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EEPS-DATA 1720

Tackling Climate Change with Machine Learning

Explore recent work that leverages machine learning (ML) as a tool for tackling climate change, with a focus on climate science

and climate adaptation. We will discuss how modern machine learning can be used to assess, understand and respond to

projected climate extremes, natural disasters, and environmental change. The target audience for this course is advanced undergraduate
students or graduate students who are interested in using ML and Al to address high-impact global issues. Students will read and discuss recent
research papers on ML for Climate and complete an original project as a member of a multidisciplinary team. Course topics evolve with the
literature, but may include:

Climate themes: Climate models, Natural disasters and extreme weather, Farms and forests, Oceans and marine ecosystems, Sustainability of
Al/computing

Machine learning topics: Physics-informed learning, Surrogate models and emulators, Explainable Al, Downscaling and superresolution, Learning
with Limited Labels, Scientific Foundation Models.

EEPS 1720 is included on the List of non-CS courses that can count towards CS requirements.

Prerequisites:

* Familiarity with the fundamentals of machine learning and deep learning through coursework (e.g. CSCI 1420, CSCI 1470), research or project
experience.

*  Programming experience in Python, Matlab, R or another high-level programming language.

* Aninterestin climate science and climate adaptation. Prior coursework in Earth or environmental science is helpful, but not required. Course
lectures will introduce key scientific concepts.

* Enrolling: Dueto the discussion-based format of the course, enrollment is limited. To enroll, (1) complete the EEPS 1720 Interest Form and (2)
request an override on CAB.


https://cs.brown.edu/degrees/undergrad/concentrating-in-cs/concentration-handbook/

Structured Data

Images are a structured type of data Lemonade stand data is not structured
The structure (order and layout) of The order of features we use does not

pixels matters change training
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Other Types of Structured Data Types

P CFG edge

Y(ca » > EXIT )

Point Clouds (from LIDAR) Code Graphs



Geometric Deep Learning

* We turned to convolutions for image data to give our networks
“spatial reasoning”

* By Explicitly modelling the relationship of our data, we can
achieve better results

* Geometric Deep Learning is the subfield of DL dedicated to
learning representations of structured data.



Goal: Take as input data from satellites, predict carbon dioxide

ldea 1: Take all of the data as input, make it look like an image, use
CNNs to learn to output carbon monoxide amounts

https://newton-climate.github.io/#research



Goal: Take as input data from satellites, predict carbon dioxide

ldea 1: Take all of the data as input, make it look like an image, use
CNNs to learn to output carbon monoxide amounts

Issue: Maps ®

https://newton-climate.github.io/#research



World Mercator projection with true country size and shape added

Issue: Trying to represent a 3D
sphere on a 2D plane

A 2D convolution doesn’t make sense here...
But there’s still structure (don’t just want an MLP)
What about a Spherical Convolution!
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World Mercator projection with true country size and shape added

Instead of padding with 0’s, “pad”
with adjacent locations on earth

Convert 2D convolution on
grids to work on Spheres
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Manifolds

* Topological Space that looks
locally like Euclidean space, but
can be globally curved

* For example, the Earth

* Can we generalize convolutions
to more than just spheres?

Need to specify which points are “close” to other
points, convolve neighborhoods of points
together

sphere
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Klein bottle



Extending Convolutions to Manifolds

A circle is a manifold in 2D
(like a sphere or taurus in 3D)

For every point on the manifold,
connectitto “close” points

What data structure does this lead to?




Geometric Deep Learning

* |ltis often confusing why much of Geometric Deep Learning deals
with graphs...
* Geometry happens in continuous space
 Graphs are discrete

Molecules
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What’s Hard About Neural Networks for

Graphs?

e Can have different numbers of nodes

* Can be arbitrarily complex
* Different numbers of edges
* Different edge patterns
* Weighted edges

How will a Graph Convolution have to
differ from a 2D convolution?
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Example Dataset

CiteSeer Dataset: ! o es demsiaie

Collection of academic papers: « N \ e
* directed edges connect papers iy . .' i
to the papers they cite Mo oy @V PR P g o X %P
0. T g "B .2 5 :‘
* Words used by each paper VAR NS £ ot NS
* Vector of length 3703 for each R L R TP
word in “vocabulary”, 1 if present O e WP AT E & than
if not m—— Sl W e

Muh-agent

ty-First N&!Hﬁé?@?ﬂf‘é i@%@%n%ﬂﬁ&%ﬁ%‘?@ll’i‘g*‘&%&kﬂm 8—12 O,%GY@MQHMQ%C husetts.

