
Generative Adversarial
Networks (GANs)

CSCI 1470
Eric Ewing

Thursday, 10/30/25

VAEs Review

Encoder generates 𝑃(𝑧|𝑐)
Generator generates image 𝑃(ො𝑥|𝑧, 𝑐)

Peak-signal-to-noise (PSNR, SSIM, and others)

Generative Adversarial Networks (GANs)

This Photo by Unknown Author is licensed under CC BY-NC

Sherlock
Moriarty

Does nefarious things Investigates crimesThey are adversaries

But how did they get so
good at what they do?

https://www.pngall.com/sherlock-holmes-png/download/38251
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

Moriarty started out as a
child, trying to forge bills
(he wasn’t very good at it)

Young Sherlock would look at the bills
and try to figure out if they were
forged or not (Sherlock was also not
very good at it)

Moriarty used the feedback
to get even better at forging

Sherlock also improved as Moriarty
started producing better bills

To try and stay ahead,
Moriarty further improves

This Photo by Unknown Author is licensed under CC BY-NC

And Sherlock gets even
better to match the
competition

A little bit of competition
can help you grow

https://www.pngall.com/sherlock-holmes-png/download/38251
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

Generative Adversarial Networks

Generator Discriminator

Neural network to generate data Neural network to ”guess” if that
data is real

• GANs use these ideas to train a pair of networks together
• These networks are called the Generator and Discriminator

GANs: Training the Discriminator

Discriminator wants to maximize:

𝐸𝑥 log 𝐷 𝑥 + 𝐸𝑧[1 − log 𝐺 𝑧]

Expectation over
real images x

The log probability
predicted by Discriminator

1-log probability of fake
image made by generator

Expectation over fake images (z is
vector in latent space)

What loss function does this remind you of?

This is BCE, if real data are “class 1” and fake data are “class 0”

But…

The discriminator wants to MAXIMIZE:

𝐸𝑥 log 𝐷 𝑥 + 𝐸𝑧[1 − log 𝐺 𝑧]

That’s not actually a problem, we can minimize the negative…

What is a problem, is that the generator wants to minimize the original function

GANs as a Game

Overall Problem:

min
𝐺

max
𝐷

𝐸𝑥 log 𝐷 𝑥 + 𝐸𝑧[1 − log 𝐺 𝑧]

Training GANs can be modeled as a
2-player zero-sum adversarial game

In an adversarial game, players have
opposing goals (not everyone can win)

Zero-sum means that their goals are
exactly opposite

Nash Equilibrium

• A Nash Equilibrium is a solution concept for zero sum games
• Player A looks for a strategy such that no matter what player B

chooses to do, player A will do no worse
• In the case of GANs, strategies are network parameter settings
• In a Nash Equilibrium, the generator will not be able to find

different parameter settings such that it can do any better (and
vice versa)

How do we find Nash Equilibria

• Game theory provides lots of tools, but the easiest to implement
is Gradient Ascent Descent

Alternate steps of gradient ascent (using gradient
of maximizer) with steps of gradient descent
(using gradient of minimizer)

GAN Training Algorithm

Goodfellow et al. “Generative Adversarial Nets”, 2014

Inner loop to train D

Outer loop to train G

Training Visualization

https://poloclub.github.io/ganlab/

Problems with GANs

Training GANs is very unstable

• This is what it looks like when it’s working…
• Turns out Equilibria are hard to find

• With other networks, if the loss is going
down, we know the network is doing better

• Here, we have a moving target (G and D
keep changing)

• These curves can oscillate a lot

Training GANs is very unstable

What happens if the discriminator ever becomes
perfect at detecting the generator’s fakes?
• Discriminator always returns p=0
• Since D always returns a constant, the gradient

is constant
• The generator stops training

Balancing the Discriminator is hard

• We control how much to update the
discriminator in each training loop

• The discriminator has the easier problem,
classification is much easier than generation

• When the discriminator gets too good,
gradients vanish and the generator stops
updating

• When the discriminator is bad, the generator
can start producing the same output for every
input (mode collapse)

This Photo by Unknown Author is licensed under CC BY-NC

https://www.pngall.com/sherlock-holmes-png/download/38251
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

Wasserstein GANs

• What if we could train the discriminator to convergence and still
be able to train our generator?

