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We've focused on this thus Far...
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Why Reinforcement Learning?

* Reinforcement learning doesn’t require data in the same way that
supervised and unsupervised learning do

* There is no dataset X required, just a model of the environment
* Agents learn from interacting with the environment

This is how you got so smart... ’,[Agent}

state reward action
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RL: Sequential Decision Making

Sequential decision making describes a situation where the
decision maker (DM) makes successive observations of a
process before a final decision is made.




What's a common example of a sequential
decision making process?

- Playing games!
- Let’s look at a specific example...

This Photo by Unknown Author is licensed under CC BY-SA-NC




Atari!

Mnih et al. Playing Atari with Deep Reinforcement Learning, 2013



Markov Decision Processes (MDPs)

How can we formalize the problem we are trying to solve? What
components does it have?
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Markov Decision Processes (MDPs)

* Set of States: S
* All possible configurations the world can bein

* Set of Actions: A
* All possible actions the agentis able to take

e Reward Function: R: S - R
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e Reward function takes in a state and returns a number

 Transition Function: T: S XA XS - R
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* |f you take an action in a specific state, what’s the probability you

transition to any other state?

action



States

i

Image. display

OO0 5

What would the state for
breakout be?

Option: Location of paddle, ball, and
all breakable blocks

Option: The image of the game...




Actions

What actions can the
agent take?

A = Leftor Right

£ Image.display




Reward Function

What is the reward function?

There is no predefined reward function necessarily

We can use:

1. The score (get reward when a block is broken)

2. Large penalty for losing, Large reward for winning
3. And many other combinations of things

-

P Image.display

OO0 5 i




Transition Function

In general, MDPs describe stochastic processes. There can be
randomness in what happens.

Breakout is deterministic, the physics of the ball is known and when
you tell your paddle to go left it goes left.



Solving MDPs

What would it mean to solve an MDP, like breakout?

Policy: A function : S — A, that takes in a state and returns an
action

We seek the best possible policy 77, that could tell us the best
action to take in any state.

But how do we know one policy is better than another?
If we try to learn a policy, what would our loss function be?
And many many more remaining questions... for next time




Gamma

One more term to add to MDPs: a discount factory € [0, 1]

Some MDPs have no terminal state (or otherwise can have an agent
take infinitely many actions)

We care about the total reward the agent gets, how do we reason
about that when we need to sum infinitely many things?

The discount factor is a helpful mathematical trick: Each
step into the future, we care about reward a little less
e+ VTer + ¥V Tz + oo

This sum is never infinite if ris bounded




Key Terms

Episode: (For Episodic MDPs with defined start and terminal states) a single run through of the
DP from a start state to a terminal state (or until a cutoff time T)

Trajectory: state, action, reward for every timestep in an episode
T =(So, Ao, 19, .-, ST, AT, T'T)

Return: Cumulative discounted rewards from timestgp t for a single episode
Gt =Tt + VT TV Tiqp + o

Thereturn G, (sometimes just denoted G) is total discounted reward of the entire episode



Breakout Example

* Episode: From start of game until player loses (or wins)

* Trajectory: list of all states, actions, and rewards from that
episode

* Return: Cumulative discounted reward of that trajectory (if y = 1,
then it is the sum of all rewards)



Key Terms

Value of a state: the expected returns from a state
V(s) = E[G,]

Q-Values: The expected returns of being in a state and taking an
action

Q(syar) = Egr r(s,ap [V (S)]



Value Function

A value function is defined

for a specific policy m! VT[(St) — [E[G ]

(If you have a bad policy, you T — T—-t Tl+t
expectyourvalues to be V (St) ¥ [ i=0 )/ ]
smaller)

Vi(sy) =1 +y-E [ i=1 V Tl+t]

VP(se) =1 +vy z Pr(s’|se, ap) VT (s")

/
S'ES
I This is called policy evaluation

We can the value function as a recursive formula:
How good it is to be in a state is the immediate reward
for being in that state + the expected returns for future states