Ruan, Jianhua & Zhang, Weixiong. (2006). Identification and Evaluation of Weak Community Structures in Networks.. Proceedings of the Twen



Graph Convolutions: Message Passing

 Graph Neural Networks (GNNs) need to share information
between connected nodes

* This sharing of information is called message passing



Graph Convolutions

Fora graph G=(V, E)

Each node v; has features x;, each edge (v;, V)
can also have features (e.g., weight)

1. Start by mapping x; to hidden features h;
finit(xi) = hy




Graph Convolutions

Fora graph G=(V, E)

Each node v; has features x;, each edge (v;, V)
can also have features (e.g., weight)

1. Start by mapping x; to hidden features h;
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Message Passing

Fora graph G=(V, E)

Each node v; has features x;, each edge (v;, V)
can also have features (e.g., weight)

1. Start by mapping x; to hidden features h;
finie(xi) = hy

2. Perform message passing among adjacent

nodes




Message Passing

e @ )

We use a neural network f;,,s, to compute a
message between two nodes in the graph

* Inputs
« Hidden states For each node
» Features along the edge

« Output
» Message vector




Message Passing

el () >
fmsg(oo) ->

0-O



Message Passing




Message Passing

el @ ) >
el @ )

el @ )

Aggregate all the messages to compute
the output hidden state vector for h,

Messagel

Message2

Message3

(e.g. sum up the messages) NOTE: The aggregation function can differ
leading to different formulations of GNNs



Average of neighbor’s Learnable weights B times

Gra phSage embeddings for previous round previous embedding
\
k-1
k _ u _ k—1
{ueN(w)}
Hidden features 7. = hK \ Embedding after all rounds of
after k rounds of % v :
. message passing

message passing

Weights layer for

k’th round

Nonlinear activation function
(e.g., RelLU)
W and B are learnable parameters!



After K iterations, we end with a vector of features z,,
for each node in our graph.

What might we actually want to predict? i o
T B ‘.."... ... g
- Node level predictions: What is the topic of a T
pape r? D A (R :\'.V.::m_-_
- Link Prediction: For a new paper, what other papers iV Sl
might it cite? 2
- Graph level predictions Think/Pair/Share-

How can we turn features for each node into
node-level predictions?

What about link prediction?

Graph level predictions are hard, we have |V|
vectors of features, which may vary between
different graphs we take as input), how can we
get a single output from variable sized input?

rollware engmesnng



Node Prediction

Each node v has a learned representation z,,, we can learn a fully-
connected layer to go from features z,, to output

f(Zv) — O-(Wzv)



Link Prediction

Learn a function that takes two nodes as input and predicts the
presence (or absence) of an edge

f(zy, 2z) = oc(W(2,© zy,))

/

Element-wise product



Global Pooling

* We covered MaxPool in CNNs, which looks at the maximum value
In a local neighborhood

* We can consider an alternative way to do MaxPool, which looks at
the entire feature for all inputs and returns a single max value

224 % 224X 3 224 X 224 x 64

f,r"

' X/H b12i2s Normally, CNNSs flatten the results of their
,"V 740 final convolution and feed into a linear layer

,:Zcfm of W X H %X C.
,f J’IJ}/IX 28 0 28 % F | TxTx512
' ” '”"; 1% 1 %4096 1% 1% 1000
This has to be the same size for all
' examples!
nvolution4+ RelLT
max |:----:|'|i:|;.;

1 fully connected+ReLU

softrmax




Global Pooling

* We covered MaxPool in CNNs, which looks at the maximum value
In a local neighborhood

* We can consider an alternative way to do MaxPool, which looks at
the entire feature for all inputs and returns a single max value

