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EEPS-DATA 1720
Tackling Climate Change with Machine Learning
Explore recent work that leverages machine learning (ML) as a tool for tackling climate change, with a focus on climate science 
and climate adaptation. We will discuss how modern machine learning can be used to assess, understand and respond to 
projected climate extremes, natural disasters, and environmental change. The target audience for this course is advanced undergraduate 
students or graduate students who are interested in using ML and AI to address high-impact global issues. Students will read and discuss recent 
research papers on ML for Climate and complete an original project as a member of a multidisciplinary team. Course topics evolve with the 
literature, but may include:

Climate themes: Climate models, Natural disasters and extreme weather, Farms and forests, Oceans and marine ecosystems, Sustainability of 
AI/computing

Machine learning topics: Physics-informed learning, Surrogate models and emulators, Explainable AI, Downscaling and superresolution, Learning 
with Limited Labels, Scientific Foundation Models.

EEPS 1720 is included on the list of non-CS courses that can count towards CS requirements.

Prerequisites:

• Familiarity with the fundamentals of machine learning and deep learning through coursework (e.g. CSCI 1420, CSCI 1470), resea rch or project 
experience.

• Programming experience in Python, Matlab, R or another high-level programming language.

• An interest in climate science and climate adaptation. Prior coursework in Earth or environmental science is helpful, but not required. Course 
lectures will introduce key scientific concepts.

• Enrolling: Due to the discussion-based format of the course, enrollment is limited. To enroll, (1) complete the EEPS 1720 Interest Form and (2) 
request an override on CAB.

https://cs.brown.edu/degrees/undergrad/concentrating-in-cs/concentration-handbook/


Structured Data

Images are a structured type of data
The structure (order and layout) of 
pixels matters

Lemonade stand data is not structured
The order of features we use does not 
change training



Other Types of Structured Data Types

Molecule Data

Code GraphsPoint Clouds (from LIDAR)

Microwave Background Radiation



Geometric Deep Learning

• We turned to convolutions for image data to give our networks 
“spatial reasoning”

• By Explicitly modelling the relationship of our data, we can 
achieve better results

• Geometric Deep Learning is the subfield of DL dedicated to 
learning representations of structured data.



Goal: Take as input data from satellites, predict carbon dioxide

Idea 1: Take all of the data as input, make it look like an image, use 
CNNs to learn to output carbon monoxide amounts

https://newton-climate.github.io/#research



Goal: Take as input data from satellites, predict carbon dioxide

Idea 1: Take all of the data as input, make it look like an image, use 
CNNs to learn to output carbon monoxide amounts

Issue: Maps 

https://newton-climate.github.io/#research



Issue: Trying to represent a 3D 
sphere on a 2D plane

All these pixels are the same place on earth

A 2D convolution doesn’t make sense here…
But there’s still structure (don’t just want an MLP)
What about a Spherical Convolution!

What should we pad the side of the image with?



Instead of padding with 0’s, “pad” 
with adjacent locations on earth

Convert 2D convolution on 
grids to work on Spheres



Manifolds

• Topological Space that looks 
locally like Euclidean space, but 
can be globally curved
• For example, the Earth

• Can we generalize convolutions 
to more than just spheres?

Need to specify which points are “close” to other 
points, convolve neighborhoods of points 
together



Extending Convolutions to Manifolds

A circle is a manifold in 2D 
(like a sphere or taurus in 3D)

For every point on the manifold, 
connect it to “close” points

What data structure does this lead to?



Geometric Deep Learning

• It is often confusing why much of Geometric Deep Learning deals 
with graphs…
• Geometry happens in continuous space
• Graphs are discrete

Molecules LIDAR Data



What’s Hard About Neural Networks for 
Graphs?
• Can have different numbers of nodes
• Can be arbitrarily complex

• Different numbers of edges
• Different edge patterns
• Weighted edges

How will a Graph Convolution have to 
differ from a 2D convolution?



Example Dataset

CiteSeer Dataset:
Collection of academic papers:
• directed edges connect papers 

to the papers they cite
• Words used by each paper

• Vector of length 3703 for each 
word in “vocabulary”, 1 if present 0 
if not

Ruan, Jianhua & Zhang, Weixiong. (2006). Identification and Evaluation of Weak Community Structures in Networks.. Proceedings of the Twenty-First National Conference on Artificial Intelligence; July 16-20, 2006: Boston, Massachusetts. 



