Generative Adversarial
Networks (GANS)

CSCI11470
Eric Ewing
Thursday, 10/30/25

VAEs Review

Input

D

Encoder

/

Latent
Representation

(&
V%
D Yo

/

N(u,0)

\

/

Decoder

T

Output

Discriminative vs Generative Models
P(g |cat)

P([E|cat) P(#|cat)
]] m P&

P([EH 1dog)
(1 Idog) j e

Conditional Generative Conditional Generative Model: Each possible label
Model: Learn p(x | y) induces a competition among all images

Credit: UMich EECS498

Conditional VAE

Input

T

Encoder

/

Latent
Representation

/

N(u, o)

\

/

Decoder

Any ideas?

T

Output

Conditional VAE

Encoder generates P(z|c)
Generator generates image P(X|z, ¢)

.

Input Encoder

/

https://towardsdatascience.com/understanding-conditional-variational-autoencoders-cd62b4f57bf8

\

Decoder

Latent N o) — Output

Representation

\

4

Why are VAE samples blurry?

* Our reconstruction loss is the culprit

e Mean Square Error (MSE) loss looks at each pixel in

isolation i 3
-\ A
* If no pixel is too far from its target value, the loss won’t be al b Aa bt __
too bad -

* Individual pixels look OK, but larger-scale features in the
image aren’t recognizable

e Solutions?
e Let’s choose a different reconstruction loss!

Peak-signal-to-noise (PSNR, SSIM, and others)

Generative Adversarial Networks (GANSs)

Does nefarious things They are adversaries Investigates crimes

But how did they get so Sherlock
good at what they do?

Moriarty

This Photo by Unknown Author is licensed under CC BY-NC

https://www.pngall.com/sherlock-holmes-png/download/38251
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

Moriarty started out as a Young Sherlock would look at the bills

child, trying to forge bills and try to figure out if they were
(he wasn’t very good at it) forged or not (Sherlock was also not

AN

very good at it)

MARN

Moriarty used the feedback
to get even better at forging

Sherlock also improved as Moriarty
started producing better bills

To try and stay ahead,
Moriarty further improves

A little bit of competition
can help you grow

And Sherlock gets even
better to match the
competition

This Photo by Unknown Author is licensed under CC BY-NC

https://www.pngall.com/sherlock-holmes-png/download/38251
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

Generative Adversarial Networks

* GANs use these ideas to train a pair of networks together
e These networks are called the Generator and Discriminator

Neural network to "guess” if that

Neural network to generate data .
data is real

Generator Discriminator

GANs: Training the Discriminator

) .. o Expectation over fake images (zis
Discriminator wants to maximize: vector in latent space)

Ex[log(l?(x))] + E,[1 — log(G(z))]
T

The log probability 1-log probability of fake

Expectatioﬁ?\%fted by Discriminator image made by generator

real images x

I What loss function does this remind you of?

I This is BCE, if real data are “class 1” and fake data are “class 0”

But...

The discriminator wants to MAXIMIZE:

Ex[log(D(0)] + E,[1 — log(G(2))]

That’s not actually a problem, we can minimize the negative...

What is a problem, is that the generator wants to minimize the original function

GANSs as a Game

Overall Problem:

min max E,|log(D(x))| + E,[1 —log(G(2))]

G D

Training GANs can be modeled as a
2-player zero-sum adversarial game

In an adversarial game, players have
opposing goals (not everyone can win)

Zero-sum means that their goals are
exactly opposite

Nash Equilibrium

* A Nash Equilibrium is a solution concept for zero sum games

* Player A looks for a strategy such that no matter what player B
chooses to do, player A will do no worse

* In the case of GANSs, strategies are network parameter settings

* In a Nash Equilibrium, the generator will not be able to find
different parameter settings such that it can do any better (and

vice versa)

How do we find Nash Equilibria

* Game theory provides lots of tools, but the easiest to implement
Is Gradient Ascent Descent

Alternate steps of gradient ascent (using gradient
of maximizer) with steps of gradient descent
(using gradient of minimizer)

GAN Training Algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
Inner loop to train D ———— fork steps do

e Sample minibatch of m noise samples {z(!), ..., z{"™)} from noise prior p,(2).
e Sample minibatch of m examples {z(),...,£(™} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

Vo2 3" [iog D (59) + 105 (1- D (¢ ()]

end for
e Sample minibatch of m noise samples {z(V), ..., z(™)} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, 2o toe (1-0 (0 (=))).

