
Deep
Learning

Eric Ewing

CSCI 1470

Tuesday,
11/11/25

Day 19: Reinforcement learning and DQNs

Lunar Lander, Gymnasium

What we’ve done so far

Reinforcement Learning

Agent interacts with environment

Environment transitions
to new state

And rewards an agent
(or penalizes the agent)

Why Reinforcement Learning?

• Reinforcement learning doesn’t require data in the same way that
supervised and unsupervised learning do

• There is no dataset X required, just a model of the environment
• Agents learn from interacting with the environment

This is how you got so smart…

Atari!

Mnih et al. Playing Atari with Deep Reinforcement Learning, 2013

Markov Decision Processes (MDPs)

How can we formalize the problem we are trying to solve? What
components does it have?

Markov Decision Processes (MDPs)

• Set of States: S
• All possible configurations the world can be in

• Set of Actions: A
• All possible actions the agent is able to take

• Reward Function: R: 𝑆 → ℝ
• Reward function takes in a state and returns a number

• Transition Function: T: 𝑆 × 𝐴 × 𝑆 → ℝ
• If you take an action in a specific state, what’s the probability you

transition to any other state?

States

What would the state for
breakout be?

Option: Location of paddle, ball, and
all breakable blocks

Option: The image of the game…

Actions

What actions can the
agent take?

A = Left or Right

Reward Function

What is the reward function?

There is no predefined reward function necessarily

We can use:
1. The score (get reward when a block is broken)
2. Large penalty for losing, Large reward for winning
3. And many other combinations of things

Transition Function

In general, MDPs describe stochastic processes. There can be
randomness in what happens.

Breakout is deterministic, the physics of the ball is known and when
you tell your paddle to go left it goes left.

Solving MDPs

What would it mean to solve an MDP, like breakout?

Policy: A function 𝜋: 𝑆 → 𝐴, that takes in a state and returns an
action

We seek the best possible policy 𝜋∗, that could tell us the best
action to take in any state.

But how do we know one policy is better than another?
If we try to learn a policy, what would our loss function be?
And many many more remaining questions… for next time

Gamma

One more term to add to MDPs: a discount factor 𝛾 ∈ [0, 1]

Some MDPs have no terminal state (or otherwise can have an agent
take infinitely many actions)

We care about the total reward the agent gets, how do we reason
about that when we need to sum infinitely many things?

The discount factor is a helpful mathematical trick: Each
step into the future, we care about reward a little less

𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯

This sum is never infinite if r is bounded

Key Terms
Episode: (For Episodic MDPs with defined start and terminal states) a single run through of the
MDP from a start state to a terminal state (or until a cutoff time T)

Trajectory: state, action, reward for every timestep in an episode
𝜏 =(𝑠0, 𝑎0, 𝑟0, … , 𝑠𝑇 , 𝑎𝑇 , 𝑟𝑇)

Return: Cumulative discounted rewards from timestep t for a single episode
𝐺𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯

𝐺𝑡 = ෍

𝑖=0

𝑇−𝑡

𝛾𝑖𝑟𝑖+𝑡

The return 𝐺0 (sometimes just denoted 𝐺) is total discounted reward of the entire episode

Breakout Example

• Episode: From start of game until player loses (or wins)
• Trajectory: list of all states, actions, and rewards from that

episode
• Return: Cumulative discounted reward of that trajectory (if 𝛾 = 1,

then it is the sum of all rewards)

Key Terms

Value of a state: the expected returns from a state
𝑉 𝑠𝑡 = 𝔼[𝐺𝑡]

Q-Values: The expected returns of being in a state and taking an
action

𝑄 𝑠𝑡 , 𝑎𝑡 = 𝔼𝑠′~𝑇 𝑠𝑡,𝑎𝑡
[𝑉(𝑠′)]

Value Function

𝑉𝜋 𝑠𝑡 = 𝔼[𝐺𝑡]

𝑉𝜋 𝑠𝑡 = 𝔼 [σ𝑖=0
𝑇−𝑡 𝛾𝑖𝑟𝑖+𝑡]

𝑉𝜋 𝑠𝑡 = 𝑟𝑡 + 𝛾 ⋅ 𝔼 [σ𝑖=1
𝑇−𝑡 𝛾𝑖𝑟𝑖+𝑡]

𝑉𝜋 𝑠𝑡 = 𝑟𝑡 + 𝛾 ෍

 𝑠′∈𝑆

Pr 𝑠′ 𝑠𝑡 , 𝑎𝑡 𝑉𝜋(𝑠′)

We can the value function as a recursive formula:
How good it is to be in a state is the immediate reward
for being in that state + the expected returns for future states

A value function is defined
for a specific policy 𝜋!