224 % 224X 3 224 X 224 x 64

;f Alternatively, we can to the max over each
: X/ channel in the final convolutional output

f:/’ |..£".-"']|.3.-"’ 28

A
iy B G = 220G

/ f*/’V 28 28 x 512 H b TRTXB12 Output will have 512 features instead of 4096

(1 , 1x 140896 11 x 1000
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fully inected+HelL
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Global Pooling

* We covered MaxPool in CNNs, which looks at the maximum value
In a local neighborhood

* We can consider an alternative way to do MaxPool, which looks at
the entire feature for all inputs and returns a single max value

224 % 224X 3 224 X 224 x 64

f,r"

i #gy
f:/’ 112 = ]|.3.-"' 28 .
7 7, MaxPooling loses lots of data from each
'“'jf:;'/’}}“;m o1z . mnin channel... AveragePool becomes more
i “ '“‘ 12 Py LXLxA006 1 x1 x 1000 common when performing global pooling
operations

mvolution+ Rel.lT

[TTEE ST --:|'|i:|;..;
fully inected+HelL

softrmax




Implementing GNNs

Best Resources: PyG

- Pytorch Geometric library

- Lots of industry users and well supported
models and datasets

Tensorflow Version: tf_geometric
- Not as many users, but if you really like
tensorflow, maybe it’s for you

TF_GEOMETRIC

SAGEConv(in_channels, out_channels)



AlphalFold

* Goal: Given amino acid sequence, predict folding structure of
protein

* Encodes each amino acid into a node and connects adjacent
amino acids

* Alpha Fold 1 uses convolutions, Alpha Fold 2 uses attention




Graph Attention Networks (GATSs)

Graph Attention Netwroks
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Image source: https://epichk m/blog/2023/gat- r-explained/
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Other Important Things



Understanding Model Behavior

What goes on inside LLMs? Do they store facts? How/where do they
store facts?

Linear Probe:

1. Train a neural network on your desired task (e.g., Language
Modeling)

2. Train alinear classifier (i.e., add a new dense layer) that uses a
layer of hidden features as input to predict something else



Understanding Model Behavior

What goes on inside LLMs? Do they store facts? How/where do they
store facts?

Confidence profiles
Probe 1 Probe 2

> Easy example 7

Have probes predict
“confidence” of predictions

/ Hard example o

hidden layer 1 hidden layer 2 Probe1 Probe2 Output

input layer




Understanding Model Behavior

What goes on inside LLMs? Do they store facts? How/where do they
store facts?

Confidence profiles
Probe 1 Probe 2
e

/ Easy example 7

Have probes predict
“confidence” of predictions

/ Hard example '7
input layer

hidden layer 1 hidden layer 2 Probe1 Probe2 Output
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Understanding Model Behavior

What goes on inside LLMs? Do they store facts? How/where do they
store facts?

Train a linear probe on an LLM to predict “is this person related to basketball”
Take as input (name, basketball_player?), use intermediate features of network to

predictif the name is a basketball player or not.

If you can predict that well using intermediate features, those features
are “storing the knowledge” of these basketball players



Other Methods for eXplainable Al (XAl)

* Extensive post of methods for explainability and auditing of neural
network results: https://neptune.ai/blog/explainability-
auditability-ml-definitions-technigues-tools
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Ablation Studies

What model change actually led to the greatest improvement?

Table 1. Ablation Studies of FastReID-King. (ResNet50, 384 < 128).

Auto- Soft Non-

Gem

Circle

Backbone

Cosine Lr

ResNet50 IBN Augment Margin Local  Pooling Loss Freeze Scheduler Rl mAP  mINP
Vv 855 5.2 379
Vv v 89.2 791 439
Vv Vv 849 728 34.5
v 4 86.1 76.3 39.0
Vv vV 873 T7.6 42.0
Vv vV 874 T 40.3
Vv v 88.7 783 41.8
v Vv 859 747 36.4
Vv v v 88.8 778 40.3
v v Vv 89.5 783 41.6
Vv v Vv v 89.5  T8.35 42.5
v v v v v v/ Vv Vv v 013 816 476
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Turning GPT to Chat-GPT

Step 0: Train GPT

Source: OpenAl

Step 1

Collect demonstration data
and train a supervised policy.