Outer loop to train G——

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Goodfellow et al. “Generative Adversarial Nets”, 2014

GAN Loss

Real image @

z~ N(0,1)

Discriminator

>

|
J

or Generator
™~ U ('1 y 1)

https://jonathan-hui.medium.com/gan-wasserstein-gan-wgan-gp-6ala2aalb490

» D

cost

GAN Loss

m

vo,,%z [log D () +10g (1- D (G (=))]

Real image @

z~ N(@O,1)
or Generator

z~ U(1,1)

Discriminator » D —P

cost

, W

https://jonathan-hui.medium.com/gan-wasserstein-gan-wgan-gp-6ala2aalb490

Any questions?

GAN Loss 222

Vo 3~ [loa () + 18 (1 (6 (=)))] '

1

Real image @ E

1

——>O\O_>[] | :

Discriminator » D —» cost f-=-=-==--- I

—>0 | ;

z~ N(@O,1) :
or Generator i—— g

Zn~ -1, m m 1
U1,1) [~ - VognlLZlog(l—D(G(z(i)))) i V%%Z log (D (G (z(i)))) E

https://jonathan-hui.medium.com/gan-wasserstein-gan-wgan-gp-6ala2aalb490

Training Visualization

https://poloclub.github.io/ganlab/

GAN Training Dynamics

1 -

— (G loss
= [loss

50 100

150 200
Training Epochs

250

300

350

* Does not exhibit the typical
“training loss continues to go
down” behavior

* Why?

* Training a GAN is a “stalemate” — G
and D continually adjust to each
other’s improvements

* More formally, training a GAN to
convergence is attempting to find
an equilibrium of a two-player
minimax game

What do ¢ and D look like inside?

Architecture of the networks determined by problem

95% probability
of being real

- 32% probability
of being real

inside?

ike

What do G and D look |

ined by problem

Architecture of the networks determ
Fully connected

95% probability
of being real

(Real

image)

32% probability
of being real

(fake

image)

What do ¢ and D look like inside?

Architecture of the networks determined by problem
Convolutional / Transpose convolutional

(Real C . 95% probability
i AT — of being real
image)
' —— 32% probability
ETIEEEE g . of being real
Convolution Convolution

(fake
image)

Problems with GANs

Training GANs is very unstable

— G loss
- D loss

* Thisiswhat it looks like when it’s working...

34 * Turns out Equilibria are hard to find

* With other networks, if the loss is going

21 down, we know the network is doing better
| * Here, we have a moving target (Gand D

1 keep changing)

* These curves can oscillate a lot

0 50 100 150 200 250 300 350
Training Epochs

Training GANs is very unstable

e W_ What happens if the discriminator ever becomes
all | perfect at detecting the generator’s fakes?

& * Discriminator always returns p=0
10 1 * Since D always returns a constant, the gradient
g 81 is constant
6 - * The generator stops training
4-
7

0 2000 4000 6000 8000 10000
Epoch

Mode Collapse

e Generator loss says: “generate an output that looks real”

I”

e |t does not say: “generate every output that looks rea

e The generator can “cheat” by finding one output / a few outputs that reliably
fool the discriminator (the specific one(s) it finds can shift over training)

3
"J
4
?.
y
7
2
/s
F
P
P
P
P
P
P
P

£
P
P
F:
i
F
p
F:

4
¥
O
&
1
Gi
4
F
i
P
P
i
£
i
F

&
‘.ﬂ
/ 4
4
7
l
4

aofteenmQw

RVNPPVHROO —~J
~he~—urooe
WO~
LSOO~
B Jd) NG -
HPIOSH IO

AFAPSPENIFRELERE
LY AV AN VLY VA)
LV AN V-2V AV
LYAVAY AV AN AV A\ L)
ANANANANANANANA
LVLVEV RN L3 LV A L)
LY AV AN LV-EV AN)
LY LV AV LAY AV &
20k steps