Value Function — Policy

What if we don’t have a policy already and want to find one?
If we already have a value function:

For every state
iterate over all possible actions
calculate the expected value if the agent takes that action
Q(s,a) = Xy Pr(s’|s,a) [R(s") + yV(s')]
set (s) to be the action with highest expected Q-value

I This is called policy improvement I




Value lteration

1. Start with a random Value function V
2. Run Policy Improvement to determine best actions at each state

3. Run Policy Estimation to determine the new values with the
updated policy

4. Repeat



Value lteration

Repeatedly apply Policy Estimation and Policy improvement steps
Run until convergence (i.e., estimates of V no longer changes)

Algorithm 1 Value Iteration

Initialize V (s) = 0 for all states s € S
Initialize threshold 6 > 0 (convergence criterion)
repeat
A+0
for each state s € S do
v« V(s)
V(s) ¢ max,ea ) s P(s']s,a)[R(s") + vV (s')]
A + max(A, |v — V(s)])
end for
until A < 6
Return V




Tabular Value lteration

Value iteration is typically a dynamic programming algorithms

A table of values is constructed (one row for each state) and then
updated according to the Bellman Equation:

V(s) = r + ymax E Pr(s’|s,a) V(s")
a
S/



Q-Learning

Q-Learningis our first actual RL algorithm

- Reinforcement Learning algorithms actually simulate episodes,
gather trajectories, and learn from experiences.

- Collect experiences (i.e.: (s,a,r,s’) tuples)

Q(s,a) =7+ Vrr;a}XQ(S’, a')



Q-Learning

Q-Learningis our first actual RL algorithm

- Reinforcement Learning algorithms actually simulate episodes,
gather trajectories, and learn from experiences.

- Collect experiences (i.e.: (s,a,r,s’) tuples)

Q(s,a) =7+ )/rrba}XQ(S', a')

Important:
How do we collect experiences (i.e., how do we select what action to take)?

I How do we update our estimates of Q? I




Q(s,a) =1+ VH}f}XQ(S', a’)

Collecting Experiences

What if we always took the action go-right?
 We’d update our estimates for go-right, but never go-left

What if we take uniform random actions?

* We’d update estimates for both right and
left, but we’d be unlikely to gettoo far into
the game

What if we find a happy middle ground between fully deterministic and fully random?
* With probability € take a random action
* With probability 1 — € take the best action (action with highest Q-value)

e-greedy Algorithm for balancing exploration in RL I




Q(s,a) =1+ ymaalle(S’, a)
0= [r+ymaxQ(s’,a)] - Q(s,a)

Updating estimates of Q-values

Q-learning:
Maintain estimates of Q(s, a) for all (s, a) pairs
Collect experiences, update Q estimates with:

Q(s,a) « Q(s,a) + TL?” + yrrzlz;XQ(S’, a’) —Q(s, a))

|

‘ Learning rate T
Current estimate Error in estimate (Temporal
Difference Error)



Tabular Q-Learning

Algorithm 2 Q-Learning

Initialize Q(s,a) =0 forall s€ S,ac A
Initialize learning rate o € (0, 1] and discount factor v € [0, 1)
Initialize exploration parameter € € (0, 1)
for each episode do
Initialize state s
repeat
With probability e: choose a random action a € A
Otherwise: choose a = arg max, Q(s,a’)
Take action a, observe reward r and next state s’
Q(s,a) < Q(s,a) + a[r + ymaxay Q(s',a’) — Q(s, a)]
(Or Q(s,a) «+ (1 — a)Q(s,a) + a(r + ymax, Q(s',a"))
s 4 s
until s is terminal

end for
Return @)




Where’s the Deep Learning part of this?

* Neural Networks are Function approximators and we have some
functions...
e V:S - R
¢ 0:SxA >R
e:S oA

* Deep Reinforcement Learning seeks to approximate these
functions with neural networks



Deep Q-Learning

* Approximate Q-values with a neural network

* Always needed a loss function with neural networks before...

