CSCl1 1470 Deep
| earning

Eric Ewing Day 19: Reinforcement learning and DQNs

Tuesday,

11/11/25 .

Lunar Lander, Gymnasium

What we’ve done so far

Different Learning Paradigms

Supervised Learning Unsupervised Learning
Training Training Training
Data Labels Data
/ \ /\ EtEtE
f ("model”) —2% Loss function 7 ("model”) —22 . | oss Function g

0‘ \ o&
K Optimizer % Optimizer <

We've focused on this thus Far...

Reinforcement Learning

"Ll Agent |

g Uy

reward
R,
| Rl_'_ il
I LTS
5.
-
1 L

Environment J..._

action
A_.

And rewards an agent I Agent interacts with environment

(or penalizes the agent)

zlale reward

s,

Environment

Environment transitions
to new state

Why Reinforcement Learning?

* Reinforcement learning doesn’t require data in the same way that
supervised and unsupervised learning do

* There is no dataset X required, just a model of the environment
* Agents learn from interacting with the environment

This is how you got so smart... ’,[Agent}

state reward action
s, | IR A,

R |
5. | Environment]-l

b

ry

RL: Sequential Decision Making

Sequential decision making describes a situation where the
decision maker (DM) makes successive observations of a
process before a final decision is made.

What's a common example of a sequential
decision making process?

- Playing games!
- Let’s look at a specific example...

This Photo by Unknown Author is licensed under CC BY-SA-NC

Atari!

Mnih et al. Playing Atari with Deep Reinforcement Learning, 2013

Markov Decision Processes (MDPs)

How can we formalize the problem we are trying to solve? What
components does it have?
:[Agent}
state reward action

5, R, A
Rl_ i il .
5. | Environment]...

b

Markov Decision Processes (MDPs)

* Set of States: S
* All possible configurations the world can bein

* Set of Actions: A
* All possible actions the agentis able to take

e Reward Function: R: S - R

state

"L| Agent |

reward
R,

R

)

R
- i} -

e Reward function takes in a state and returns a number

 Transition Function: T: S XA XS - R

L

Environment Jq—

* |f you take an action in a specific state, what’s the probability you

transition to any other state?

action

States

i

Image. display

OO0 5

What would the state for
breakout be?

Option: Location of paddle, ball, and
all breakable blocks

Option: The image of the game...

Actions

What actions can the
agent take?

A = Leftor Right

£ Image.display

Reward Function

What is the reward function?

There is no predefined reward function necessarily

We can use:

1. The score (get reward when a block is broken)

2. Large penalty for losing, Large reward for winning
3. And many other combinations of things

-

P Image.display

OO0 5 i

Transition Function

In general, MDPs describe stochastic processes. There can be
randomness in what happens.

Breakout is deterministic, the physics of the ball is known and when
you tell your paddle to go left it goes left.

Solving MDPs

What would it mean to solve an MDP, like breakout?

Policy: A function : S — A, that takes in a state and returns an
action

We seek the best possible policy 77, that could tell us the best
action to take in any state.

But how do we know one policy is better than another?
If we try to learn a policy, what would our loss function be?
And many many more remaining questions... for next time

Gamma

One more term to add to MDPs: a discount factory € [0, 1]

Some MDPs have no terminal state (or otherwise can have an agent
take infinitely many actions)

We care about the total reward the agent gets, how do we reason
about that when we need to sum infinitely many things?

The discount factor is a helpful mathematical trick: Each
step into the future, we care about reward a little less
e+ VTer + ¥V Tz + oo

This sum is never infinite if ris bounded

Key Terms

Episode: (For Episodic MDPs with defined start and terminal states) a single run through of the
DP from a start state to a terminal state (or until a cutoff time T)

Trajectory: state, action, reward for every timestep in an episode
T =(So, Ao, 19, .-, ST, AT, T'T)

Return: Cumulative discounted rewards from timestgp t for a single episode
Gt =Tt + VT TV Tiqp + o

Thereturn G, (sometimes just denoted G) is total discounted reward of the entire episode

Breakout Example

* Episode: From start of game until player loses (or wins)

* Trajectory: list of all states, actions, and rewards from that
episode

* Return: Cumulative discounted reward of that trajectory (if y = 1,
then it is the sum of all rewards)