OR=—f PoB
~£ QWA P P
WY J2e Qo
SO~ 0OW
DO OWWL
NV~
O)=k P SN
P VY- @~
N WAL -
~{ QPN A LY P

H-EVDE -0
TP T TTN S g P~

bbbbbbbb
bbbbbbbb
bbbbbbbb
bbbbbbbb
bbbbbbbb
bbbbbbbb
bbbbbbbb
b b bbb bbb
50K steps 100k steps

SRl AR A A A AR AR [V (RS AN A N O J AR Y
S R A A A e D M PR S R N

T eTTTTTYy
i Dl el e Bl S Bl B

How do we fix this?

Output from a
healthy GAN

Output from a GAN
with mode collapse.
— All outputs from
GAN, regardless of
random input noise,
are the same.

Balancing the Discriminator is hard

* We control how much to update the
discriminator in each training loop

* The discriminator has the easier problem,
classification is much easier than generation

* When the discriminator gets too good,
gradients vanish and the generator stops
updating

* When the discriminator is bad, the generator
can start producing the same output for every
iInput (mode collapse)

This Photo by Unknown Author is licensed under CC BY-NC

https://www.pngall.com/sherlock-holmes-png/download/38251
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

Wasserstein GANSs

* What if we could train the discriminator to convergence and still
be able to train our generator?

* We want a function that can tell us how likely it is an image came
from the real distribution, but not have vanishing gradients

e Solution: Use a “critic”’ instead of a discriminator

* The critic outputs a score (value) for the generator rather than a
probability (i.e., don’t use a sigmoid for activation...)

Wasserstein Distance

Wasserstein (Earth Mover’s) Distance: How much work is it to move one
probability distribution p, to another distribution q.

Probability A

Space X

W(p,q)* = / dx||x — Tp—q(x)||*p(x) : LZWasserstein distance

Source: https://www.researchgate.net/figure/Schematic-of-the-L-2-Wasserstein-distance-We-here-consider-optimal-transport-from-the_fig1_349704621

Wasserstein Distance

* Integrals are often hard to compute...
» Use Kantorovich—Rubinstein duality to simplify computation

W(P,Pg) = sup Egnp,[f(2)] —Eznp,|f(2)]

/ 1fllz<1 \

Forthe real and I Looks a lot like our old
generated distributions fis any function that is 1- loss function!

Lipschitz continuous

Sup isthe supremum, or
the lowest upper bound

Derivation: https://abdulfatir.com/blog/2020/Wasserstein-Distance/

Lipschitz Continuity

* For this method of calculating Wasserstein Distance, we need our
critic to be Lipschitz continuous (with c=1)

* That means that maximum gradient has to be 1

* There are fancy ways to do this (i.e., spectral normalization), but
what if just clip the gradient

* |If the gradient is larger than 1, just clip the value to be 1.
e tf.clip_by_value(grads, -1, 1)

Any questions? GAN:

Real image @

—)O\b_)[Discriminator]—) D —p cost f------- I
: :
2~ N(©,1) :
or Generator !

~ U1,1) - " !
z 1 D . 1 z(i) :
]

]

Key difference for WGANSs: . = e =

Instead of using the log probability of
the output of a discriminator, use the WGAN
output of the critic

Vo [2 30 ful®) = L 57 f.(96(2D))]

Wasserstein GANs are more ael Y
stable thgn vanilla GANs | “’C\AO_)[——]_) f I eeeas U |
because it’s less susceptible to —»0 :
vanishing gradients from the A ‘,[Ganandion]_
discriminator kb . Vol 7 £ (go(2®))

Other Tasks

* What if instead of generating images, we wanted to do another

task
* Denoising Images: Given a corrupted or noisy image, can you remove the
noise?
* Colorization: Given a black and white image, can you produce a color
image?
* Super-resolution: given an image of low resolution, can you produce an
image of higher resolution (i.e., more pixels)?

