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What we’ve done so far

Reinforcement Learning



Agent interacts with environment

Environment transitions 
to new state

And rewards an agent 
(or penalizes the agent)



Why Reinforcement Learning?

• Reinforcement learning doesn’t require data in the same way that 
supervised and unsupervised learning do

• There is no dataset X required, just a model of the environment
• Agents learn from interacting with the environment

This is how you got so smart…







Atari!

Mnih et al. Playing Atari with Deep Reinforcement Learning, 2013



Markov Decision Processes (MDPs)

How can we formalize the problem we are trying to solve? What 
components does it have?



Markov Decision Processes (MDPs)

• Set of States: S
• All possible configurations the world can be in

• Set of Actions: A
• All possible actions the agent is able to take

• Reward Function: R: 𝑆 → ℝ
• Reward function takes in a state and returns a number

• Transition Function: T: 𝑆 × 𝐴 × 𝑆 → ℝ
• If you take an action in a specific state, what’s the probability you 

transition to any other state?



States

What would the state for 
breakout be?

Option: Location of paddle, ball, and 
all breakable blocks

Option: The image of the game…



Actions

What actions can the 
agent take?

A = Left or Right



Reward Function

What is the reward function?

There is no predefined reward function necessarily

We can use: 
1. The score (get reward when a block is broken)
2. Large penalty for losing, Large reward for winning
3. And many other combinations of things



Transition Function

In general, MDPs describe stochastic processes. There can be 
randomness in what happens.

Breakout is deterministic, the physics of the ball is known and when 
you tell your paddle to go left it goes left.



Solving MDPs

What would it mean to solve an MDP, like breakout?

Policy: A function 𝜋: 𝑆 → 𝐴, that takes in a state and returns an 
action

We seek the best possible policy 𝜋∗, that could tell us the best 
action to take in any state.

But how do we know one policy is better than another?
If we try to learn a policy, what would our loss function be?
And many many more remaining questions… for next time



Gamma

One more term to add to MDPs: a discount factor 𝛾 ∈ [0, 1]

Some MDPs have no terminal state (or otherwise can have an agent 
take infinitely many actions)

We care about the total reward the agent gets, how do we reason 
about that when we need to sum infinitely many things?

The discount factor is a helpful mathematical trick: Each 
step into the future, we care about reward a little less

𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯

This sum is never infinite if r is bounded



Key Terms
Episode: (For Episodic MDPs with defined start and terminal states)  a single run through of the 
MDP from a start state to a terminal state (or until a cutoff time T)

Trajectory: state, action, reward for every timestep in an episode
𝜏 =(𝑠0, 𝑎0, 𝑟0, … , 𝑠𝑇 , 𝑎𝑇 , 𝑟𝑇)

Return: Cumulative discounted rewards from timestep t for a single episode
𝐺𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯

𝐺𝑡 = ෍

𝑖=0

𝑇−𝑡

𝛾𝑖𝑟𝑖+𝑡

The return 𝐺0 (sometimes just denoted 𝐺) is total discounted reward of the entire episode



Breakout Example

• Episode: From start of game until player loses (or wins)
• Trajectory: list of all states, actions, and rewards from that 

episode
• Return: Cumulative discounted reward of that trajectory (if 𝛾 = 1, 

then it is the sum of all rewards)



Key Terms

Value of a state: the expected returns from a state
𝑉 𝑠𝑡 = 𝔼[𝐺𝑡]

Q-Values: The expected returns of being in a state and taking an 
action

𝑄 𝑠𝑡 , 𝑎𝑡 = 𝔼𝑠′~𝑇 𝑠𝑡,𝑎𝑡
[𝑉(𝑠′)]



Value Function

𝑉𝜋 𝑠𝑡 = 𝔼[𝐺𝑡]

𝑉𝜋 𝑠𝑡 = 𝔼 [σ𝑖=0
𝑇−𝑡 𝛾𝑖𝑟𝑖+𝑡]

𝑉𝜋 𝑠𝑡 = 𝑟𝑡 + 𝛾 ⋅ 𝔼 [σ𝑖=1
𝑇−𝑡 𝛾𝑖𝑟𝑖+𝑡]

𝑉𝜋 𝑠𝑡 = 𝑟𝑡 + 𝛾 ෍

 𝑠′∈𝑆

Pr 𝑠′ 𝑠𝑡 , 𝑎𝑡 𝑉𝜋(𝑠′)

We can the value function as a recursive formula:
How good it is to be in a state is the immediate reward 
for being in that state + the expected returns for future states

A value function is defined 
for a specific policy 𝜋! 

