables?

𝑥2
𝑘

∈ {0, 1}

Idea 1: Mon=0, Tue=1, Wed.=2

How can we represent 
categorical variables?



Other ways to improve performance
Collect additional information

Temperature Sunny? Day of Week Profit

90
80
62

Yes
No
No

Sat
Mon
Wed

$200
$91
$54

𝑥 1

𝑥 2

𝑥 3

𝑥1
𝑥3𝑥2 𝑦

How can we 
represent binary 

variables?

𝑥2
𝑘

∈ {0, 1}

Idea 1: Mon=0, Tue=1, Wed.=2

The problem: Is Wednesday being 2x Tuesday meaningful?
Why use this ordering and not a random ordering?

How can we represent 
categorical variables?



Other ways to improve performance
Collect additional information

Temperature Sunny? Day of Week Profit

90
80
62

Yes
No
No

Sat
Mon
Wed

$200
$91
$54

𝑥 1

𝑥 2

𝑥 3

𝑥1
𝑥3𝑥2 𝑦

How can we 
represent binary 

variables?

𝑥2
𝑘

∈ {0, 1}

Idea 1: Mon=0, Tue=1, Wed.=2

The problem: Is Wednesday being 2x Tuesday meaningful?
Why use this ordering and not a random ordering?

Idea 2: Use a series of binary variables
If day==Mon, 𝑥4=1, else 0
If day==Tue, 𝑥5=1, else 0
…

How can we represent 
categorical variables?



Other ways to improve performance
Collect additional information

Temperature Sunny? Day of Week Profit

90
80
62

Yes
No
No

Sat
Mon
Wed

$200
$91
$54

𝑥 1

𝑥 2

𝑥 3

𝑥1
𝑥3𝑥2 𝑦

How can we 
represent binary 

variables?

𝑥2
𝑘

∈ {0, 1}

Idea 1: Mon=0, Tue=1, Wed.=2

The problem: Is Wednesday being 2x Tuesday meaningful?
Why use this ordering and not a random ordering?

Idea 2: Use a series of binary variables
If day==Mon, 𝑥4=1, else 0
If day==Tue, 𝑥5=1, else 0
…

“One-Hot Vector”: Turn 
categorical variables into a 
vector of binary variables

How can we represent 
categorical variables?



Weekly “Participation Quiz”

Available on Gradescope, closes at 11:59pm the day of class, but 
we also provide time in class to complete it.



Linear Regression

𝑦 = 𝑚𝑥 + 𝑏 With 1 input feature, 2 parameters 
- m (slope)
-  b (bias)



Linear Regression

𝑦 = 𝑚𝑥 + 𝑏 With 1 input feature, 2 parameters 
- m (slope)
-  b (bias)

Input Features Output Target



Linear Regression

𝑦 = 𝑚𝑥 + 𝑏 With 1 input feature, 2 parameters 
- m (slope)
-  b (bias)

Input Features Output Target

Constant

1
1
1

𝑥4



Linear Regression
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With multiple input features:
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Linear Regression

𝑦 = 𝑚𝑥 + 𝑏 With 1 input feature, 2 parameters 
- m (slope)
-  b (bias)

With multiple input features:
- Need a weight parameter 𝑤𝑖 for each feature xi

- 𝑦 = 𝑥1
𝑖

⋅ 𝑤1 + 𝑥2
𝑖

⋅ 𝑤2
𝑖

+ ⋯ + 𝑥𝑑
𝑖

⋅ 𝑤𝑑

- Can be rewritten: 𝑦 = Ԧ𝑥 ⋅ 𝑤

Input Features Output Target

How do we find optimal 
parameter values?

Constant

1
1
1

𝑥4
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Goal: Minimize Loss function
Process:
- Find derivative (or gradient) of loss function
- Set derivative to 0
- Solve for parameters

MSE (Mean Squared Error)

Generalization of derivatives to 
functions with multiple inputs

Is this guaranteed to find the 
global best parameter settings?

weight vector w ∈ ℝ𝑑
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∇𝑓𝜃 = [
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𝜃1
,
𝜕𝑓

𝜃2
,
𝜕𝑓

𝜃3
, … ,

𝜕𝑓

𝜃𝑑
]

∇𝑓𝑤 tells us what happens 
to f with small adjustments 

to each parameter w
For a linear regression model with one 

input variable what dimension is ∇𝑓𝜃 in?