* Can we come up with a loss function here?

* We want this equality to hold: 0 = [r + yrrila’le(S’, a)] —Q(s,a)

* If we can force [r + ymaxQ(s',a’)] — Q(s,a) to be close to 0, we
will have good approxil%lations of Q-values

2
L= <lr + yrrzla,\xQ(s’, a')] — Q(s, a))



How to update tabular Q-
learning to be deep Q-learning

Q-Learning

2
L= (lr + yrrg;xQ(s’, a’)] — Q(s, a))

Algorithm 2 Q-Learning

Initialize Q(s,a) =0 forall s€ S,ac A
Initialize learning rate o € (0, 1] and discount factor v € [0, 1)
Initialize exploration parameter € € (0, 1)
for each episode do
Initialize state s
repeat
With probability e: choose a random action a € A
Otherwise: choose a = arg max, Q(s,a’)
Take action a, observe reward r and next state s’
Q(s,a) « Q(s,a) + a[r + ymaxy Q(s',d') — Q(s,a)] Can’tjust update outputs of a NN directly...
(Or Q(s,a) + (1 — a)Q(s,a) + a(r + ymax, Q(s',a’)) Instead, compute loss and run a step of SGD
s s
until s is terminal
end for

Return @)




Deep-Q Network

Deep Q-Networks (DQNSs):
1. Takein a state
2. Return Q-values for each action

Q(s,a1) What activation function should
the final layer use?

Q(S, aZ)

State: s

Deep Q-Network

Q(s,an)



DQN for Atari
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Mnih, et al. 2015 “Human-level control through deep reinforcement




Deep-Q Learning

Initialize DQN to approximate Q
Maintain estimates of Q(s, a) for all (s, a) pairs
Collect experiences, update Q estimates with:

2
Compute Lg = [r + ymaxQy(s’,a’) — Qg(s, a)]
a

update 8 with SGD on Loss function



(non-)Stationarity in RL
Tarkget I{Es_tirE(\e

\ 2
Ly = rr +ymaxQy(s’,a’) — Qols, a)]

We’d like our current estimate Q4 (s, a) to be like our estimate for the next timestep

r+ yrr(lla}ng(S cal).



(non-)Stationarity in RL
Tarkget I{Es_tirE(\e

\ 2
Ly = rr +ymaxQy(s’,a’) — Qols, a)]

We’d like our current estimate Q4 (s, a) to be like our estimate for the next timestep

r+ yrr(lla}ng(S cal).

We do notinclude VQq(s’,a") when calculating VgL, we treat ymaxQy(s', a’) as a constant:
a



(non-)Stationarity in RL
Tarkget I{Es_tirE(\e

\ 2
Ly = rr +ymaxQy(s’,a’) — Qols, a)]

We’d like our current estimate Q4 (s, a) to be like our estimate for the next timestep
!/ !/
r+ yrr(lla}ng(S ,a').

We do notinclude VQq(s’,a") when calculating VgL, we treat ymaxQy(s', a’) as a constant:
a

1. maxQq (s’,a’) is not differentiable
a



(non-)Stationarity in RL
Tarkget I{Es_tirE(\e

\ 2
Ly = rr +ymaxQy(s’,a’) — Qols, a)]

We’d like our current estimate Q4 (s, a) to be like our estimate for the next timestep

r+ yrr(lla}ng(S cal).

We do notinclude VQq(s’,a") when calculating VgL, we treat ymaxQy(s', a’) as a constant:
a

1. maxQq (s’,a’) is not differentiable
a

2. VQg(s',a") would tell us how to update the target to match our current estimate (that’s
backwards)



(non-)Stationarity in RL
Tarkget I{Es_tirE(\e

\ 2
Ly = rr +ymaxQy(s’,a’) — Qols, a)]

We’d like our current estimate Q4 (s, a) to be like our estimate for the next timestep

r+ yrr(lla}ng(S cal).