(If you have a bad policy, you 
expect your values to be 
smaller)

This is called policy evaluation



Value Function → Policy

What if we don’t have a policy already and want to find one?
If we already have a value function:

For every state
 iterate over all possible actions
  calculate the expected value if the agent takes that action
  𝑄 𝑠, 𝑎 = σ𝑠′ Pr(𝑠′|𝑠, 𝑎) [𝑅 𝑠′ + 𝛾𝑉 𝑠′ ] 
 set 𝜋 𝑠  to be the action with highest expected Q-value

This is called policy improvement



Value Iteration

1. Start with a random Value function V
2. Run Policy Improvement to determine best actions at each state
3. Run Policy Estimation to determine the new values with the 

updated policy
4. Repeat



Value Iteration

Repeatedly apply Policy Estimation and Policy improvement steps
Run until convergence (i.e., estimates of V no longer changes) 



Tabular Value Iteration

Value iteration is typically a dynamic programming algorithms
A table of values is constructed (one row for each state) and then 
updated according to the Bellman Equation:

𝑉 𝑠 = 𝑟 + 𝛾max
𝑎

෍

𝑠′

Pr 𝑠′ 𝑠, 𝑎 𝑉(𝑠′)



Q-Learning

Q-Learning is our first actual RL algorithm
- Reinforcement Learning algorithms actually simulate episodes, 
gather trajectories, and learn from experiences.
- Collect experiences (i.e.: (𝑠, 𝑎, 𝑟, 𝑠’) tuples)

𝑄 𝑠, 𝑎 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′



Q-Learning

Q-Learning is our first actual RL algorithm
- Reinforcement Learning algorithms actually simulate episodes, 
gather trajectories, and learn from experiences.
- Collect experiences (i.e.: (𝑠, 𝑎, 𝑟, 𝑠’) tuples)

𝑄 𝑠, 𝑎 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′

Important:
How do we collect experiences (i.e., how do we select what action to take)?

How do we update our estimates of Q?



Collecting Experiences

What if we always took the action go-right?
• We’d update our estimates for go-right, but never go-left

𝑄 𝑠, 𝑎 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′

What if we take uniform random actions?
• We’d update estimates for both right and 

left, but we’d be unlikely to get too far into 
the game

What if we find a happy middle ground between fully deterministic and fully random?
• With probability 𝜖 take a random action
• With probability 1 − 𝜖 take the best action (action with highest Q-value)

𝜖-greedy Algorithm for balancing exploration in RL



Updating estimates of Q-values

Q-learning:
Maintain estimates of Q(s, a) for all (s, a) pairs

 Collect experiences, update Q estimates with: 
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼[𝑟 + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′  − 𝑄(𝑠, 𝑎)]

𝑄 𝑠, 𝑎 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′

0 = [𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ ]  − 𝑄(𝑠, 𝑎)

Current estimate
Learning rate

Error in estimate (Temporal 
Difference Error)



Tabular Q-Learning



Where’s the Deep Learning part of this?

• Neural Networks are Function approximators and we have some 
functions…
• 𝑉: 𝑆 →  ℝ

• 𝑄: 𝑆 × 𝐴 → ℝ

• 𝜋: 𝑆 → 𝐴

• Deep Reinforcement Learning seeks to approximate these 
functions with neural networks



Deep Q-Learning

• Approximate Q-values with a neural network
• Always needed a loss function with neural networks before…
• Can we come up with a loss function here?
• We want this equality to hold: 0 = [𝑟 + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′ ]  − 𝑄(𝑠, 𝑎)

• If we can force [𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ ]  − 𝑄(𝑠, 𝑎) to be close to 0, we 
will have good approximations of Q-values

𝐿 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

2



Q-Learning
How to update tabular Q-
learning to be deep Q-learning

Can’t just update outputs of a NN directly…
Instead, compute loss and run a step of SGD

𝐿 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

2



Deep-Q Network

State: s Deep Q-Network

𝑄(𝑠, 𝑎1)

𝑄(𝑠, 𝑎𝑛)

𝑄(𝑠, 𝑎2)

…

Deep Q-Networks (DQNs):
1. Take in a state
2. Return Q-values for each action

What activation function should 
the final layer use?