(If you have a bad policy, you
expect your values to be
smaller)

This is called policy evaluation

Value Function → Policy

What if we don’t have a policy already and want to find one?
If we already have a value function:

For every state
 iterate over all possible actions
 calculate the expected value if the agent takes that action
 𝑄 𝑠, 𝑎 = σ𝑠′ Pr(𝑠′|𝑠, 𝑎) [𝑅 𝑠′ + 𝛾𝑉 𝑠′]
 set 𝜋 𝑠 to be the action with highest expected Q-value

This is called policy improvement

Value Iteration

1. Start with a random Value function V
2. Run Policy Improvement to determine best actions at each state
3. Run Policy Estimation to determine the new values with the

updated policy
4. Repeat

Value Iteration

Repeatedly apply Policy Estimation and Policy improvement steps
Run until convergence (i.e., estimates of V no longer changes)

Tabular Value Iteration

Value iteration is typically a dynamic programming algorithms
A table of values is constructed (one row for each state) and then
updated according to the Bellman Equation:

𝑉 𝑠 = 𝑟 + 𝛾max
𝑎

෍

𝑠′

Pr 𝑠′ 𝑠, 𝑎 𝑉(𝑠′)

Q-Learning

Q-Learning is our first actual RL algorithm
- Reinforcement Learning algorithms actually simulate episodes,
gather trajectories, and learn from experiences.
- Collect experiences (i.e.: (𝑠, 𝑎, 𝑟, 𝑠’) tuples)

𝑄 𝑠, 𝑎 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′

Q-Learning

Q-Learning is our first actual RL algorithm
- Reinforcement Learning algorithms actually simulate episodes,
gather trajectories, and learn from experiences.
- Collect experiences (i.e.: (𝑠, 𝑎, 𝑟, 𝑠’) tuples)

𝑄 𝑠, 𝑎 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′

Important:
How do we collect experiences (i.e., how do we select what action to take)?

How do we update our estimates of Q?

Collecting Experiences

What if we always took the action go-right?
• We’d update our estimates for go-right, but never go-left

𝑄 𝑠, 𝑎 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′

What if we take uniform random actions?
• We’d update estimates for both right and

left, but we’d be unlikely to get too far into
the game

What if we find a happy middle ground between fully deterministic and fully random?
• With probability 𝜖 take a random action
• With probability 1 − 𝜖 take the best action (action with highest Q-value)

𝜖-greedy Algorithm for balancing exploration in RL

Updating estimates of Q-values

Q-learning:
Maintain estimates of Q(s, a) for all (s, a) pairs

 Collect experiences, update Q estimates with:
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼[𝑟 + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)]

𝑄 𝑠, 𝑎 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′

0 = [𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′] − 𝑄(𝑠, 𝑎)

Current estimate
Learning rate

Error in estimate (Temporal
Difference Error)

Tabular Q-Learning

Where’s the Deep Learning part of this?

• Neural Networks are Function approximators and we have some
functions…
• 𝑉: 𝑆 → ℝ

• 𝑄: 𝑆 × 𝐴 → ℝ

• 𝜋: 𝑆 → 𝐴

• Deep Reinforcement Learning seeks to approximate these
functions with neural networks

Deep Q-Learning

• Approximate Q-values with a neural network
• Always needed a loss function with neural networks before…
• Can we come up with a loss function here?
• We want this equality to hold: 0 = [𝑟 + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′] − 𝑄(𝑠, 𝑎)

• If we can force [𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′] − 𝑄(𝑠, 𝑎) to be close to 0, we
will have good approximations of Q-values

𝐿 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

2

Q-Learning
How to update tabular Q-
learning to be deep Q-learning

Can’t just update outputs of a NN directly…
Instead, compute loss and run a step of SGD

𝐿 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

2

Deep-Q Network

State: s Deep Q-Network

𝑄(𝑠, 𝑎1)

𝑄(𝑠, 𝑎𝑛)

𝑄(𝑠, 𝑎2)

…

Deep Q-Networks (DQNs):
1. Take in a state
2. Return Q-values for each action

What activation function should
the final layer use?