• We want a function that can tell us how likely it is an image came
from the real distribution, but not have vanishing gradients

• Solution: Use a “critic” instead of a discriminator
• The critic outputs a score (value) for the generator rather than a

probability (i.e., don’t use a sigmoid for activation…)

Wasserstein Distance
Wasserstein (Earth Mover’s) Distance: How much work is it to move one
probability distribution p, to another distribution q.

Source: https://www.researchgate.net/figure/Schematic-of-the-L-2-Wasserstein-distance-We-here-consider-optimal-transport-from-the_fig1_349704621

Wasserstein Distance

• Integrals are often hard to compute…
• Use Kantorovich–Rubinstein duality to simplify computation

Derivation: https://abdulfatir.com/blog/2020/Wasserstein-Distance/

f is any function that is 1-
Lipschitz continuous

Sup is the supremum, or
the lowest upper bound

Looks a lot like our old
loss function!

For the real and
generated distributions

Lipschitz Continuity

• For this method of calculating Wasserstein Distance, we need our
critic to be Lipschitz continuous (with c=1)

• That means that maximum gradient has to be 1
• There are fancy ways to do this (i.e., spectral normalization), but

what if just clip the gradient
• If the gradient is larger than 1, just clip the value to be 1.
• tf.clip_by_value(grads, -1, 1)

Key difference for WGANs:

Instead of using the log probability of
the output of a discriminator, use the
output of the critic

Wasserstein GANs are more
stable than vanilla GANs
because it’s less susceptible to
vanishing gradients from the
discriminator

Other Tasks

• What if instead of generating images, we wanted to do another
task
• Denoising Images: Given a corrupted or noisy image, can you remove the

noise?
• Colorization: Given a black and white image, can you produce a color

image?
• Super-resolution: given an image of low resolution, can you produce an

image of higher resolution (i.e., more pixels)?

How would you frame each of these problems and train a GAN (or VAE)?

Input low resolution image to generator, have it output a higher
resolution image

Source: https://ar5iv.labs.arxiv.org/html/1705.02438

GAN Variants
There are many variations on GANs… (these are just some of the ones with architectural differences)

Image source: https://www.researchgate.net/figure/A-view-of-variants-of-GAN-G-represents-the-generator-network-D-is-the-discriminator_fig2_343786287

Denoising Auto Encoders (DAEs)

https://www.omdena.com/blog/denoising-autoencoders

Denoising Auto Encoders (DAEs)

https://www.omdena.com/blog/denoising-autoencoders

What if our images were even noisier?

Denoising Auto Encoders

Denoising all the noise in one step may be too hard to learn.
What if we added and removed noise incrementally?

Monday: Diffusion Models

Source: https://www.researchgate.net/figure/Schematic-of-the-diffusion-model-training-process_fig1_383920783

Denoising Auto Encoders (DAEs)

https://www.omdena.com/blog/denoising-autoencoders

Denoising Auto Encoders (DAEs)

https://www.omdena.com/blog/denoising-autoencoders

What if our images were even noisier?

Denoising Auto Encoders

Denoising all the noise in one step may be too hard to learn.
What if we added and removed noise incrementally?

Variational Autoencoders

We can represent a VAE as a
probabilistic graphical model

Encoder generates probability
distribution 𝑞 𝑧 𝑥

Decoder estimates 𝑝(𝑥|𝑧)

Hierarchical Features

Each intermediate layer in a neural network can be seen as learning
a set of intermediate features based on the previous intermediate
outputs.

Source: https://ermongroup.github.io/blog/hierarchy/

Hierarchical VAEs

Idea: train K pairs of encoders and decoders

Each decoder is trained to reverse the associated
encoder’s operations

Hierarchical VAEs

Idea: train K pairs of encoders and decoders

Each decoder is trained to reverse the associated
encoder’s operations

Encoders (forward process)

Decoders (reverse process)

How many encoders and
decoders do we need to learn?

Hierarchical VAEs
What if all latent variables 𝑧 have the same size?

Most encoders and decoders
have the same input/output size

Hierarchical VAEs

What if all latent variables 𝑧 have the same size?

Need special first encoder, special last decoder to go from
embedding size to original input size

But what if everything had the
same dimensions

Hierarchical VAEs

A hierarchical VAE that keeps the dimensions the same can
use the same decoder and encoder for all steps

Hierarchical VAEs

A hierarchical VAE that keeps the dimensions the same can
use the same decoder and encoder for all steps

Denoising VAEs

If the size of the encoding in a VAE is the same size as the input, the
model is no longer doing dimensionality reduction…

So why would we want this?