Key Terms

Value of a state: the expected returns from a state
V(s) = E[G,]

Q-Values: The expected returns of being in a state and taking an
action

Q(syar) = Egr r(s,ap [V (S)]

Value Function

A value function is defined

for a specific policy m! VT[(St) — [E[G]

(If you have a bad policy, you T — T—-t Tl+t
expectyourvalues to be V (St) ¥ [i=0)/]
smaller)

Vi(sy) =1 +y-E [i=1 V Tl+t]

VP(se) =1 +vy z Pr(s’|se, ap) VT (s")

/
S'ES
I This is called policy evaluation

We can the value function as a recursive formula:
How good it is to be in a state is the immediate reward
for being in that state + the expected returns for future states

Value Function — Policy

What if we don’t have a policy already and want to find one?
If we already have a value function:

For every state
iterate over all possible actions
calculate the expected value if the agent takes that action
Q(s,a) = Xy Pr(s’|s,a) [R(s") + yV(s')]
set (s) to be the action with highest expected Q-value

I This is called policy improvement I

Value lteration

1. Start with a random Value function V
2. Run Policy Improvement to determine best actions at each state

3. Run Policy Estimation to determine the new values with the
updated policy

4. Repeat

Value lteration

Repeatedly apply Policy Estimation and Policy improvement steps
Run until convergence (i.e., estimates of V no longer changes)

Algorithm 1 Value Iteration

Initialize V (s) = 0 for all states s € S
Initialize threshold 6 > 0 (convergence criterion)
repeat
A+0
for each state s € S do
v« V(s)
V(s) ¢ max,ea) s P(s']s,a)[R(s") + vV (s')]
A + max(A, |v — V(s)])
end for
until A < 6
Return V

Tabular Value lteration

Value iteration is typically a dynamic programming algorithms

A table of values is constructed (one row for each state) and then
updated according to the Bellman Equation:

V(s) = r + ymax E Pr(s’|s,a) V(s")
a
S/

Q-Learning

Q-Learningis our first actual RL algorithm

- Reinforcement Learning algorithms actually simulate episodes,
gather trajectories, and learn from experiences.

- Collect experiences (i.e.: (s,a,r,s’) tuples)

Q(s,a) =7+ Vrr;a}XQ(S’, a')

Q-Learning

Q-Learningis our first actual RL algorithm

- Reinforcement Learning algorithms actually simulate episodes,
gather trajectories, and learn from experiences.

- Collect experiences (i.e.: (s,a,r,s’) tuples)

Q(s,a) =7+)/rrba}XQ(S', a')

Important:
How do we collect experiences (i.e., how do we select what action to take)?

I How do we update our estimates of Q? I

Q(s,a) =1+ VH}f}XQ(S', a’)

Collecting Experiences

What if we always took the action go-right?
 We’d update our estimates for go-right, but never go-left

What if we take uniform random actions?

* We’d update estimates for both right and
left, but we’d be unlikely to gettoo far into
the game

What if we find a happy middle ground between fully deterministic and fully random?
* With probability € take a random action
* With probability 1 — € take the best action (action with highest Q-value)

e-greedy Algorithm for balancing exploration in RL I

Q(s,a) =1+ ymaalle(S’, a)
0= [r+ymaxQ(s’,a)] - Q(s,a)

Updating estimates of Q-values

Q-learning:
Maintain estimates of Q(s, a) for all (s, a) pairs
Collect experiences, update Q estimates with:

Q(s,a) « Q(s,a) + TL?” + yrrzlz;XQ(S’, a’) —Q(s, a))

|

‘ Learning rate T
Current estimate Error in estimate (Temporal
Difference Error)

Tabular Q-Learning

Algorithm 2 Q-Learning

Initialize Q(s,a) =0 forall s€ S,ac A
Initialize learning rate o € (0, 1] and discount factor v € [0, 1)
Initialize exploration parameter € € (0, 1)
for each episode do
Initialize state s
repeat
With probability e: choose a random action a € A
Otherwise: choose a = arg max, Q(s,a’)
Take action a, observe reward r and next state s’
Q(s,a) < Q(s,a) + a[r + ymaxay Q(s',a’) — Q(s, a)]
(Or Q(s,a) «+ (1 — a)Q(s,a) + a(r + ymax, Q(s',a"))
s 4 s
until s is terminal

end for
Return @)

Where’s the Deep Learning part of this?