∇𝑓𝜃 ∈ ℝ?
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Closed Form Solution

Advantages:
- Simple/fast to implement

Disadvantages:
- Need to invert: 𝕏𝕏𝑇 −1

- Matrix inversion is 𝑂 𝑛3

- 𝕏𝕏𝑇  May not be invertible
- Doesn’t necessarily exist for 

other models



A Linear Classification Model



A Linear Classification Model

Linear Regression is a linear model for regression.
What’s a natural way to make a linear classifier?



A Classifier

Everything above the line (or hyperplane in 
>2D) is classified as 1, everything below 
the line as 0
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Everything above the line (or hyperplane in 
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A Classifier

Everything above the line (or hyperplane in 
>2D) is classified as 1, everything below 
the line as 0

How can you tell if a point is above 
or below the line?

𝑥1

𝑥2

ො𝑦 = 𝑤1 ⋅ 𝑥1 + 𝑤2 ⋅ 𝑥2 + 𝑏

If ො𝑦 = 0, the point is on the line,
If ො𝑦 > 0, the point is “above” the line,
If ො𝑦 < 0, the point is “below” the line

If ො𝑦 > 0, predict 1.
If ො𝑦 ≤ 0, predict 0.



Perceptrons: A Linear Classifier

(Our first building block of Deep Learning)



Biological Motivation
• Loosely inspired by neurons, basic working unit of the brain 
• Serve to transmit information between cells 



Biological Neuron Artificial Neuron (Perceptron)

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

The Perceptron



Inputs

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

Inputs are Ԧ𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑑]

Features of the data



Predicting with a Perceptron
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𝑤4

σ

𝑏

Output

1. Take each of the inputs and 
multiply by corresponding 
weight

2. Sum the results, add bias term



Predicting with a Perceptron

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

1. Take each of the inputs and 
multiply by corresponding 
weight

2. Sum the results, add bias term

Until here, a Perceptron 
and Linear Regression are 

equivalent
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𝑤3

𝑤4

σ

𝑏

Output

1. Take each of the inputs and 
multiply by corresponding 
weight

2. Sum the results, add bias term
3. If output is above 0, return 1, 

otherwise return 0
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𝑤1

𝑤2

𝑤3
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σ

𝑏

Output

1. Take each of the inputs and 
multiply by corresponding 
weight

2. Sum the results, add bias term
3. If output is above 0, return 1, 

otherwise return 0

Activation Function
(many more to come)



Predicting with a Perceptron

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

1. Take each of the inputs and 
multiply by corresponding 
weight

2. Sum the results, add bias term
3. If output is above 0, return 1, 

otherwise return 0

Activation Function
(many more to come)

Activation Function
Operates on output of neuron



Understanding Weights
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σ

𝑏

Output
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Understanding Weights

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

σ

𝑏

Output

What would it mean for a 
weight to be 0?

What would it mean for a 
weight to be very positive?

What would it mean for a 
weight to be very negative?



How Strong are Linear Separators?

Image courtesy of: https://vitalflux.com/how-know-data-linear-non-linear/



MNIST

The most famous dataset in Deep Learning
Modified National Institute of Standards and Technology database

Image courtesy of Wikipedia



Motivation: Zip Code Recognition

http://yann.lecun.com/exdb/publis/pdf/matan-92.pdf





How Does a Computer know this 
is a three?







Center is typically empty for 0’s. 
How does this compare with 3’s?











Train, validation, and test sets

• Training Set: Used to adjust parameters of model

• Validation set — used to test how well we’re doing as we develop 

• Prevents overfitting

• Test Set — used to evaluate the model once the model is done Train

Validation

Test



MNIST

• 60,000 Images in training set
• 10,000 Images in test set
• No explicit validation set



MNIST

• 60,000 Images in training set
• 10,000 Images in test set
• No explicit validation set

What do you suggest 
we do?















MNIST Results

• Perceptrons (linear separator) can achieve 88% accuracy on 
MNIST.

• Linear separation tends to become “easier” in higher dimensional 
spaces



Recap

A perceptron/neuron works just like a linear 
regression, but has a different activation function

Loss Functions tell us about the 
performance of the model (which we will 
also optimize for)

We must always test for (and 
balance) overfitting and 
underfitting
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