A prompt is sample from
our prompt dataset.

A labeler demonstrates
the desired output
behavior.

This data is used to
fine-tune GPT-3.5 with
supervised learning.

~
L

Explain reinforcement

learning to a 6 year old.

o)

V4

We give treats and

punishments to teach...

Step 2

Collect comparison data and

train a reward model.

A prompt and several
model outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This data is used to

train our reward model.

f'\n

L9
Explain reinforcement
learning to a 6 year old.

) o

In reinforcement Explain rewards...
learning, the
agentis.

o )

In machine ‘We give treats and
learning... punishments to
teach...

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates

an output.

The reward model
calculates a reward
for the output.

The reward is used

to update the policy

using PPO.

A=

Write a story
about otters.

Once upon a time...




Turning GPT to Chat-GPT

Step 0: Train GPT

Source: OpenAl

Step 1

Collect demonstration data
and train a supervised policy.

F
A prompt is sample from ./

our prompt dataset. Explain reinforcement

learning to a 6 year old.

A labeler demonstrates @

the desired output

behavior. 4
We give treats and
punishments to teach...
SFT
o._0®
/ N
This data is used to '\5’;7;/'
fine-tune GPT-3.5 with e e
supervised learning. V4

22

Computationally expensive

Step 2

Collect comparison data and
train a reward model.

A prompt and several f:}
model outputs are Explain reinforcement
sampled. learning to a 6 year old.

) o

In reinforcement Explain rewards...
learning, the
agentis.

o )

In machine ‘We give treats and
learning... punishments to
teach...

L. y v
A labeler ranks the
outputs from best
to worst. o,o,o,,e
RM

.0
This data is used to ./\9?.5&}
train our reward model. }52{

0-0-0-0

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is . ¢
sampled from Write a story
the dataset. about otters.

|

Y

PPO

The PPO model is P
initialized from the .’9?.?“.
supervised policy. W

The policy generates

an output.

RM
The reward model o @
calculates a reward .‘9?.5&\.
for the output. W

The reward is used
to update the policy rk
using PPO.




Turning GPT to Chat-GPT

Step 1 Step 2 Step 3
Collect demonstration data Collect comparison data and Optimize a policy against the
and train a supervised policy. train a reward model. reward model using the PPO

reinforcement learning algorithm.

r~ A prompt and several r~ A new prompt is
A prompt is sample from (¥ promp w promp v ¢
our prompt dataset. Explain reinforcement model outputs are Explain reinforcement sampled from Write a story
learning to a 6 year old. sampled. learning to a 6 year old. the dataset. about otters.
¢ In ‘re-nfprcemem Explain rewards..
) e e . PPO
Step 0: Train GPT The PPO model is 2
A labeler demonstrates () 0 initialized from the QWQ
n machine ‘We give treats and . .
the desired output f I‘Ea,m,?g,_ pu?uutser;rgiu?tstc Super\”SEd pO“Cy. o e
behavior. L= “ v
We give treats and *

punishments to teach...

outputs from best

The policy generates )
¢ A labeler ranks the @ an output. Once upon atime...

SFT
M to worst. 0>0>0>9 *

. . RM
ThIS data is used to . .\\'S.Q(/. The reward model s &
f|ne'tune GPT‘35 W|th L] ® Calcu|ates a reward .ay.K\.
supervised learning. @ é@ au for the output. W

o._®
This data is used to o’\y?f&)o *
train our reward model. }5&{

The reward is used
to update the policy rk

Computationally expensive 0-0-0-0

Source: OpenAl Smaller dataset, less computationally expensive I




Supervised Fine Tuning (SFT)

* The LLM after Pre-Training may have some problems
* Outputs may be repetitive
* May be rude, racist, or otherwise not a good “chatter”

* Need to align the LLMs behavior with desired behavior
* Collect data on “good” responses to questions



Supervised Fine Tuning (SFT)

* The LLM after Pre-Training may have some problems

* Outputs may be repetitive
* May be rude, racist, or otherwise not a good “chatter”

* Collect dataon “good” responses to
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From $40 an hour - Part-time, Full-time
You must create an Indeed account before continuing to the company website to apply

Apply now & ] (D)



Supervised Fine Tuning (SFT)

* The LLM after Pre-Training may have some problems

* Outputs may be repetitive

* May be rude, racist, or otherwise not a good “chatter”

* Need to align the LLMs behavior wi
* Collect dataon “good” responses to

We pay smart folks to train Al.