* Neural Networks are Function approximators and we have some
functions...
e V:S - R
¢ 0:SxA >R
e:S oA

* Deep Reinforcement Learning seeks to approximate these
functions with neural networks

Deep Q-Learning

* Approximate Q-values with a neural network

* Always needed a loss function with neural networks before...

* Can we come up with a loss function here?

* We want this equality to hold: 0 = [r + yrrila’le(S’, a)] —Q(s,a)

* If we can force [r + ymaxQ(s',a’)] — Q(s,a) to be close to 0, we
will have good approxil%lations of Q-values

2
L= <lr + yrrzla,\xQ(s’, a')] — Q(s, a))

How to update tabular Q-
learning to be deep Q-learning

Q-Learning

2
L= (lr + yrrg;xQ(s’, a’)] — Q(s, a))

Algorithm 2 Q-Learning

Initialize Q(s,a) =0 forall s€ S,ac A
Initialize learning rate o € (0, 1] and discount factor v € [0, 1)
Initialize exploration parameter € € (0, 1)
for each episode do
Initialize state s
repeat
With probability e: choose a random action a € A
Otherwise: choose a = arg max, Q(s,a’)
Take action a, observe reward r and next state s’
Q(s,a) « Q(s,a) + a[r + ymaxy Q(s',d') — Q(s,a)] Can’tjust update outputs of a NN directly...
(Or Q(s,a) + (1 — a)Q(s,a) + a(r + ymax, Q(s',a’)) Instead, compute loss and run a step of SGD
s s
until s is terminal
end for

Return @)

Deep-Q Network

Deep Q-Networks (DQNSs):
1. Takein a state
2. Return Q-values for each action

Q(s,a1) What activation function should
the final layer use?

Q(S, aZ)

State: s

Deep Q-Network

Q(s,an)

DQN for Atari

Convolution Convolution Fully connected Fully connected
v hd v v

No input

SN 7/IANN

lIIIi‘I’IHIIIIHI!’lHIII

dodoohh dddoobh

4 £ 4 2 B
' B3 B B2 BN B
o) (@] (@] (®] (@) (@

O
+ 1+
OO

Mnih, et al. 2015 “Human-level control through deep reinforcement

Deep-Q Learning

Initialize DQN to approximate Q
Maintain estimates of Q(s, a) for all (s, a) pairs
Collect experiences, update Q estimates with:

2
Compute Lg = [r + ymaxQy(s’,a’) — Qg(s, a)]
a

update 8 with SGD on Loss function

(non-)Stationarity in RL
Tarkget I{Es_tirE(\e

\ 2
Ly = rr +ymaxQy(s’,a’) — Qols, a)]

We’d like our current estimate Q4 (s, a) to be like our estimate for the next timestep

r+ yrr(lla}ng(S cal).

(non-)Stationarity in RL
Tarkget I{Es_tirE(\e

\ 2
Ly = rr +ymaxQy(s’,a’) — Qols, a)]

We’d like our current estimate Q4 (s, a) to be like our estimate for the next timestep

r+ yrr(lla}ng(S cal).

We do notinclude VQq(s’,a") when calculating VgL, we treat ymaxQy(s', a’) as a constant:
a

(non-)Stationarity in RL
Tarkget I{Es_tirE(\e

\ 2
Ly = rr +ymaxQy(s’,a’) — Qols, a)]

We’d like our current estimate Q4 (s, a) to be like our estimate for the next timestep
!/ !/
r+ yrr(lla}ng(S ,a').

We do notinclude VQq(s’,a") when calculating VgL, we treat ymaxQy(s', a’) as a constant:
a

1. maxQq (s’,a’) is not differentiable
a

(non-)Stationarity in RL
Tarkget I{Es_tirE(\e

\ 2
Ly = rr +ymaxQy(s’,a’) — Qols, a)]

We’d like our current estimate Q4 (s, a) to be like our estimate for the next timestep

r+ yrr(lla}ng(S cal).