If we included the target gradient, it would be like trying to update our estimate
to fit our target AND update our target to fit our estimate at the same time



(non-)Stationarity in RL
Tarkget I{Es_tirknit(\a

\ 2
Ly = rr +ymaxQy(s’,a’) — Qols, a)]

We’d like our current estimate Q4 (s, a) to be like our estimate for the next timestep

r+ yrr(lquQg(s cal).

If we included the target gradient, it would be like trying to update our estimate
to fitour target AND update our target to fit our estimate at the same time

Using only the gradient of the estimate helps with stationarity




Double DQN

Use a separate target and
prediction network for
stability. Every so often,
update the target network
to be the Q-network.

Image source:

Q(St, A))  Q(Si, Ar) + o R +py maxQ(Sis., o] -@(5:. A

TARGET NETWORK



https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
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Dueling Q Networks

Advantage function A(s, a):

Q(s, a) =V(s) + A(s, a)

Estimate V(s) and the
advantage A(s, a)
separately to create
Q-value estimates.

#

Do whatever you want here ~—|

\

—

1
|

S
] A(s, a)

Vanilla Q network

Dueling Q network

Q(s,a)

=V(s) + (A(s,a) - 1311'] > A(s.a))



Q-Values to Policy

What do we do after we learn Q? We need to turn them into a policy.

For a given state, take the action associated with the best Q-value.

n(s) = argmax, Q(s,a)



Policies

Why learn Q-values first and turn them into a policy? Why not just
learn a policy?



Policies

Why learn Q-values first and turn them into a policy? Why not just
learn a policy?

m(als)

r(a;|s)

State: s

Policy Network

r(anls)



Policies

Why learn Q-values first and turn them into a policy? Why not just
learn a policy?

m(aqls)
State° S m(az|s) What should the
) Policy Network activation function be
for the final layer?

r(anls)



How do we train a policy network?



How do we train a policy network?

Need to find an appropriate loss function.



How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?



How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy T such that the value of the start state is maximized:



How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy T such that the value of the start state is maximized:

T = argmax, (V(SO))



How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy T such that the value of the start state is maximized:

T = argmax, (V(SO))

I How can we maximize V (sq)? I




Let /(0) be our objective function:

J(6) =V (so)



Let /(0) be our objective function:

J(8) =V (so)
](9) — IE:[Go]



Let /(0) be our objective function:

J(8) =V (so)
](9) — IE:[Go]

J(©) = ) Pr(]6) G(r)



Let /(0) be our objective function:

J(8) = V(s0)
J(8) = IE:[Go]
J(8) = 2 Pr(/rw) o

Probability of a
trajectory occurring



Let /(0) be our objective function:

J(8) = V(s0)
J(8) = IE:[Go]
J(8) = 2 Pr(/rw) o

Probability of a
trajectory occurring

Pr(z|8) = HZ=0P(St+1|St: a)mg(az|se)



Let /(0) be our objective function:

J(8) = V(s0)
J(8) = IE:[Go]
J(8) = 2 Pr(/rw) o

Probability of a
trajectory occurring

Pr(z|8) = HZ=0P(St+1|St: a)mg(az|se)

/ oy
Probability of taking an
State transition action for a given state

Probability



Let /(0) be our objective function:

J(6) =V (so)
J(6) = E[G,]
J0) =Y Pr(z]0) G(x)
\
/ T / Ezfgg?srsfa specific

Sum over all possible  Probability of a
trajectories trajectory occurring

Pr(z|8) = HZ=OP(St+1|Str a)mg(az|se)

/ oy
Probability of taking an
State transition action for a given state

Probability



Log-Derivative Trick

We can rewrite the derivative of a function using the derivative of
the natural log function:

v
Vinf() = o3

Vf(x) = f(x)VIn f(x)

When applied to Pr(z|0):
Vg Pr(z]|6) = Pr(z]|0) Vg InPr(z|6)