I How would you frame each of these problems and train a GAN (or VAE)? I

Input low resolution image to generator, have it output a higher
resolution image

(a) Input
cm
(b) Bicubic
i u :
Y
(c) Label fy | % |
A LN
i
(d) GAN - | ?.
+ resnet o ¥ U X
+ adam \
.4 -",, 'Y { ,,
(e) WGAN e = -
+ resnet W/ \
+ rmsprop Py ') '. 1
() WGAN-GP ¢ @*
+ resnet Y L ‘ ;
\’ . y A)
+ adam A A

Source: https://ar5iv.labs.arxiv.org/htm/1705.02438

GAN Variants

There are many variations on GANs... (these are just some of the ones with architectural differences)

Vanilla GAN CGAN Semi-Supervised GAN

ACGAN
) (¢) (reaf(r:)) (fake)

(rem') (c) (real

COGO GG W& GG GO
¢/ \ s : s/
OO OO O (@

Image source: https://www.researchgate.net/figure/A-view-of-variants-of-GAN-G-represents-the-generator-network-D-is-the-discriminator_fig2_343786287

Denoising Auto Encoders (DAEs

Corrupted image \ Predicted image

e

Hidden layer 2
300 neurons

500 neurons

Input layer Reconsiruct layer
784 neurons 784 neurons

https://www.omdena.com/blog/denoising-autoencoders

Denoising Auto Encoders (DAES)

What if our images were even noisier?

Corrupted image Predicted image

e F g B

o

T T
¥

Input image

Reconstructed image

/

Latont
2 imension

) AL
N
11T Za \‘\\{ \
/7 Midden layer 2 Hidden layer 1 ‘\\\\
300 neurons 300 newrons \ L\
/ Encoder Decodor \
Hadden layer 1

28 28

Hidden layer 2
500 neurons 500 neurons

Input laryer Reconstruct layer
784 neurons 784 neurons

https://www.omdena.com/blog/denoising-autoencoders

Denoising Auto Encoders

Denoising all the noise in one step may be too hard to learn.
What if we added and removed noise incrementally?

\
- 000

Forward path *

Source: https://wvwv.researchgate.net/figure/Schematic-of-the-diffusion-modei—tr‘aining—process_ﬁg1_3'8;3920783

Denoising Auto Encoders (DAEs

Corrupted image \ Predicted image

e

Hidden layer 2
300 neurons

500 neurons

Input layer Reconsiruct layer
784 neurons 784 neurons

https://www.omdena.com/blog/denoising-autoencoders

Denoising Auto Encoders (DAES)

What if our images were even noisier?

Corrupted image Predicted image

e F g B

o

T T
¥

Input image

Reconstructed image

/

Latont
2 imension

) AL
N
11T Za \‘\\{ \
/7 Midden layer 2 Hidden layer 1 ‘\\\\
300 neurons 300 newrons \ L\
/ Encoder Decodor \
Hadden layer 1

28 28

Hidden layer 2
500 neurons 500 neurons

Input laryer Reconstruct layer
784 neurons 784 neurons

https://www.omdena.com/blog/denoising-autoencoders

Denoising Auto Encoders

Denoising all the noise in one step may be too hard to learn.
What if we added and removed noise incrementally?

Fixed forward diffusion process

Generative reverse denoising process

Variational Autoencoders

We canrepresenta VAE as a
probabilistic graphical model

q(z[x) =~ z ~{ p(x|z)

Encoder generates probability :
distribution g(z|x) p(2)

p(z|z)
—
zlx

Decoder estimates p(x|z)

Hierarchical Features

PR

) OO0

e b '\
R

7
X %h/
@ @

Each intermediate layer in a neural network can be seen as learning
a set of intermediate features based on the previous intermediate

— =
e £
o o
wu [}
8 SR IN DN o
5 PR RIK 2
SSBBBEBD 5

DI DT IR NSERL
LB KRR 2
QPIQOOOV00 2
R | RAARIINS | NAARL | N =
s s N
-]
e
=
o
o
-}
o
o
® (-
8 :
5 £
()
Q. N
o 0
5 g
@) ©
y
O
| -
>
(@)
N

Hierarchical VAEs

Hierarchical VAEs

|Idea: train K pairs of encoders and decoders

Xt Xt+1

Each decoder is trained to reverse the associated
encoder’s operations

p(z|z1) p(z1]22) p(zr-1|2r) o

Encoder 1 Decozer 1

[‘\ [\ K‘\ [[
@ @ @ o @ Erioder 2 Decoier 2
N T 7T N_7

Encoder K Decoder K

-’

q(21]|r) q(22|21) q(zr|27-1)

How many encoders and

Hlera rchical VAES decoders do we need to learn?