We do notinclude VQq(s’,a") when calculating VgL, we treat ymaxQy(s', a’) as a constant:
a

1. maxQq (s’,a’) is not differentiable
a

2. VQg(s',a") would tell us how to update the target to match our current estimate (that’s
backwards)

(non-)Stationarity in RL
Tarkget I{Es_tirE(\e

\ 2
Ly = rr +ymaxQy(s’,a’) — Qols, a)]

We’d like our current estimate Q4 (s, a) to be like our estimate for the next timestep

r+ yrr(lla}ng(S cal).

If we included the target gradient, it would be like trying to update our estimate
to fit our target AND update our target to fit our estimate at the same time

(non-)Stationarity in RL
Tarkget I{Es_tirknit(\a

\ 2
Ly = rr +ymaxQy(s’,a’) — Qols, a)]

We’d like our current estimate Q4 (s, a) to be like our estimate for the next timestep

r+ yrr(lquQg(s cal).

If we included the target gradient, it would be like trying to update our estimate
to fitour target AND update our target to fit our estimate at the same time

Using only the gradient of the estimate helps with stationarity

Double DQN

Use a separate target and
prediction network for
stability. Every so often,
update the target network
to be the Q-network.

Image source:

Q(St, A)) Q(Si, Ar) + o R +py maxQ(Sis., o] -@(5:. A

TARGET NETWORK

https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/
https://rubikscode.net/2021/07/20/introduction-to-double-q-learning/

Dueling Q Networks

Advantage function A(s, a):

Q(s, a) =V(s) + A(s, a)

Estimate V(s) and the
advantage A(s, a)
separately to create
Q-value estimates.

#

Do whatever you want here ~—|

\

—

1
|

S
] A(s, a)

Vanilla Q network

Dueling Q network

Q(s,a)

=V(s) + (A(s,a) - 1311'] > A(s.a))

Q-Values to Policy

What do we do after we learn Q? We need to turn them into a policy.

For a given state, take the action associated with the best Q-value.

n(s) = argmax, Q(s,a)

Policies

Why learn Q-values first and turn them into a policy? Why not just
learn a policy?

Policies

Why learn Q-values first and turn them into a policy? Why not just
learn a policy?

m(als)

r(a;|s)

State: s

Policy Network

r(anls)

Policies

Why learn Q-values first and turn them into a policy? Why not just
learn a policy?

m(aqls)
State° S m(az|s) What should the
) Policy Network activation function be
for the final layer?

r(anls)

How do we train a policy network?

How do we train a policy network?

Need to find an appropriate loss function.

How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy T such that the value of the start state is maximized:

How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy T such that the value of the start state is maximized:

T = argmax, (V(SO))

How do we train a policy network?

Need to find an appropriate loss function.

What’s our objective?

Find a policy T such that the value of the start state is maximized:

T = argmax, (V(SO))

I How can we maximize V (sq)? I

Let /(0) be our objective function:

J(6) =V (so)

Let /(0) be our objective function:

J(8) =V (so)
](9) — IE:[Go]

Let /(0) be our objective function:

J(8) =V (so)
](9) — IE:[Go]

J(©) =) Pr(]6) G(r)

Let /(0) be our objective function:

J(8) = V(s0)
J(8) = IE:[Go]
J(8) = 2 Pr(/rw) o

Probability of a
trajectory occurring

Let /(0) be our objective function:

J(8) = V(s0)
J(8) = IE:[Go]
J(8) = 2 Pr(/rw) o

Probability of a
trajectory occurring

Pr(z|8) = HZ=0P(St+1|St: a)mg(az|se)

Let /(0) be our objective function:

J(8) = V(s0)
J(8) = IE:[Go]
J(8) = 2 Pr(/rw) o

Probability of a
trajectory occurring

Pr(z|8) = HZ=0P(St+1|St: a)mg(az|se)

/ oy
Probability of taking an
State transition action for a given state

Probability

Let /(0) be our objective function:

J(6) =V (so)
J(6) = E[G,]
J0) =Y Pr(z]0) G(x)
\
/ T / Ezfgg?srsfa specific

Sum over all possible Probability of a
trajectories trajectory occurring

Pr(z|8) = HZ=OP(St+1|Str a)mg(az|se)