Graph Convolutions: Message Passing

• Graph Neural Networks (GNNs) need to share information 
between connected nodes

• This sharing of information is called message passing



Graph Convolutions

For a graph G=(V, E)

Each node vi has features 𝑥𝑖, each edge (𝑣𝑖, 𝑣𝑗) 
can also have features (e.g., weight)

1. Start by mapping 𝑥𝑖 to hidden features ℎ𝑖
𝑓𝑖𝑛𝑖𝑡 𝑥𝑖 = ℎ𝑖
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Message Passing

For a graph G=(V, E)

Each node vi has features 𝑥𝑖, each edge (𝑣𝑖, 𝑣𝑗) 
can also have features (e.g., weight)

1. Start by mapping 𝑥𝑖 to hidden features ℎ𝑖
𝑓𝑖𝑛𝑖𝑡 𝑥𝑖 = ℎ𝑖

2.    Perform message passing among adjacent 
nodes











GraphSage

ℎ𝑣
𝑘 = 𝜎 𝑊𝑘 ෍

𝑢∈𝑁 𝑣

ℎ𝑢
𝑘−1

𝑁 𝑣
− 𝐵𝑘ℎ𝑣

𝑘−1 ∀𝑘 ∈ 1,… , 𝐾

𝑧𝑣 = ℎ𝑣
𝐾Hidden features 

after k rounds of 
message passing

Weights layer for 
k’th round

Average of neighbor’s 
embeddings for previous round

Learnable weights B times 
previous embedding

Nonlinear activation function 
(e.g., ReLU)

Embedding after all rounds of 
message passing

W and B are learnable parameters!



After K iterations, we end with a vector of features 𝑧𝑣  
for each node in our graph. 
What might we actually want to predict?

- Node level predictions: What is the topic of a 
paper?

- Link Prediction: For a new paper, what other papers 
might it cite?

- Graph level predictions Think/Pair/Share:
How can we turn features for each node into 

node-level predictions?

What about link prediction?

Graph level predictions are hard, we have |V| 
vectors of features, which may vary between 

different graphs we take as input), how can we 
get a single output from variable sized input?



Node Prediction

Each node v has a learned representation 𝑧𝑣, we can learn a fully-
connected layer to go from features 𝑧𝑣  to output

𝑓 𝑧𝑣 = 𝜎(𝑊𝑧𝑣)



Link Prediction

Learn a function that takes two nodes as input and predicts the 
presence (or absence) of an edge

𝑓 𝑧𝑣, 𝑧𝑢 = 𝜎(𝑊(𝑧𝑣⊙𝑧𝑢))

Element-wise product



Global Pooling

• We covered MaxPool in CNNs, which looks at the maximum value 
in a local neighborhood

• We can consider an alternative way to do MaxPool, which looks at 
the entire feature for all inputs and returns a single max value

Normally, CNNs flatten the results of their 
final convolution and feed into a linear layer 
of 𝑊 ×𝐻 × 𝐶.

This has to be the same size for all 
examples!



Global Pooling

• We covered MaxPool in CNNs, which looks at the maximum value 
in a local neighborhood

• We can consider an alternative way to do MaxPool, which looks at 
the entire feature for all inputs and returns a single max value

Alternatively, we can to the max over each 
channel in the final convolutional output

Output will have 512 features instead of 4096



Global Pooling

• We covered MaxPool in CNNs, which looks at the maximum value 
in a local neighborhood

• We can consider an alternative way to do MaxPool, which looks at 
the entire feature for all inputs and returns a single max value

MaxPooling loses lots of data from each 
channel… AveragePool becomes more 
common when performing global pooling 
operations



Implementing GNNs

Best Resources: PyG
- Pytorch Geometric library
- Lots of industry users and well supported 

models and datasets

Tensorflow Version: tf_geometric
- Not as many users, but if you really like 

tensorflow, maybe it’s for you

SAGEConv(in_channels, out_channels)



AlphaFold

• Goal: Given amino acid sequence, predict folding structure of 
protein

• Encodes each amino acid into a node and connects adjacent 
amino acids

• Alpha Fold 1 uses convolutions, Alpha Fold 2 uses attention



Graph Attention Networks (GATs)

Each node v has a latent 
vector h associated with it

Attention is computed at 
every node v, looking at all 
the neighbors of v

Image source: https://epichka.com/blog/2023/gat-paper-explained/ 
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Other Important Things



Understanding Model Behavior

What goes on inside LLMs? Do they store facts? How/where do they 
store facts?

Linear Probe:
1. Train a neural network on your desired task (e.g., Language 

Modeling)
2. Train a linear classifier (i.e., add a new dense layer) that uses a 

layer of hidden features as input to predict something else



Understanding Model Behavior

What goes on inside LLMs? Do they store facts? How/where do they 
store facts?