DQN for Atari

Mnih, et al. 2015 “Human-level control through deep reinforcement 
learning”



Deep-Q Learning

Initialize DQN to approximate Q

Maintain estimates of Q(s, a) for all (s, a) pairs

 Collect experiences, update Q estimates with: 

  Compute 𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′  − 𝑄𝜃 𝑠, 𝑎
2

  update 𝜃 with SGD on Loss function



(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′  − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎  to be like our estimate for the next timestep 

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

Target
Estimate



(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′  − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎  to be like our estimate for the next timestep 

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

We do not include ∇Q𝜃(s′, a′) when calculating ∇𝜃𝐿, we treat 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′  as a constant:

Target
Estimate



(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′  − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎  to be like our estimate for the next timestep 

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

We do not include ∇Q𝜃(s′, a′) when calculating ∇𝜃𝐿, we treat 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′  as a constant:

1. max
𝑎′

𝑄𝜃 𝑠′, 𝑎′  is not differentiable

Target
Estimate



(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′  − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎  to be like our estimate for the next timestep 

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

We do not include ∇Q𝜃(s′, a′) when calculating ∇𝜃𝐿, we treat 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′  as a constant:

1. max
𝑎′

𝑄𝜃 𝑠′, 𝑎′  is not differentiable

2. ∇Q𝜃(s′, a′) would tell us how to update the target to match our current estimate (that’s 
backwards)

Target
Estimate



(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′  − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎  to be like our estimate for the next timestep 

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

Target
Estimate

If we included the target gradient, it would be like trying to update our estimate 
to fit our target AND update our target to fit our estimate at the same time



(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′  − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎  to be like our estimate for the next timestep 

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

Target
Estimate

If we included the target gradient, it would be like trying to update our estimate 
to fit our target AND update our target to fit our estimate at the same time

Using only the gradient of the estimate helps with stationarity



Double DQN

Image source: https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/ 

Use a separate target and 
prediction network for 
stability. Every so often, 
update the target network 
to be the Q-network.

https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/


Dueling Q Networks

Estimate V(s) and the 
advantage A(s, a) 
separately to create 
Q-value estimates.

Advantage function A(s, a):
Q(s, a) = V(s) + A(s, a)



Q-Values to Policy

What do we do after we learn Q? We need to turn them into a policy.

For a given state, take the action associated with the best Q-value.

𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑄(𝑠, 𝑎)



Policies

Why learn Q-values first and turn them into a policy? Why not just 
learn a policy?



Policies

Why learn Q-values first and turn them into a policy? Why not just 
learn a policy?

State: s Policy Network

𝜋(𝑎1|𝑠)

𝜋(𝑎𝑛|𝑠)

𝜋(𝑎2|𝑠)

…



Policies

Why learn Q-values first and turn them into a policy? Why not just 
learn a policy?

State: s Policy Network

𝜋(𝑎1|𝑠)

𝜋(𝑎𝑛|𝑠)

𝜋(𝑎2|𝑠)

…

What should the 
activation function be 
for the final layer?



How do we train a policy network?



How do we train a policy network?

Need to find an appropriate loss function.



How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?



How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy 𝜋 such that the value of the start state is maximized:



How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy 𝜋 such that the value of the start state is maximized:

𝜋 = argmax𝜋 (𝑉 𝑠0 )



How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy 𝜋 such that the value of the start state is maximized:

𝜋 = argmax𝜋 (𝑉 𝑠0 )

How can we maximize 𝑉(𝑠0)?



Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0
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𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)
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Returns of a specific 
trajectory
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𝜏
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Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

Pr 𝜏 𝜃 = Π𝑡=0
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Probability of a 
trajectory occurring

Returns of a specific 
trajectory

State transition 
Probability

Probability of taking an 
action for a given state



Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

Probability of a 
trajectory occurring

Returns of a specific 
trajectory

State transition 
Probability

Probability of taking an 
action for a given state

Sum over all possible 
trajectories



Log-Derivative Trick

We can rewrite the derivative of a function using the derivative of 
the natural log function:

∇ ln 𝑓(𝑥) =
∇f 𝑥

𝑓 𝑥

∇𝑓 𝑥 = 𝑓 𝑥 ∇ln f x

When applied to Pr 𝜏 𝜃 :
∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)