/ oy
Probability of taking an
State transition action for a given state

Probability

Log-Derivative Trick

We can rewrite the derivative of a function using the derivative of
the natural log function:

v
Vinf() = o3

Vf(x) = f(x)VIn f(x)

When applied to Pr(z|0):
Vg Pr(z]|6) = Pr(z]|0) Vg InPr(z|6)

Log Probability Trick

Pr(z|6) = HZ=OP(St+1|St: a.)mg(ag|se)

Log Probability Trick

Pr(z|0) = M=o P(St41lSt, a)mg(aclse) This gradient term is

what we want to

R
Vo Pr(z|6) = Pr(t|6) Vg In Pr(z|60) calculate

Log Probability Trick

Pr(z|0) = M=o P(St41lSt, a)mg(aclse) This gradient term is

what we want to

R
Vo Pr(z|6) = Pr(t|6) Vg In Pr(z|60) calculate

Vg In PF(T'H) — VQ
t

In P(s¢iqlse, a)mg(aelse)

T
=0

Log Probability Trick

Pr(z|0) = M=o P(St41lSt, a)mg(aclse) This gradient term is

what we want to

R
Vo Pr(z|6) = Pr(t|6) Vg In Pr(z|60) calculate

Vg In PF(T'H) — VQ
-
Vo InPr(t|0) =Vy) InP(sitqlse, ar) +Inmg(as|sy)
t=0

In P(s¢iqlse, a)mg(aelse)

T
=0

Log Probability Trick

Pr(z|0) = M=o P(St41lSt, a)mg(aclse) This gradient term is

what we want to

R
Vo Pr(z|6) = Pr(t|6) Vg In Pr(z|60) calculate

Log of product -> sum of logs

In P(s¢iqlse, a)mg(aelse)
0

Vg In PF(T'H) — VQ

T
T t=

Log of product -> sum of logs

Vo InPr(t|0) =Vy) InP(sitqlse, ar) +Inmg(as|sy)

t=0
r Derivative of sum -> sum of derivative

VoInPr(z|0) =) Voln P(siiqlss, ar) + Vglnmg(ag|s,)
t=0

Gradient of a trajectory

T
Vo InPr(7|0) = Z Voln P(si+11S, a:) + Vglnmg(ag|sy)

o]

State transition function
does not depend on 6!

T
V, In Pr(z|0) = z Voln 1y (a,|s,)
t=0

Policy Gradient Derivation

Putting it all back together:

](9) = z Pr(r|9) G(T) Our Objective

Policy Gradient Derivation

Putting it all back together:

J(6) = z Pr(z|0) G(1) Our Objective

T
VH](H) — 2 Vg PI‘(T|9) G(T) Take the gradient
T

Policy Gradient Derivation

Putting it all back together:

J(0) = z Pr(t|0) G(7) Our Objective
Vo (0) = 2 Vg Pr(z|0) G(7) Take the gradient

VQI(H) — z PI‘(T|9)G(T)V9 In PI‘(T|3) Log-Derivative Trick
T

Policy Gradient Derivation

Putting it all back together:

J(6) = z Pr(z|0) G(1) Our Objective
VH](H) — 2 Vg PI‘(T|9) G(T) Take the gradient

VQ](H) = z PI‘(T|9)G(T)V9 InPr(z|@) Log-Derivative Trick

VHI(Q) — z [PI‘(T|9)G(T) z Voln g (at|5t) | Gradient of a Trajectory

T t=0

Policy Gradient Derivation

Putting it all back together:

J(6) = z Pr(z|0) G(1) Our Objective
VH](H) — 2 Vg PI‘(T|9) G(T) Take the gradient

VQ](H) = z PI‘(T|9)G(T)V9 InPr(z|@) Log-Derivative Trick

VHI(Q) — z [PI‘(T|9)G(T) z Voln g (at|5t) | Gradient of a Trajectory

T t=0

Vo] (0) = E[G, z Volnmg(a;|sy)] Convert back to Expectation

Direction to move in to increase

POliCy G ra d ie nt Bigger step if better returns probability of trajectory

fo [/

T
Vo) (6) = E[Gy) VolnTo(aclso))
t=0

We will never be able to sum over all possible trajectories...
How do we get around this?