Log Probability Trick

Pr(z|6) = HZ=OP(St+1|St: a.)mg(ag|se)



Log Probability Trick

Pr(z|0) = M=o P(St41lSt, a)mg(aclse) This gradient term is

what we want to

R
Vo Pr(z|6) = Pr(t|6) Vg In Pr(z|60) calculate



Log Probability Trick

Pr(z|0) = M=o P(St41lSt, a)mg(aclse) This gradient term is

what we want to

R
Vo Pr(z|6) = Pr(t|6) Vg In Pr(z|60) calculate

Vg In PF(T'H) — VQ
t

In P(s¢iqlse, a)mg(aelse)
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Log Probability Trick

Pr(z|0) = M=o P(St41lSt, a)mg(aclse) This gradient term is

what we want to

R
Vo Pr(z|6) = Pr(t|6) Vg In Pr(z|60) calculate

Vg In PF(T'H) — VQ
-
Vo InPr(t|0) =Vy ) InP(sitqlse, ar) +Inmg(as|sy)
t=0

In P(s¢iqlse, a)mg(aelse)

T
=0



Log Probability Trick

Pr(z|0) = M=o P(St41lSt, a)mg(aclse) This gradient term is

what we want to

R
Vo Pr(z|6) = Pr(t|6) Vg In Pr(z|60) calculate

Log of product -> sum of logs

In P(s¢iqlse, a)mg(aelse)
0

Vg In PF(T'H) — VQ

T
T t=

Log of product -> sum of logs

Vo InPr(t|0) =Vy ) InP(sitqlse, ar) +Inmg(as|sy)

t=0
r Derivative of sum -> sum of derivative

VoInPr(z|0) = ) Voln P(siiqlss, ar) + Vglnmg(ag|s,)
t=0



Gradient of a trajectory

T
Vo InPr(7|0) = Z Voln P(si+11S, a:) + Vglnmg(ag|sy)

o]

State transition function
does not depend on 6!

T
V, In Pr(z|0) = z Voln 1y (a,|s,)
t=0



Policy Gradient Derivation

Putting it all back together:

](9) = z Pr(r|9) G(T) Our Objective



Policy Gradient Derivation

Putting it all back together:

J(6) = z Pr(z|0) G(1) Our Objective

T
VH](H) — 2 Vg PI‘(T|9) G(T) Take the gradient
T



Policy Gradient Derivation

Putting it all back together:

J(0) = z Pr(t|0) G(7) Our Objective
Vo (0) = 2 Vg Pr(z|0) G(7) Take the gradient

VQI(H) — z PI‘(T|9)G(T)V9 In PI‘(T|3) Log-Derivative Trick
T



Policy Gradient Derivation

Putting it all back together:

J(6) = z Pr(z|0) G(1) Our Objective
VH](H) — 2 Vg PI‘(T|9) G(T) Take the gradient

VQ](H) = z PI‘(T|9)G(T)V9 InPr(z|@) Log-Derivative Trick

VHI(Q) — z [PI‘(T|9)G(T) z Voln g (at|5t) | Gradient of a Trajectory

T t=0



Policy Gradient Derivation

Putting it all back together:

J(6) = z Pr(z|0) G(1) Our Objective
VH](H) — 2 Vg PI‘(T|9) G(T) Take the gradient

VQ](H) = z PI‘(T|9)G(T)V9 InPr(z|@) Log-Derivative Trick

VHI(Q) — z [PI‘(T|9)G(T) z Voln g (at|5t) | Gradient of a Trajectory

T t=0

Vo] (0) = E[G, z Volnmg(a;|sy)] Convert back to Expectation



Direction to move in to increase

POliCy G ra d ie nt Bigger step if better returns probability of trajectory

fo [/

T
Vo) (6) = E[Gy ) VolnTo(aclso))
t=0

We will never be able to sum over all possible trajectories...
How do we get around this?