Log Probability Trick

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)



Log Probability Trick

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)

This gradient term is 
what we want to 
calculate
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Log Probability Trick

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

This gradient term is 
what we want to 
calculate



Log Probability Trick

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ෍

𝑡=0

𝑇

∇𝜃ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

This gradient term is 
what we want to 
calculate

Log of product -> sum of logs

Log of product -> sum of logs

Derivative of sum -> sum of derivative



Gradient of a trajectory

∇𝜃 ln Pr 𝜏 𝜃 = ෍

𝑡=0

𝑇

∇𝜃ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

State transition function 
does not depend on 𝜃!
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Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

∇𝜃 Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃𝐽 𝜃 = ෍

𝜏

[Pr 𝜏|𝜃 𝐺 𝜏 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡  ]

Our Objective
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Gradient of a Trajectory



Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

∇𝜃 Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃𝐽 𝜃 = ෍

𝜏

[Pr 𝜏|𝜃 𝐺 𝜏 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡  ]

∇𝜃𝐽 𝜃 = 𝔼[𝐺0 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]

Our Objective

Take the gradient

Log-Derivative Trick

Gradient of a Trajectory

Convert back to Expectation



Policy Gradient

∇𝜃𝐽 𝜃 = 𝔼[𝐺0 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]

We will never be able to sum over all possible trajectories…
How do we get around this?

Direction to move in to increase 
probability of trajectoryBigger step if better returns



Policy Gradient

∇𝜃𝐽 𝜃 = 𝔼[𝐺0 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]

We will never be able to sum over all possible trajectories…
How do we get around this?

Sampling! 
1. Collect n trajectories following policy 𝜋𝜃

2. Pr 𝜏 𝜃 = 1/𝑛 for each trajectory 
3. Calculate the total return for each trajectory 𝐺(𝜏)

Direction to move in to increase 
probability of trajectoryBigger step if better returns



Reward-To-Go Policy Gradient

You can also do the policy gradient derivation such that the gradient 
does not depend on 𝐺0, but on 𝐺𝑡

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝐺𝑡 ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]

Or

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝑄(𝑠𝑡 , 𝑎𝑡) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]



REINFORCE (Policy Gradient Learning)

Source: Sutton and Barto, Reinforcement Learning: An Introduction
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REINFORCE (Policy Gradient Learning)

Why is the update 
adding the gradient 
instead of subtracting?

Source: Sutton and Barto, Reinforcement Learning: An Introduction

When 𝜋 is based on a softmax, ∇𝜃 ln 𝜋𝜃(𝑎|𝑠) is 
actually easy to compute by hand using log rules 
and the fact that ln 𝑒𝑥 = 𝑥



Variance of REINFORCE



Variance of REINFORCE

REINFORCE has high variance



Variance of REINFORCE

REINFORCE has high variance

It depends heavily on the 
returns of a single episode



Variance of REINFORCE

REINFORCE has high variance

It depends heavily on the 
returns of a single episode

We can reduce variance by 
collecting more than one 
trajectory



Variance of REINFORCE

REINFORCE has high variance

It depends heavily on the 
returns of a single episode

We can reduce variance by 
collecting more than one 
trajectory

Or…



Baseline Functions
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Baseline Functions

Subtracting a baseline function from 𝐺𝑡  does not change the expected 
gradient

A baseline function 𝑏 𝑠  is any function that depends only on the state 
(not on actions)

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

(𝐺𝑡−𝑏(𝑠)) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡 ]

Baseline functions can reduce the variance of the gradient estimate

The value function V(s) is the ideal baseline function



Source: Sutton and Barto Chapter 13

REINFORCE with Baseline

Pseudocode uses SGD, but you can just as easily use any 
other optimizer (e.g., Adam)



Source: Sutton and Barto Chapter 13

REINFORCE with Baseline

Gradient of L =
1

2
𝛿^2

Pseudocode uses SGD, but you can just as easily use any 
other optimizer (e.g., Adam)



Extra Material

Sutton and Barto: Policy Gradient methods chapter 13 
http://www.incompleteideas.net/book/RLbook2020.pdf 

Spinning up policy gradient: 
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

http://www.incompleteideas.net/book/RLbook2020.pdf
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html


Derivation:  https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/

Derivation of REINFORCE w/ Baseline Function
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