Direction to move in to increase

Policy G ra d ie nt Bigger step if better returns probability of trajectory

T
Vo) (6) = E[Gy) VolnTo(aclso))
t=0

We will never be able to sum over all possible trajectories...
How do we get around this?

Sampling!

1. Collectn trajectories following policy g

2. Pr(z|0) = 1/n for each trajectory

3. Calculate the total return for each trajectory G (1)

Reward-To-Go Policy Gradient

You can also do the policy gradient derivation such that the gradient
does not depend on G, but on G;

T
Vo) (6) = E[)_ G Volnmy(als,)]
t=0

Or

T
Vo) (6) = EL) Q(st,a,) Volnmg(aclsy)]
t=0

REINFORCE (Policy Gradient Learning)

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization 7(als, @)
- - - - ’

Initialize policy parameter 8 € RY

Repeat forever:

Generate an episode Sy, Ag, Ry,...,Sr_1,Ar_1, Ry, following 7 (-|-, 0)
For each step of the episode t =0,...,7T — 1:

G + return from step ¢
0 «— 0 + ay' GV Inw(A;|S:, 0)

Source: Sutton and Barto, Reinforcement Learning: An Introduction

REINFORCE (Policy Gradient Learning)

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization 7(als, @)
Initialize policy parameter @ € RY
Repeat forever:
Generate an episode Sy, Ag, Ry,...,Sr_1,Ar_1, Ry, following 7 (-|-, 0)
For each step of the episode t =0,...,7T — 1:
G + return from step ¢
0 — 0+ ay'GVgInn(A,|S;,0)

Why is the update
adding the gradient
instead of subtracting?

Source: Sutton and Barto, Reinforcement Learning: An Introduction

REINFORCE (Policy Gradient Learning)

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization m(al|s, @)
Initialize policy parameter @ € RY
Repeat forever:
Generate an episode Sy, Ag, Ry,...,Sr_1,Ar_1, Ry, following 7 (-|-, 0)
For each step of the episode t =0,...,7T — 1:
G + return from step ¢

0 — 0+ ay'GVgInn(A,|S;,0)

Why is the update When 1t is based on a softmax, Vg Inmg(als) is
adding the gradient actually easy to compute by hand using log rules
instead of subtracting? and the factthatlne* = x

Source: Sutton and Barto, Reinforcement Learning: An Introduction

Variance of REINFORCE

100
-1000
10

Starting State Trajectories Return

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization m(als, 0)

Initialize policy parameter 8 € RY
Repeat forever:
Generate an episode Sy, Ag, Ry, ...,. St_1,Ar_y1, Ry, following 7 (-|-, 0)
For each step of the episode t =0, ..., T-1:
G + return from step ¢
0 — 0+ ay' GV Inn(A|S;,0)

Variance of REINFORCE

REINFORCE has high variance

100
-1000
10

Starting State Trajectories Return

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization m(a|s, 8)

.-, . . . ’
Initialize policy parameter 6 € R4

Repeat forever:
Generate an episode Sy, Ag, Ry, ...,. St_1,Ar_y1, Ry, following 7 (-|-, 0)
For each step of the episode t =0, ..., T-1:

G + return from step ¢
0 — 0+ ay' GV Inn(A|S;,0)

Variance of REINFORCE

REINFORCE has high variance

. 100
: -1000
) 10
It depends heavily on the 0
returns of a single episode
Starting State Trajectories Return

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization m(a|s, 8)

Initialize policy parameter 8 € RY

Repeat forever:
Generate an episode Sy, Ag, Ry, ...,. St_1,Ar_y1, Ry, following 7 (-|-, 0)
For each step of the episode t =0, ..., T-1:

G + return from step ¢
0 — 0+ ay' GV Inn(A|S;,0)

Variance of REINFORCE

REINFORCE has high variance

100
-1000
10
It depends heavily on the o
returns of a single episode
Starting State Trajectories Return

1 SIN CE, A Monte-Car icy-Gradient Me spisodic
We Ca n re d u Ce Va rl a n C e by REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)
C O l leCti n g m O re t h a n O n e Input: a differentiable policy parameterization m(a|s, 8)