Hierarchical VAEs

|Idea: train K pairs of encoders and decoders

- Xt+1

Each decoder is trained to reverse the associated
encoder’s operations

Decoders (reverse process)

p(z|z1) p(z1]22) p(zr-1|27)

Encoder 1 Decoﬁer 1

[‘\ [\ K‘\ [i
@ @ @ o @ ErioderZ DecoierZ

Encoder K Decoder K

p

q(z1|) q(22|21) q(zr|27-1)

Encoders (forward process)

Hierarchical VAEs

What if all latent variables z have the same size?

Most encoders and decoders
have the same input/output size

H ie rarc h iC s |_ VAE S But what if everything had the

same dimensions

What if all latent variables z have the same size?

Need special first encoder, special last decoder to go from

embedding size to original input size

p(x|z1) p(z1]22) p(zr-1|er) <t
K‘\ /\ /\ DecoderNN | Z+—1 <1 T

<t

Encoder NN

Zt+1

Hierarchical VAEs

A hierarchical VAE that keeps the dimensions the same can
use the same decoder and encoder for all steps

plxo|z1) pla1|x2) per-1ler) T+

G I
N T T T Lt

Q($1|£E0) C](£U2|LL'1) Q(ilJT\il?T—l) t

Decoder NN

Encoder NN

Lt41

Hierarchical VAEs

A hierarchical VAE that keeps the dimensions the same can
use the same decoder and encoder for all steps

p(zolz1) p(wi|zs) p(er—i1lr) Tt
[\ K-\ K—\ / Decoder NN
ORORNC
X
\/ _j \/ t Encoder NN
Q(£U1|1L‘o) CI(IIJ2|£L‘1) Q(ifiT‘iUT—l) t

Denoising VAEs

If the size of the encodingin a VAE is the same size as the input, the
model is no longer doing dimensionality reduction...

So why would we want this? .
K‘Q I—H ‘(\—» -— \./—‘\\ h_Sposan

Fcrward path

The forward process adds noise
The reverse path reverses this process

J(‘
".'.‘J J—> -)

But we don’t need to learn the
encoders, adding noise isn’t a learned
process!

Source: https://www.researchgate.net/figure/Schematic-of-the-diffusion-model-training-process_fig1_383920783

Adding Noise

What if each encoder transitions sample the input with some
gaussian noise?

(370\561) ($1|~’B2) P(%'T 1|zr)
Eﬂ q(z1]zo) I uLz!m (vLT’JJT—l)

q(z1]z0) = N (21|20, 071)

reparam. trick!

reparam. trick!

p(xo|z1) p(w1|w2) p(xr-1|zT)

Aggregate into 1
sample!

reparam. trick!

p(zo|z1) p(z1]z2) p(zT-1|zT)

q(zr|TT-1)
Aggregate into 1
whane, sample!
Ao = O'% + O'%
and, reparam. trick!

q(w2]|z0) = N (22|20, 03)

To ~ q(xzo|x1)

q(x¢|xo) is a Gaussian, for arbitrary ¢!

q(zi|z0) = N (24|70, 071), Where g, 1, ... are all known/fixed.

p(xo|z1) p(xi—1|xy) p(x|Ts1) p(xp_1|oT)

® O (

Zi—11Zo0 q(wi|zo)

Lt41 |~’L'0

Diffusion Models

Are hierarchical VAEs with the following assumptions:
* Alldimensions are the same (input size, encoding size)

* Encodertransitions are known gaussians centered around their previous inputs

p(zo|z1) p(e—1|xe) p(a¢|Te41) p(zr-1|rT)

00 o

Lf HIU JHTO

q(ze+1]|20) q(zr|zo)

Decoder NN

Hdec

Odec

> Lt—1

Why Call it Diffusion?