Have probes predict 
“confidence” of predictions



Understanding Model Behavior

What goes on inside LLMs? Do they store facts? How/where do they 
store facts?

Have probes predict 
“confidence” of predictions

Image source: https://neptune.ai/blog/explainability-auditability-ml-definitions-techniques-tools 
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Understanding Model Behavior

What goes on inside LLMs? Do they store facts? How/where do they 
store facts?

Train a linear probe on an LLM to predict “is this person related to basketball”

Take as input (name, basketball_player?), use intermediate features of network to 
predict if the name is a basketball player or not.

If you can predict that well using intermediate features, those features 
are “storing the knowledge” of these basketball players



Other Methods for eXplainable AI (XAI)

• Extensive post of methods for explainability and auditing of neural 
network results: https://neptune.ai/blog/explainability-
auditability-ml-definitions-techniques-tools 
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Ablation Studies
What model change actually led to the greatest improvement? 

https://github.com/JDAI-CV/fast-reid/issues/56 
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Turning GPT to Chat-GPT

Source: OpenAI

Step 0: Train GPT
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Turning GPT to Chat-GPT

Source: OpenAI

Step 0: Train GPT

Computationally expensive

Smaller dataset, less computationally expensive



Supervised Fine Tuning (SFT)

• The LLM after Pre-Training may have some problems
• Outputs may be repetitive
• May be rude, racist, or otherwise not a good “chatter”

• Need to align the LLMs behavior with desired behavior
• Collect data on “good” responses to questions
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Supervised Fine Tuning (SFT)

• The LLM after Pre-Training may have some problems
• Outputs may be repetitive
• May be rude, racist, or otherwise not a good “chatter”

• Need to align the LLMs behavior with desired behavior
• Collect data on “good” responses to questions

*I do not guarantee this is not a scam job*



Supervised Fine Tuning (SFT)

SFT is where LLMs “learn to answer questions”



Reinforcement Learning with Human 
Feedback
• Train a model to rank possible outputs from an LLM
• Turn these rankings into rewards
• Use these rewards for reinforcement learning (next topic, after 

break)



Hallucinations

• Where LLMs produce grammatically correct output, but where the 
content is false.
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Hallucinations

• Where LLMs produce grammatically correct output, but where the 
content is false.



Hallucinations

• Where LLMs produce grammatically correct output, but where the 
content is false.

But isn’t this the same as the errors 
we always had with neural networks? 
Why the need to now call them 
“hallucinations”



Retrieval Augmented Generation (RAG)

• Build large database of reference 
materials (sources)

• Allow the LLM retrieve 
documents from this source and 
add it to the context

• Make predictions from the 
original query and the augmented 
context



Optimizers

• Adam is pretty good for everything we do 
in this class, but there are better 
optimizers for LLMs

• Better optimizers == better/faster results

https://kellerjordan.github.io/posts/muon/



Reducing Climate Impact

• These models take a lot of electricity to train and 
run inference (make responses)

• This can have costly environmental impacts
• Concerns for both the amount of CO2 generated 

and the amount of water required for cooling data 
centers.



Reducing Climate Impact

Can we achieve similar results with smaller models?



Quantization

Can we use smaller 
representation of 
parameters? 

DeepSeek was able to 
create distilled and 
quantized models that 
only used 4 bits per 
parameter
https://huggingface.co/neuralmagic/DeepSeek-
R1-Distill-Llama-8B-quantized.w4a16



Memorization or Generalization?

Do LLMs “just memorize the training data”?

Grokking: The network suddenly generalizes well after initially overfitting the training data

https://pair.withgoogle.com/explorables/grokking/



Memorization or Generalization?

Do LLMs “just memorize the training data”?

Why this really matters:
• If a language model is memorizing its inputs, it should not fall under fair use
• If a language model uses its training data to train and generalize, it probably falls under fair use

Fair use: under certain circumstances, the use of copyrighted materials without permission is allowed

One key consideration: The use must be transformative



Source: NPR

Settlements cannot be used as a 
precedent in future cases

There are currently ~50 pending 
copyright cases pending against AI 
companies in America

(This does not include other lawsuits, 
including wrongful death lawsuits)



Chain of Thought (CoT)



KV Caching

During generation (i.e., 
when deployed), we only 
need to compute a very 
small number of new 
vectors

Image source: https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache 
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Helpful Resources

• Andrej Karpathy:
• Youtube videos and code recreating GPT2, Nano-GPT, Tokenizers, and 

many other LLM things

• Cameron Wolfe:
• Decoder-only Transformers walkthrough 

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-
workhorse
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GPT-2 Official Open Source Repository: 
https://github.com/openai/gpt-2/blob/master/model_card.md 
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