Source: https://www.researchgate.net/figure/Schematic-of-the-diffusion-model-training-process_fig1_383920783

The forward process adds noise
The reverse path reverses this process

But we don’t need to learn the
encoders, adding noise isn’t a learned
process!

Adding Noise

What if each encoder transitions sample the input with some
gaussian noise?

Diffusion Models

Are hierarchical VAEs with the following assumptions:
• All dimensions are the same (input size, encoding size)
• Encoder transitions are known gaussians centered around their previous inputs

Why Call it Diffusion?

Diffusion of gas particles (and other
physical things)

Start off organized

Transitions to “random noise”

The Decoder

Diffusion models seek to learn a single neural network: a de-noising decoder

What form does 𝑥𝑡−1 take?

𝑞 𝑥𝑡−1 𝑥0 = 𝒩 𝑥𝑡−1 𝑥0, 𝛼𝑡−1
2 𝐼

𝑥𝑡 = 𝑥0 + 𝛼𝑡−1𝜖

What is the ground truth for 𝜇𝑡−1?

Does the decoder even need to
predict 𝜎?

Denoising Diffusion Models

Learn a single decoder network
• Input is image with added noise
• Output is predicted image with noise removed

How To Generate New Samples

Idea 1: sample point from 𝒩(0, 𝐼), run decoder with t=T to generate ො𝑥0

Issue: Doesn’t work that well… that was the entire motivation for having
multiple steps

Idea 2: sample point from 𝒩(0, 𝐼), iteratively generate ො𝑥𝑡−1

But how do we actually generate ො𝑥𝑡−1 when our decoder generates ො𝑥0 ?

Noise Schedules

• What should the value of T be?
• How many steps of forward/reverse processes should we run?
• How much noise should be added at each step?

Amount of noise and number of steps determined by a noise
schedule (hyperparameter)

Linear Schedule (equal noise added at each timestep)

Noise Schedules

• What should the value of T be?
• How many steps of forward/reverse processes should we run?
• How much noise should be added at each step?

Amount of noise and number of steps determined by a noise
schedule (hyperparameter)

Cosine Schedule (small amounts of noise first, then fast)

Diffusion Training

Examples

• Model trained on CelebA
dataset

Source: https://yang-song.net/blog/2021/score/

Examples

Model trained on CIFAR-10

Source: https://yang-song.net/blog/2021/score/

Visual Auto-Regressive Generation

Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction

	Slide 1: Generative Adversarial Networks (GANs)
	Slide 2: VAEs Review
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Generative Adversarial Networks (GANs)
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Generative Adversarial Networks
	Slide 12: GANs: Training the Discriminator
	Slide 13: But…
	Slide 14: GANs as a Game
	Slide 15: Nash Equilibrium
	Slide 16: How do we find Nash Equilibria
	Slide 17: GAN Training Algorithm
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Training Visualization
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Problems with GANs
	Slide 27: Training GANs is very unstable
	Slide 28: Training GANs is very unstable
	Slide 29
	Slide 30
	Slide 31: Balancing the Discriminator is hard
	Slide 32: Wasserstein GANs
	Slide 33: Wasserstein Distance
	Slide 34: Wasserstein Distance
	Slide 35: Lipschitz Continuity
	Slide 36
	Slide 37: Other Tasks
	Slide 38
	Slide 39: GAN Variants
	Slide 40: Denoising Auto Encoders (DAEs)
	Slide 41: Denoising Auto Encoders (DAEs)
	Slide 42: Denoising Auto Encoders
	Slide 43: Denoising Auto Encoders (DAEs)
	Slide 44: Denoising Auto Encoders (DAEs)
	Slide 45: Denoising Auto Encoders
	Slide 46: Variational Autoencoders
	Slide 47: Hierarchical Features
	Slide 48: Hierarchical VAEs
	Slide 49: Hierarchical VAEs
	Slide 50: Hierarchical VAEs
	Slide 51: Hierarchical VAEs
	Slide 52: Hierarchical VAEs
	Slide 53: Hierarchical VAEs
	Slide 54: Denoising VAEs
	Slide 55: Adding Noise
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Diffusion Models
	Slide 64: Why Call it Diffusion?
	Slide 65: The Decoder
	Slide 66: Denoising Diffusion Models
	Slide 67: How To Generate New Samples
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75: Noise Schedules
	Slide 76: Noise Schedules
	Slide 77: Diffusion Training
	Slide 78: Examples
	Slide 79: Examples
	Slide 80: Visual Auto-Regressive Generation