Direction to move in to increase

Policy G ra d ie nt Bigger step if better returns probability of trajectory

T
Vo) (6) = E[Gy ) VolnTo(aclso))
t=0

We will never be able to sum over all possible trajectories...
How do we get around this?

Sampling!

1. Collectn trajectories following policy g

2. Pr(z|0) = 1/n for each trajectory

3. Calculate the total return for each trajectory G (1)




Reward-To-Go Policy Gradient

You can also do the policy gradient derivation such that the gradient
does not depend on G, but on G;

T
Vo) (6) = E[)_ G Volnmy(als,)]
t=0

Or

T
Vo) (6) = EL) Q(st,a,) Volnmg(aclsy)]
t=0



REINFORCE (Policy Gradient Learning)

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization 7(als, @)
- - - - ’

Initialize policy parameter 8 € RY

Repeat forever:

Generate an episode Sy, Ag, Ry,...,Sr_1,Ar_1, Ry, following 7 (-|-, 0)
For each step of the episode t =0,...,7T — 1:

G + return from step ¢
0 «— 0 + ay' GV Inw(A;|S:, 0)

Source: Sutton and Barto, Reinforcement Learning: An Introduction



REINFORCE (Policy Gradient Learning)

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization 7(als, @)
Initialize policy parameter @ € RY
Repeat forever:
Generate an episode Sy, Ag, Ry,...,Sr_1,Ar_1, Ry, following 7 (-|-, 0)
For each step of the episode t =0,...,7T — 1:
G + return from step ¢
0 — 0+ ay'GVgInn(A,|S;,0)

Why is the update
adding the gradient
instead of subtracting?

Source: Sutton and Barto, Reinforcement Learning: An Introduction



REINFORCE (Policy Gradient Learning)

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization m(al|s, @)
Initialize policy parameter @ € RY
Repeat forever:
Generate an episode Sy, Ag, Ry,...,Sr_1,Ar_1, Ry, following 7 (-|-, 0)
For each step of the episode t =0,...,7T — 1:
G + return from step ¢

0 — 0+ ay'GVgInn(A,|S;,0)

Why is the update When 1t is based on a softmax, Vg Inmg(als) is
adding the gradient actually easy to compute by hand using log rules
instead of subtracting? and the factthatlne* = x

Source: Sutton and Barto, Reinforcement Learning: An Introduction



Variance of REINFORCE
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REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization m(als, 0)

Initialize policy parameter 8 € RY
Repeat forever:
Generate an episode Sy, Ag, Ry, ...,. St_1,Ar_y1, Ry, following 7 (-|-, 0)
For each step of the episode t =0, ..., T-1:
G + return from step ¢
0 — 0+ ay' GV Inn(A|S;,0)




Variance of REINFORCE

REINFORCE has high variance

100
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Starting State Trajectories Return

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization m(a|s, 8)

.-, . . . ’
Initialize policy parameter 6 € R4

Repeat forever:
Generate an episode Sy, Ag, Ry, ...,. St_1,Ar_y1, Ry, following 7 (-|-, 0)
For each step of the episode t =0, ..., T-1:

G + return from step ¢
0 — 0+ ay' GV Inn(A|S;,0)




Variance of REINFORCE

REINFORCE has high variance

. 100
: -1000
) 10
It depends heavily on the 0
returns of a single episode
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REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization m(a|s, 8)

Initialize policy parameter 8 € RY

Repeat forever:
Generate an episode Sy, Ag, Ry, ...,. St_1,Ar_y1, Ry, following 7 (-|-, 0)
For each step of the episode t =0, ..., T-1:

G + return from step ¢
0 — 0+ ay' GV Inn(A|S;,0)




Variance of REINFORCE

REINFORCE has high variance
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1 SIN CE, A Monte-Car icy-Gradient Me spisodic
We Ca n re d u Ce Va rl a n C e by REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)
C O l leCti n g m O re t h a n O n e Input: a differentiable policy parameterization m(a|s, 8)