Initialize policy parameter 8 € RY
tra M e CtO r Repeat forever: : . .
J y Generate an episode Sy, Ag, Ry, ...,. St_1,Ar_y1, Ry, following 7 (-|-, 0)
For each step of the episode t = 0,. .., T-1:
G + return from step ¢
0 — 0+ ay' GV Inn(A|S;,0)

Variance of REINFORCE

REINFORCE has high variance

100
-1000
10
It depends heavily on the o
returns of a single episode
Starting State Trajectories Return

We canre d uce va ri ance by REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

C O l leCti n g m O re t h a n O n e Input: a differentiable policy parameterization m(a|s, 8)

Initialize policy parameter 8 € RY
tra M e CtO r Repeat forever: : . .
J y Generate an episode Sy, Ag, Ry, ...,. St_1,Ar_y1, Ry, following 7 (-|-, 0)
For each step of the episode t = 0,. .., T-1:
G + return from step ¢
0 — 0+ ay' GV Inn(A|S;,0)

Or...

Baseline Functions

Baseline Functions

Subtracting a baseline function from G; does not change the expected
gradient

Baseline Functions

Subtracting a baseline function from G; does not change the expected
gradient

A baseline function b(s) is any function that depends only on the state
(not on actions)

Baseline Functions

Subtracting a baseline function from G; does not change the expected
gradient

A baseline function b(s) is any function that depends only on the state
(not on actions)

T
V) (6) = E[) (Ge=b(s)) Volnmg(acs)]
t=0

Baseline Functions

Subtracting a baseline function from G; does not change the expected
gradient

A baseline function b(s) is any function that depends only on the state
(not on actions)

T
V) (6) = E[) (Ge=b(s)) Volnmg(acs)]
t=0

Baseline functions can reduce the variance of the gradient estimate

Baseline Functions

Subtracting a baseline function from G; does not change the expected
gradient

A baseline function b(s) is any function that depends only on the state
(not on actions)

T
V) (6) = E[) (Ge=b(s)) Volnmg(acs)]
t=0

Baseline functions can reduce the variance of the gradient estimate

I The value function V(s) is the ideal baseline function I

REINFORCE with Baseline

REINFORCE with Baseline (episodic), for estimating mg ~ 7.

Input: a differentiable policy parameterization 7(als, @)

Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes o > 0, a%¥ > 0

Initialize policy parameter 6 € R? and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7_1,Ar_1, Ry, following 7(-|-, 0)
Loop for each step of the episode t =0,1,...,7T — 1:
G Ypora VT R (Gr)
0 — G —0(S;,w)
w < w+aVoVo(S,,w)
0 — 0 + a4t 5V Inn(As|Ss, 0)

Pseudocode uses SGD, but you can just as easily use any

other optimizer (e.g., Adam)
Source: Sutton and Barto Chapter 13

REINFORCE with Baseline

REINFORCE with Baseline (episodic), for estimating mg ~ 7.

Input: a differentiable policy parameterization 7(als, @)

Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes o > 0, a%¥ > 0

Initialize policy parameter 6 € R? and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7_1,Ar_1, Ry, following 7(-|-, 0)
Loop for each step of the episode t =0,1,...,7T — 1:
G Ypora VT R (Gr)
0 — G —0(S;,w)
w — w+ a™oVo(S,,w) |+
0 — 0 + a?+" 3V Inn(4;|S;, 0)

Gradientof L = %6"2

Pseudocode uses SGD, but you can just as easily use any

other optimizer (e.g., Adam)
Source: Sutton and Barto Chapter 13

Extra Material

Sutton and Barto: Policy Gradient methods chapter 13
http://www.incompleteideas.net/book/RLbook2020.pdf

Spinning up policy gradient:
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

http://www.incompleteideas.net/book/RLbook2020.pdf
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

Derivation of REINFORCE w/ Baseline Function

First, let’s show that the gradient estimate is unbiased. We see that with the baseline, we can distribute
and rearrange and get:

VoEr oy [R(T)] = Ereor,

T-1 o
Zve log mg(ax|st) (Zw) -V 108;7?9(%|3t)b(3t)]
t=0

Due to linearity of expectation, all we need to show is that for any single time £, the gradient of
log mg(az|s;) multiplied with b(s;) is zero. This is true because

Ereory | Vo l0g (a2]30)b(51) | = B |Eairaer 1 [Vo log ma(ae]5e)b(s.)]|

— Esﬁ:t,aoztA b(‘st))]E'StJrl:T,at:T—l [Vg log "Té"(a"iE |st)1]

b

¥

E
= IES{):ha[]:t—l b(st) ' IEat [V() log Wg(at |3t)]:|

—E b(s,) -0 =0

50:¢,Q0:¢—1

Derivation: https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/

	Slide 1
	Slide 2: What we’ve done so far
	Slide 3
	Slide 4: Why Reinforcement Learning?
	Slide 5
	Slide 6
	Slide 7: Atari!
	Slide 8: Markov Decision Processes (MDPs)
	Slide 9: Markov Decision Processes (MDPs)
	Slide 10: States
	Slide 11: Actions
	Slide 12: Reward Function
	Slide 13: Transition Function
	Slide 14: Solving MDPs
	Slide 15: Gamma
	Slide 16: Key Terms
	Slide 17: Breakout Example
	Slide 18: Key Terms
	Slide 19: Value Function
	Slide 20: Value Function goes to Policy
	Slide 21: Value Iteration
	Slide 22: Value Iteration
	Slide 23: Tabular Value Iteration
	Slide 24: Q-Learning
	Slide 25: Q-Learning
	Slide 26: Collecting Experiences
	Slide 27: Updating estimates of Q-values
	Slide 28: Tabular Q-Learning
	Slide 29: Where’s the Deep Learning part of this?
	Slide 30: Deep Q-Learning
	Slide 31: Q-Learning
	Slide 32: Deep-Q Network
	Slide 33: DQN for Atari
	Slide 34: Deep-Q Learning
	Slide 35: (non-)Stationarity in RL
	Slide 36: (non-)Stationarity in RL
	Slide 37: (non-)Stationarity in RL
	Slide 38: (non-)Stationarity in RL
	Slide 39: (non-)Stationarity in RL
	Slide 40: (non-)Stationarity in RL
	Slide 41: Double DQN
	Slide 42: Dueling Q Networks
	Slide 43: Q-Values to Policy
	Slide 44: Policies
	Slide 45: Policies
	Slide 46: Policies
	Slide 47: How do we train a policy network?
	Slide 48: How do we train a policy network?
	Slide 49: How do we train a policy network?
	Slide 50: How do we train a policy network?
	Slide 51: How do we train a policy network?
	Slide 52: How do we train a policy network?
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Log-Derivative Trick
	Slide 61: Log Probability Trick
	Slide 62: Log Probability Trick
	Slide 63: Log Probability Trick
	Slide 64: Log Probability Trick
	Slide 65: Log Probability Trick
	Slide 66: Gradient of a trajectory
	Slide 67: Policy Gradient Derivation
	Slide 68: Policy Gradient Derivation
	Slide 69: Policy Gradient Derivation
	Slide 70: Policy Gradient Derivation
	Slide 71: Policy Gradient Derivation
	Slide 72: Policy Gradient
	Slide 73: Policy Gradient
	Slide 74: Reward-To-Go Policy Gradient
	Slide 75: REINFORCE (Policy Gradient Learning)
	Slide 76: REINFORCE (Policy Gradient Learning)
	Slide 77: REINFORCE (Policy Gradient Learning)
	Slide 78: Variance of REINFORCE
	Slide 79: Variance of REINFORCE
	Slide 80: Variance of REINFORCE
	Slide 81: Variance of REINFORCE
	Slide 82: Variance of REINFORCE
	Slide 83: Baseline Functions
	Slide 84: Baseline Functions
	Slide 85: Baseline Functions
	Slide 86: Baseline Functions
	Slide 87: Baseline Functions
	Slide 88: Baseline Functions
	Slide 89: REINFORCE with Baseline
	Slide 90: REINFORCE with Baseline
	Slide 91: Extra Material
	Slide 92: Derivation of REINFORCE w/ Baseline Function