D\ DA &

Math Tutor - Al Trainer

DataAnnotation & - 39 W

Tallahassee, FL « Remote

From $40 an hour - Part-time, Full-time
You must create an Indeed account before continuing to the company website to apply

Apply now & ] (D)

*| do not guarantee this is not a scam job*




Supervised Fine Tuning (SFT)

I SFT is where LLMs “learn to answer questions”

Step1
Collect demonstration data,
and train a supervised policy.

Raw text Demonstrations
A (low quality, high quantity) (high quality, low quantity)
promptis
sampled from our .
Ex_plaln the moon Prompt:
prompt dataset. landing to a 6 year old -
| Pre-training Supervised fine-tuning Should | add chorizo
Y to my paella?
A labeler
demonstrates the @ Feedback (completion):
desired output Y Absolutely! Chorizo is a
behavior. S Br e et popular ingredient in many
e paella recipes
This data is used SFT Base LLM SFT Model
to fine-tune GPT-3 2 ,
with supervised AT GPT, PaLM, LLaMA, MPT-7B, StableLM,  Alpaca, Dolly, Vicuna, Guanaco, MPT-
. i Falcon, RedPajama-INCITE, StarCoder 7B-Instruct, StarChat
g. 2
EEE

Initialized with random weights Initialized with Base Model



Reinforcement Learning with Human
Feedback

* Train a model to rank possible outputs from an LLM

* Turn these rankings into rewards
* Use these rewards for reinforcement learning (next topic, after

break)
:[Agent]

state reward action
s, | IR A,

R, ( |

5., | Environment ]-l

e

-+




Hallucinations

* Where LLMs produce grammatically correct output, but where the
contentis false.



Hallucinations

* Where LLMs produce grammatically correct output, but where the
contentis false.

@ How many R's are in the word strawberry

The word "strawberry" contains one 'r'.

@ Are you sure? Aren't there two?

I apologize for the error in my previous response. You are absolutely correct, and I thank
you for catching that mistake. Let me provide the correct answer:
The word "strawberry" contains two 'r's.

To break it down:

s-t-r-a-w-b-e-r-r-y
There is one 't' after the initial "st" and another 'r' near the end of the word.

Thank you for bringing this to my attention. It's a good reminder of the importance of
double-checking even seemingly simple information.




Hallucinations

* Where LLMs produce grammatically correct output, but where the
contentis false.



Hallucinations

* Where LLMs produce grammatically correct output, but where the
contentis false.

But isn’t this the same as the errors
we always had with neural networks?
Why the need to now call them
“hallucinations”




Retrieval Augmented Generation (RAG)

* Build large database of reference
materials (sources)

retrieve context
from relevant
documents

Reference
documents

* Allow the LLM retrieve fnd relovant

documents from this source and [uSe.-query D ooy [ Context

embeddings

embedding comparing
add it to the context

* Make predictions from the (" Augmented )
original query and the augmented | o
context ek 15,

\<chunk 3>, /

LLM

generation

Response




Optimizers

* Adam is pretty good for everything we do

II’] th |S ClaSS, but the re a re better i1 Optimizer comparison by time (NanoGPT speedrun)
0 pti m i Ze rS fO r L LM S 4.0 1 - g?sat:?butedShampoo (UpdateFreq=10) 13222‘:’?;22
—— DistributedShampoo (UpdateFreq=32) 154ms/step
» Better optimizers == better/faster results > " en Yeomarten
" 3.8
E 3.7
E 3.6
3.5
3.4 4
33

6 é 1I0 115 2'0 2|5
Wallclock time on 8xH100

*SOAP is under active development. Future versions will significantly improve the wallclock overhead.
Figure 2. Optimizer comparison by wallclock time.

https://kellerjordan.github.io/posts/muon/



Reducing Climate Impact

* These models take a lot of electricity to train and
run inference (make responses)

* This can have costly environmental impacts

* Concerns for both the amount of CO2 generated
and the amount of water required for cooling data

centers.