DQN for Atari

Mnih, et al. 2015 “Human-level control through deep reinforcement
learning”

Deep-Q Learning

Initialize DQN to approximate Q

Maintain estimates of Q(s, a) for all (s, a) pairs

 Collect experiences, update Q estimates with:

 Compute 𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ − 𝑄𝜃 𝑠, 𝑎
2

 update 𝜃 with SGD on Loss function

(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎 to be like our estimate for the next timestep

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

Target
Estimate

(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎 to be like our estimate for the next timestep

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

We do not include ∇Q𝜃(s′, a′) when calculating ∇𝜃𝐿, we treat 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ as a constant:

Target
Estimate

(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎 to be like our estimate for the next timestep

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

We do not include ∇Q𝜃(s′, a′) when calculating ∇𝜃𝐿, we treat 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ as a constant:

1. max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ is not differentiable

Target
Estimate

(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎 to be like our estimate for the next timestep

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

We do not include ∇Q𝜃(s′, a′) when calculating ∇𝜃𝐿, we treat 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ as a constant:

1. max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ is not differentiable

2. ∇Q𝜃(s′, a′) would tell us how to update the target to match our current estimate (that’s
backwards)

Target
Estimate

(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎 to be like our estimate for the next timestep

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

Target
Estimate

If we included the target gradient, it would be like trying to update our estimate
to fit our target AND update our target to fit our estimate at the same time

(non-)Stationarity in RL

𝐿𝜃 = 𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ − 𝑄𝜃 𝑠, 𝑎
2

We’d like our current estimate 𝑄𝜃 𝑠, 𝑎 to be like our estimate for the next timestep

𝑟 + 𝛾max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ .

Target
Estimate

If we included the target gradient, it would be like trying to update our estimate
to fit our target AND update our target to fit our estimate at the same time

Using only the gradient of the estimate helps with stationarity

Double DQN

Image source: https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/

Use a separate target and
prediction network for
stability. Every so often,
update the target network
to be the Q-network.

https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/

Dueling Q Networks

Estimate V(s) and the
advantage A(s, a)
separately to create
Q-value estimates.

Advantage function A(s, a):
Q(s, a) = V(s) + A(s, a)

Q-Values to Policy

What do we do after we learn Q? We need to turn them into a policy.

For a given state, take the action associated with the best Q-value.

𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑄(𝑠, 𝑎)

Policies

Why learn Q-values first and turn them into a policy? Why not just
learn a policy?

Policies

Why learn Q-values first and turn them into a policy? Why not just
learn a policy?

State: s Policy Network

𝜋(𝑎1|𝑠)

𝜋(𝑎𝑛|𝑠)

𝜋(𝑎2|𝑠)

…

Policies

Why learn Q-values first and turn them into a policy? Why not just
learn a policy?

State: s Policy Network

𝜋(𝑎1|𝑠)

𝜋(𝑎𝑛|𝑠)

𝜋(𝑎2|𝑠)

…

What should the
activation function be
for the final layer?

How do we train a policy network?

How do we train a policy network?

Need to find an appropriate loss function.

How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy 𝜋 such that the value of the start state is maximized:

How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy 𝜋 such that the value of the start state is maximized:

𝜋 = argmax𝜋 (𝑉 𝑠0)

How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy 𝜋 such that the value of the start state is maximized:

𝜋 = argmax𝜋 (𝑉 𝑠0)

How can we maximize 𝑉(𝑠0)?

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

Probability of a
trajectory occurring

Returns of a specific
trajectory

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

Probability of a
trajectory occurring

Returns of a specific
trajectory

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

Probability of a
trajectory occurring

Returns of a specific
trajectory

State transition
Probability

Probability of taking an
action for a given state

Let 𝐽(𝜃) be our objective function:
𝐽 𝜃 = 𝑉 𝑠0

𝐽 𝜃 = 𝔼 𝐺0

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

Probability of a
trajectory occurring

Returns of a specific
trajectory

State transition
Probability

Probability of taking an
action for a given state

Sum over all possible
trajectories

Log-Derivative Trick

We can rewrite the derivative of a function using the derivative of
the natural log function:

∇ ln 𝑓(𝑥) =
∇f 𝑥

𝑓 𝑥

∇𝑓 𝑥 = 𝑓 𝑥 ∇ln f x

When applied to Pr 𝜏 𝜃 :
∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)

Log Probability Trick

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

Log Probability Trick

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)

This gradient term is
what we want to
calculate

Log Probability Trick

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

This gradient term is
what we want to
calculate

Log Probability Trick

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

This gradient term is
what we want to
calculate

Log Probability Trick

Pr 𝜏 𝜃 = Π𝑡=0
𝑇 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 Pr 𝜏 𝜃 = Pr 𝜏 𝜃 ∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ∇𝜃 ෍

𝑡=0

𝑇

ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ෍

𝑡=0

𝑇

∇𝜃ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

This gradient term is
what we want to
calculate

Log of product -> sum of logs

Log of product -> sum of logs

Derivative of sum -> sum of derivative

Gradient of a trajectory

∇𝜃 ln Pr 𝜏 𝜃 = ෍

𝑡=0

𝑇

∇𝜃ln 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃 ln Pr 𝜏 𝜃 = ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃(𝑎𝑡|𝑠𝑡)

State transition function
does not depend on 𝜃!

Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏) Our Objective

Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

∇𝜃 Pr 𝜏|𝜃 𝐺(𝜏)

Our Objective

Take the gradient

Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

∇𝜃 Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)∇𝜃 ln Pr(𝜏|𝜃)

Our Objective

Take the gradient

Log-Derivative Trick

Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

∇𝜃 Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃𝐽 𝜃 = ෍

𝜏

[Pr 𝜏|𝜃 𝐺 𝜏 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Our Objective

Take the gradient

Log-Derivative Trick

Gradient of a Trajectory

Policy Gradient Derivation

Putting it all back together:

𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

∇𝜃 Pr 𝜏|𝜃 𝐺(𝜏)

∇𝜃𝐽 𝜃 = ෍

𝜏

Pr 𝜏|𝜃 𝐺(𝜏)∇𝜃 ln Pr(𝜏|𝜃)

∇𝜃𝐽 𝜃 = ෍

𝜏

[Pr 𝜏|𝜃 𝐺 𝜏 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

∇𝜃𝐽 𝜃 = 𝔼[𝐺0 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Our Objective

Take the gradient

Log-Derivative Trick

Gradient of a Trajectory

Convert back to Expectation

Policy Gradient

∇𝜃𝐽 𝜃 = 𝔼[𝐺0 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

We will never be able to sum over all possible trajectories…
How do we get around this?

Direction to move in to increase
probability of trajectoryBigger step if better returns

Policy Gradient

∇𝜃𝐽 𝜃 = 𝔼[𝐺0 ෍

𝑡=0

𝑇

∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

We will never be able to sum over all possible trajectories…
How do we get around this?

Sampling!
1. Collect n trajectories following policy 𝜋𝜃

2. Pr 𝜏 𝜃 = 1/𝑛 for each trajectory
3. Calculate the total return for each trajectory 𝐺(𝜏)

Direction to move in to increase
probability of trajectoryBigger step if better returns

Reward-To-Go Policy Gradient

You can also do the policy gradient derivation such that the gradient
does not depend on 𝐺0, but on 𝐺𝑡

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝐺𝑡 ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Or

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

𝑄(𝑠𝑡 , 𝑎𝑡) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

REINFORCE (Policy Gradient Learning)

Source: Sutton and Barto, Reinforcement Learning: An Introduction

REINFORCE (Policy Gradient Learning)

Why is the update
adding the gradient
instead of subtracting?

Source: Sutton and Barto, Reinforcement Learning: An Introduction

REINFORCE (Policy Gradient Learning)

Why is the update
adding the gradient
instead of subtracting?

Source: Sutton and Barto, Reinforcement Learning: An Introduction

When 𝜋 is based on a softmax, ∇𝜃 ln 𝜋𝜃(𝑎|𝑠) is
actually easy to compute by hand using log rules
and the fact that ln 𝑒𝑥 = 𝑥

Variance of REINFORCE

Variance of REINFORCE

REINFORCE has high variance

Variance of REINFORCE

REINFORCE has high variance

It depends heavily on the
returns of a single episode

Variance of REINFORCE

REINFORCE has high variance

It depends heavily on the
returns of a single episode

We can reduce variance by
collecting more than one
trajectory

Variance of REINFORCE

REINFORCE has high variance

It depends heavily on the
returns of a single episode

We can reduce variance by
collecting more than one
trajectory

Or…

Baseline Functions

Baseline Functions

Subtracting a baseline function from 𝐺𝑡 does not change the expected
gradient

Baseline Functions

Subtracting a baseline function from 𝐺𝑡 does not change the expected
gradient

A baseline function 𝑏 𝑠 is any function that depends only on the state
(not on actions)

Baseline Functions

Subtracting a baseline function from 𝐺𝑡 does not change the expected
gradient

A baseline function 𝑏 𝑠 is any function that depends only on the state
(not on actions)

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

(𝐺𝑡−𝑏(𝑠)) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Baseline Functions

Subtracting a baseline function from 𝐺𝑡 does not change the expected
gradient

A baseline function 𝑏 𝑠 is any function that depends only on the state
(not on actions)

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

(𝐺𝑡−𝑏(𝑠)) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Baseline functions can reduce the variance of the gradient estimate

Baseline Functions

Subtracting a baseline function from 𝐺𝑡 does not change the expected
gradient

A baseline function 𝑏 𝑠 is any function that depends only on the state
(not on actions)

