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Encoder generates 𝑃(𝑧|𝑐)
Generator generates image 𝑃( ො𝑥|𝑧, 𝑐)



Peak-signal-to-noise (PSNR, SSIM, and others)



Generative Adversarial Networks (GANs)
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Sherlock
Moriarty

Does nefarious things Investigates crimesThey are adversaries

But how did they get so 
good at what they do?
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Moriarty started out as a 
child, trying to forge bills
(he wasn’t very good at it)

Young Sherlock would look at the bills 
and try to figure out if they were 
forged or not (Sherlock was also not 
very good at it)



Moriarty used the feedback 
to get even better at forging

Sherlock also improved as Moriarty 
started producing better bills



To try and stay ahead, 
Moriarty further improves

This Photo by Unknown Author is licensed under CC BY-NC

And Sherlock gets even 
better to match the 
competition

A little bit of competition 
can help you grow
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Generative Adversarial Networks

Generator Discriminator

Neural network to generate data Neural network to ”guess” if that 
data is real

• GANs use these ideas to train a pair of networks together
• These networks are called the Generator and Discriminator



GANs: Training the Discriminator

Discriminator wants to maximize:

𝐸𝑥 log 𝐷 𝑥 + 𝐸𝑧[1 − log 𝐺 𝑧 ]

Expectation over 
real images x

The log probability 
predicted by Discriminator

1-log probability of fake 
image made by generator

Expectation over fake images (z is 
vector in latent space)

What loss function does this remind you of?

This is BCE, if real data are “class 1” and fake data are “class 0”



But…

The discriminator wants to MAXIMIZE:

𝐸𝑥 log 𝐷 𝑥 + 𝐸𝑧[1 − log 𝐺 𝑧 ]

That’s not actually a problem, we can minimize the negative…

What is a problem, is that the generator wants to minimize the original function



GANs as a Game

Overall Problem:

min
𝐺

max
𝐷

𝐸𝑥 log 𝐷 𝑥 + 𝐸𝑧[1 − log 𝐺 𝑧 ]

Training GANs can be modeled as a 
2-player zero-sum adversarial game 

In an adversarial game, players have 
opposing goals (not everyone can win)

Zero-sum means that their goals are 
exactly opposite



Nash Equilibrium

• A Nash Equilibrium is a solution concept for zero sum games
• Player A looks for a strategy such that no matter what player B 

chooses to do, player A will do no worse
• In the case of GANs, strategies are network parameter settings
• In a Nash Equilibrium, the generator will not be able to find 

different parameter settings such that it can do any better (and 
vice versa)



How do we find Nash Equilibria

• Game theory provides lots of tools, but the easiest to implement 
is Gradient Ascent Descent 

Alternate steps of gradient ascent (using gradient 
of maximizer) with steps of gradient descent 
(using gradient of minimizer)



GAN Training Algorithm

Goodfellow et al. “Generative Adversarial Nets”, 2014 

Inner loop to train D

Outer loop to train G









Training Visualization

https://poloclub.github.io/ganlab/











Problems with GANs



Training GANs is very unstable

• This is what it looks like when it’s working…
• Turns out Equilibria are hard to find

• With other networks, if the loss is going 
down, we know the network is doing better

• Here, we have a moving target (G and D 
keep changing)

• These curves can oscillate a lot



Training GANs is very unstable

What happens if the discriminator ever becomes 
perfect at detecting the generator’s fakes?
• Discriminator always returns p=0
• Since D always returns a constant, the gradient 

is constant
• The generator stops training







Balancing the Discriminator is hard

• We control how much to update the 
discriminator in each training loop

• The discriminator has the easier problem, 
classification is much easier than generation

• When the discriminator gets too good, 
gradients vanish and the generator stops 
updating

• When the discriminator is bad, the generator 
can start producing the same output for every 
input (mode collapse)
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Wasserstein GANs

• What if we could train the discriminator to convergence and still 
be able to train our generator?

• We want a function that can tell us how likely it is an image came 
from the real distribution, but not have vanishing gradients

• Solution: Use a “critic” instead of a discriminator
• The critic outputs a score (value) for the generator rather than a 

probability (i.e., don’t use a sigmoid for activation…)



Wasserstein Distance
Wasserstein (Earth Mover’s) Distance: How much work is it to move one 
probability distribution p, to another distribution q.

Source: https://www.researchgate.net/figure/Schematic-of-the-L-2-Wasserstein-distance-We-here-consider-optimal-transport-from-the_fig1_349704621



Wasserstein Distance

• Integrals are often hard to compute…
• Use Kantorovich–Rubinstein duality to simplify computation

Derivation: https://abdulfatir.com/blog/2020/Wasserstein-Distance/

f is any function that is 1-
Lipschitz continuous

Sup is the supremum, or 
the lowest upper bound

Looks a lot like our old 
loss function!

For the real and 
generated distributions 



Lipschitz Continuity

• For this method of calculating Wasserstein Distance, we need our 
critic to be Lipschitz continuous (with c=1)

• That means that maximum gradient has to be 1
• There are fancy ways to do this (i.e., spectral normalization), but 

what if just clip the gradient
• If the gradient is larger than 1, just clip the value to be 1.
• tf.clip_by_value(grads, -1, 1)



Key difference for WGANs:

Instead of using the log probability of 
the output of a discriminator, use the 
output of the critic

Wasserstein GANs are more 
stable than vanilla GANs 
because it’s less susceptible to 
vanishing gradients from the 
discriminator



Other Tasks

• What if instead of generating images, we wanted to do another 
task
• Denoising Images: Given a corrupted or noisy image, can you remove the 

noise?
• Colorization: Given a black and white image, can you produce a color 

image?
• Super-resolution: given an image of low resolution, can you produce an 

image of higher resolution (i.e., more pixels)?