What is the

Carbon
Footprint of

ChatGPT?

ChatGPT is a large language model that has been
shown to be extremely power-hungry. As a result,
it produces a lot of CO2 emissions.

Here's a breakdown of its carbon footprint:

1 Each query 4.32g of CO2

Using a CO2 calculator and some

basic math, ChatGPT produces more il

€02 per query than Google 8:8
(apparently, each search query in

Google results in 0.2g CO2 per query.) cCo2

16 queries is equivalent to boiling a kettle 2

“ Co2

J

139 queries produce as much CO2
as doing laundry

Co2
That's assuming you started a load
at 86 degrees Fahrenheit and used
a clothesline to dry them.



Reducing Climate Impact

Can we achieve similar results with smaller models?

Large Language Model
{Actual)

Quantization




Quantization

Can we use smaller
representation of
parameters?

<) Datature | Blog

FLOAT32 WEIGHTS

DeepSeek was able to
create distilled and
quantized models that
only used 4 bits per
parameter

https://huggingface.co/neuralmagic/DeepSeek-
R1-Distill-Llama-8B-quantized.w4a16

BIAS
(OPTIONAL)

X

INT8 WEIGHTS

INT8 QUANTIZATION PROCESS



Memorization or Generalization?

Do LLMs “just memorize the training data”?

Grokking: The network suddenly generalizes well after initially overfitting the training data

An Example Of Grokking: Memorization Followed By Sudden Generalization

The model quickly fits the
training data with 100%
accuracy...

After more training, accuracy
...but doesn't do better on the test data improves —

than random guessing the model generalizes!
on the 1

https://pair.withgoogle.com/explorables/grokking/



Memorization or Generalization?

Do LLMs “just memorize the training data”?

Why this really matters:
* If alanguage model is memorizing its inputs, it should not fall under fair use
* Ifalanguage model uses its training data to train and generalize, it probably falls under fair use

Fair use: under certain circumstances, the use of copyrighted materials without permission is allowed

One key consideration: The use must be transformative



Anthropic settles with authors in first-of-
its-kind Al copyright infringement lawsuit

SEPTEMBER 5, 2025 - 8:19 PM ET

g Chloe Veltman

A case against Anthropic Al brought by a group of authors was settled on Friday.
Riccardo Milani/Hans Lucas/AFP via Getty Images

Source: NPR

Settlements cannot be used as a
precedentin future cases

There are currently ~50 pending
copyright cases pending against Al
companies in America

(This does not include other lawsuits,
including wrongful death lawsuits)




Chain of Thought (Cof)

MaJorlty vote

(a) Input-Output (c) Chain of Thought  (c) Self Consistency
Prompting (I0)  Prompting (CoT) with CoT (CoT-SC)

(d) Tree of Thoughts (ToT)

Figure 1: Schematic illustrating various approaches to problem solving with LLMs. Each rectangle
box represents a thought, which is a coherent language sequence that serves as an intermediate
step toward problem solving. See concrete examples of how thoughts are generated, evaluated, and
searched in Figures 2,4,6.



KV Caching

During generation (i.e.
when deployed), we only
need to compute a very

small number of new
vectors

Image source: https://training

(Q* K*T) * V computation process with caching
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Values that will be computed on this step Values that will be taken from cache
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https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
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Helpful Resources

* Andrej Karpathy:

* Youtube videos and code recreating GPT2, Nano-GPT, Tokenizers, and
many other LLM things

e Cameron Wolfe:

* Decoder-only Transformers walkthrough
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-
workhorse
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Out-of-scope use cases

Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don't support use-cases that require the
generated text to be true.

Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they
be deployed into systems that interact with humans unless the deployers first carry out a study of biases relevant to the intended use-case.
We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of
GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.

GPT-2 Official Open Source Repository: . ‘
https://github.com/ nai/gpt-2/blob/master/m l_card.m «


https://github.com/openai/gpt-2/blob/master/model_card.md
https://github.com/openai/gpt-2/blob/master/model_card.md
https://github.com/openai/gpt-2/blob/master/model_card.md
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