Initialize policy parameter 8 € RY
tra M e CtO r Repeat forever: : . .
J y Generate an episode Sy, Ag, Ry, ...,. St_1,Ar_y1, Ry, following 7 (-|-, 0)
For each step of the episode t = 0,. .., T-1:
G + return from step ¢
0 — 0+ ay' GV Inn(A|S;,0)




Variance of REINFORCE

REINFORCE has high variance
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We canre d uce va ri ance by REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

C O l leCti n g m O re t h a n O n e Input: a differentiable policy parameterization m(a|s, 8)

Initialize policy parameter 8 € RY
tra M e CtO r Repeat forever: : . .
J y Generate an episode Sy, Ag, Ry, ...,. St_1,Ar_y1, Ry, following 7 (-|-, 0)
For each step of the episode t = 0,. .., T-1:
G + return from step ¢
0 — 0+ ay' GV Inn(A|S;,0)

Or...
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Baseline Functions

Subtracting a baseline function from G; does not change the expected
gradient

A baseline function b(s) is any function that depends only on the state
(not on actions)

T
V) (6) = E[ ) (Ge=b(s)) Volnmg(acs)]
t=0

Baseline functions can reduce the variance of the gradient estimate

I The value function V(s) is the ideal baseline function I




REINFORCE with Baseline

REINFORCE with Baseline (episodic), for estimating mg ~ 7.

Input: a differentiable policy parameterization 7(als, @)

Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes o > 0, a%¥ > 0

Initialize policy parameter 6 € R? and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7_1,Ar_1, Ry, following 7(-|-, 0)
Loop for each step of the episode t =0,1,...,7T — 1:
G Ypora VT R (Gr)
0 — G —0(S;,w)
w < w+aVoVo(S,,w)
0 — 0 + a4t 5V Inn(As|Ss, 0)

Pseudocode uses SGD, but you can just as easily use any

other optimizer (e.g., Adam)
Source: Sutton and Barto Chapter 13



REINFORCE with Baseline

REINFORCE with Baseline (episodic), for estimating mg ~ 7.

Input: a differentiable policy parameterization 7(als, @)

Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes o > 0, a%¥ > 0

Initialize policy parameter 6 € R? and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7_1,Ar_1, Ry, following 7(-|-, 0)
Loop for each step of the episode t =0,1,...,7T — 1:
G Ypora VT R (Gr)
0 — G —0(S;,w)
w — w+ a™oVo(S,,w) |+
0 — 0 + a?+" 3V Inn(4;|S;, 0)

Gradientof L = %6"2

Pseudocode uses SGD, but you can just as easily use any

other optimizer (e.g., Adam)
Source: Sutton and Barto Chapter 13



Extra Material

Sutton and Barto: Policy Gradient methods chapter 13
http://www.incompleteideas.net/book/RLbook2020.pdf

Spinning up policy gradient:
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html



http://www.incompleteideas.net/book/RLbook2020.pdf
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

Derivation of REINFORCE w/ Baseline Function

First, let’s show that the gradient estimate is unbiased. We see that with the baseline, we can distribute
and rearrange and get:

VoEr oy [R(T)] = Ereor,

T-1 o
Zve log mg(ax|st) (Zw) -V 108;7?9(%|3t)b(3t)]
t=0

Due to linearity of expectation, all we need to show is that for any single time £, the gradient of
log mg(az|s;) multiplied with b(s;) is zero. This is true because

Ereory | Vo l0g (a2 ]30)b(51) | = B |Eairaer 1 [Vo log ma(ae]5e)b(s.)]|

— Esﬁ:t,aoztA b(‘st) ) ]E'StJrl:T,at:T—l [Vg log "Té"(a"iE |st)1]

b

¥

E
= IES{):ha[]:t—l b(st) ' IEat [V() log Wg(at |3t)]:|

—E b(s,) -0 =0

50:¢,Q0:¢—1

Derivation: https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/
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