How would you frame each of these problems and train a GAN (or VAE)?



Input low resolution image to generator, have it output a higher 
resolution image

Source: https://ar5iv.labs.arxiv.org/html/1705.02438



GAN Variants
There are many variations on GANs… (these are just some of the ones with architectural differences)

Image source: https://www.researchgate.net/figure/A-view-of-variants-of-GAN-G-represents-the-generator-network-D-is-the-discriminator_fig2_343786287



Denoising Auto Encoders (DAEs)

https://www.omdena.com/blog/denoising-autoencoders



Denoising Auto Encoders (DAEs)

https://www.omdena.com/blog/denoising-autoencoders

What if our images were even noisier?



Denoising Auto Encoders

Denoising all the noise in one step may be too hard to learn.
What if we added and removed noise incrementally?

Monday: Diffusion Models

Source: https://www.researchgate.net/figure/Schematic-of-the-diffusion-model-training-process_fig1_383920783



Denoising Auto Encoders (DAEs)

https://www.omdena.com/blog/denoising-autoencoders



Denoising Auto Encoders (DAEs)

https://www.omdena.com/blog/denoising-autoencoders

What if our images were even noisier?



Denoising Auto Encoders

Denoising all the noise in one step may be too hard to learn.
What if we added and removed noise incrementally?



Variational Autoencoders

We can represent a VAE as a 
probabilistic graphical model

Encoder generates probability 
distribution 𝑞 𝑧 𝑥

Decoder estimates 𝑝(𝑥|𝑧)



Hierarchical Features

Each intermediate layer in a neural network can be seen as learning 
a set of intermediate features based on the previous intermediate 
outputs.

Source: https://ermongroup.github.io/blog/hierarchy/



Hierarchical VAEs

Idea: train K pairs of encoders and decoders

Each decoder is trained to reverse the associated 
encoder’s operations



Hierarchical VAEs

Idea: train K pairs of encoders and decoders

Each decoder is trained to reverse the associated 
encoder’s operations

Encoders (forward process)

Decoders (reverse process)

How many encoders and 
decoders do we need to learn?



Hierarchical VAEs
What if all latent variables 𝑧 have the same size?

Most encoders and decoders 
have the same input/output size



Hierarchical VAEs

What if all latent variables 𝑧 have the same size?

Need special first encoder, special last decoder to go from 
embedding size to original input size

But what if everything had the 
same dimensions



Hierarchical VAEs

A hierarchical VAE that keeps the dimensions the same can 
use the same decoder and encoder for all steps



Hierarchical VAEs

A hierarchical VAE that keeps the dimensions the same can 
use the same decoder and encoder for all steps



Denoising VAEs

If the size of the encoding in a VAE is the same size as the input, the 
model is no longer doing dimensionality reduction…

So why would we want this?

Source: https://www.researchgate.net/figure/Schematic-of-the-diffusion-model-training-process_fig1_383920783

The forward process adds noise
The reverse path reverses this process

But we don’t need to learn the 
encoders, adding noise isn’t a learned 
process!



Adding Noise

What if each encoder transitions sample the input with some 
gaussian noise?

















Diffusion Models

Are hierarchical VAEs with the following assumptions:
• All dimensions are the same (input size, encoding size)
• Encoder transitions are known gaussians centered around their previous inputs



Why Call it Diffusion?

Diffusion of gas particles (and other 
physical things)

Start off organized

Transitions to “random noise”



The Decoder

Diffusion models seek to learn a single neural network: a de-noising decoder

What form does 𝑥𝑡−1 take?

𝑞 𝑥𝑡−1 𝑥0 =  𝒩 𝑥𝑡−1 𝑥0, 𝛼𝑡−1
2 𝐼

𝑥𝑡 = 𝑥0 + 𝛼𝑡−1𝜖 

What is the ground truth for 𝜇𝑡−1?

Does the decoder even need to 
predict 𝜎?



Denoising Diffusion Models

Learn a single decoder network
• Input is image with added noise
• Output is predicted image with noise removed



How To Generate New Samples

Idea 1: sample point from 𝒩(0, 𝐼), run decoder with t=T to generate ො𝑥0

Issue: Doesn’t work that well… that was the entire motivation for having 
multiple steps

Idea 2: sample point from 𝒩(0, 𝐼), iteratively generate ො𝑥𝑡−1

But how do we actually generate ො𝑥𝑡−1 when our decoder generates ො𝑥0 ?

















Noise Schedules

• What should the value of T be? 
• How many steps of forward/reverse processes should we run?
• How much noise should be added at each step?

Amount of noise and number of steps determined by a noise 
schedule (hyperparameter)

Linear Schedule (equal noise added at each timestep)



Noise Schedules

• What should the value of T be? 
• How many steps of forward/reverse processes should we run?
• How much noise should be added at each step?

Amount of noise and number of steps determined by a noise 
schedule (hyperparameter)

Cosine Schedule (small amounts of noise first, then fast)



Diffusion Training



Examples

• Model trained on CelebA 
dataset

Source: https://yang-song.net/blog/2021/score/



Examples

Model trained on CIFAR-10

Source: https://yang-song.net/blog/2021/score/



Visual Auto-Regressive Generation

Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction
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