∇𝜃𝐽 𝜃 = 𝔼[෍

𝑡=0

𝑇

(𝐺𝑡−𝑏(𝑠)) ∇𝜃ln 𝜋𝜃 𝑎𝑡|𝑠𝑡]

Baseline functions can reduce the variance of the gradient estimate

The value function V(s) is the ideal baseline function

Source: Sutton and Barto Chapter 13

REINFORCE with Baseline

Pseudocode uses SGD, but you can just as easily use any
other optimizer (e.g., Adam)

Source: Sutton and Barto Chapter 13

REINFORCE with Baseline

Gradient of L =
1

2
𝛿^2

Pseudocode uses SGD, but you can just as easily use any
other optimizer (e.g., Adam)

Extra Material

Sutton and Barto: Policy Gradient methods chapter 13
http://www.incompleteideas.net/book/RLbook2020.pdf

Spinning up policy gradient:
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

http://www.incompleteideas.net/book/RLbook2020.pdf
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

Derivation: https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/

Derivation of REINFORCE w/ Baseline Function

	Slide 1
	Slide 2: What we’ve done so far
	Slide 3
	Slide 4: Why Reinforcement Learning?
	Slide 5
	Slide 6
	Slide 7: Atari!
	Slide 8: Markov Decision Processes (MDPs)
	Slide 9: Markov Decision Processes (MDPs)
	Slide 10: States
	Slide 11: Actions
	Slide 12: Reward Function
	Slide 13: Transition Function
	Slide 14: Solving MDPs
	Slide 15: Gamma
	Slide 16: Key Terms
	Slide 17: Breakout Example
	Slide 18: Key Terms
	Slide 19: Value Function
	Slide 20: Value Function goes to Policy
	Slide 21: Value Iteration
	Slide 22: Value Iteration
	Slide 23: Tabular Value Iteration
	Slide 24: Q-Learning
	Slide 25: Q-Learning
	Slide 26: Collecting Experiences
	Slide 27: Updating estimates of Q-values
	Slide 28: Tabular Q-Learning
	Slide 29: Where’s the Deep Learning part of this?
	Slide 30: Deep Q-Learning
	Slide 31: Q-Learning
	Slide 32: Deep-Q Network
	Slide 33: DQN for Atari
	Slide 34: Deep-Q Learning
	Slide 35: (non-)Stationarity in RL
	Slide 36: (non-)Stationarity in RL
	Slide 37: (non-)Stationarity in RL
	Slide 38: (non-)Stationarity in RL
	Slide 39: (non-)Stationarity in RL
	Slide 40: (non-)Stationarity in RL
	Slide 41: Double DQN
	Slide 42: Dueling Q Networks
	Slide 43: Q-Values to Policy
	Slide 44: Policies
	Slide 45: Policies
	Slide 46: Policies
	Slide 47: How do we train a policy network?
	Slide 48: How do we train a policy network?
	Slide 49: How do we train a policy network?
	Slide 50: How do we train a policy network?
	Slide 51: How do we train a policy network?
	Slide 52: How do we train a policy network?
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Log-Derivative Trick
	Slide 61: Log Probability Trick
	Slide 62: Log Probability Trick
	Slide 63: Log Probability Trick
	Slide 64: Log Probability Trick
	Slide 65: Log Probability Trick
	Slide 66: Gradient of a trajectory
	Slide 67: Policy Gradient Derivation
	Slide 68: Policy Gradient Derivation
	Slide 69: Policy Gradient Derivation
	Slide 70: Policy Gradient Derivation
	Slide 71: Policy Gradient Derivation
	Slide 72: Policy Gradient
	Slide 73: Policy Gradient
	Slide 74: Reward-To-Go Policy Gradient
	Slide 75: REINFORCE (Policy Gradient Learning)
	Slide 76: REINFORCE (Policy Gradient Learning)
	Slide 77: REINFORCE (Policy Gradient Learning)
	Slide 78: Variance of REINFORCE
	Slide 79: Variance of REINFORCE
	Slide 80: Variance of REINFORCE
	Slide 81: Variance of REINFORCE
	Slide 82: Variance of REINFORCE
	Slide 83: Baseline Functions
	Slide 84: Baseline Functions
	Slide 85: Baseline Functions
	Slide 86: Baseline Functions
	Slide 87: Baseline Functions
	Slide 88: Baseline Functions
	Slide 89: REINFORCE with Baseline
	Slide 90: REINFORCE with Baseline
	Slide 91: Extra Material
	Slide 92: Derivation of REINFORCE w/ Baseline Function