Diffusion of gas particles (and other
physical things)

Start off organized

Transitions to “random noise”

The Decoder

Diffusion models seek to learn a single neural network: a de-noising decoder

Lt

What form does x;_, take? ; DecoderNN | 7 | =) L¢—1

q(xe—1lxg) = N(xt—1‘xo;“?—11) .
Xt = Xo T Qp_1€ Lt—1 = Hdec + Odec * €

What is the ground truth for py_4?

Does the decoder even need to
predict ?

Denoising Diffusion Models

Learn a single decoder network
* Input is image with added noise
* Output is predicted image with noise removed

Lt
¢

Decoder NN

) Lt—1

How To Generate New Samples

ldea 1: sample point from N (0, 1), run decoder with t=T to generate X,

Issue: Doesn’t work that well... that was the entire motivation for having
multiple steps

ldea 2: sample point from N (0, I), iteratively generate X;_;

But how do we actually generate X;_; when our decoder generates X ?

Sampling

Decoder NN

Samplin

Sampling

Sampling

p($t|$t+1)

5/159 (xt, t)

Sampling

5’1}9 :Ut,t
(x| Te41

R Y a

®© 0606 e

q(xi—1|x0

Sampling

5%9 (ZUt, t)

(xt_l |z¢) P(x¢|Tis1)

® @

_____//Y,

q(z¢—1|T0)

Sampling

p(xol|x1) p(xi—1|xy) p(x¢|Ti41) p(xr_1|xr)

®© 00 o

Noise Schedules

* What should the value of T be?
* How many steps of forward/reverse processes should we run?

* How much noise should be added at each step?

Amount of noise and number of steps determined by a noise
schedule (hyperparameter

Linear Schedule (equal noise added at each timestep

Noise Schedules

* What should the value of T be?
* How many steps of forward/reverse processes should we run?

* How much noise should be added at each step?

Amount of noise and number of steps determined by a noise
schedule (hyperparameter

Cosine Schedule (small amounts of noise first, then fast)

Diffusion Training

Algorithm 1 Training Algorithm 2 Sampling
1: repeat 1: & ~ N(0,1I)
2 xo ~ q(xg) 2: fort="1T,...,1:
3: t ~Uniform(1,...,7) 3 e~ NI ift > 1, else e =0
4: e ~N(0,1) 4: i1 = To(Xs,t) + s—_1€
5 Take gradient descent step on . o1 for
6 Vol|xo — To(xo + Oétﬁat)Hz 6: return x
7: until converged

Examples

e Model trained on CelebA
dataset

Source: https://yang-song.net/blog/2021/score/

Examples

Model trained on CIFAR-10

Source: https://yang-song.net/blog/2021/score/

Visual Auto-Regressive Generation

Three Different Autoregressive
Il Generative Models

AutOngrQSSlVQ ll'al'l$f0l'mel' (GP' LL P
() ’ aMa, aLM' etc-) -
a AR | r k n DIEdlctlon

——

ettt
Ry ol K 3 e

7AR Transformer (iGPT, vQ

mES——. -
GAN, Parti...) ﬁ‘ —
(b) AR: Image generation by next- - . EJ

image-token Prediction

Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction

	Slide 1: Generative Adversarial Networks (GANs)
	Slide 2: VAEs Review
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Generative Adversarial Networks (GANs)
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Generative Adversarial Networks
	Slide 12: GANs: Training the Discriminator
	Slide 13: But…
	Slide 14: GANs as a Game
	Slide 15: Nash Equilibrium
	Slide 16: How do we find Nash Equilibria
	Slide 17: GAN Training Algorithm
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Training Visualization
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Problems with GANs
	Slide 27: Training GANs is very unstable
	Slide 28: Training GANs is very unstable
	Slide 29
	Slide 30
	Slide 31: Balancing the Discriminator is hard
	Slide 32: Wasserstein GANs
	Slide 33: Wasserstein Distance
	Slide 34: Wasserstein Distance
	Slide 35: Lipschitz Continuity
	Slide 36
	Slide 37: Other Tasks
	Slide 38
	Slide 39: GAN Variants
	Slide 40: Denoising Auto Encoders (DAEs)
	Slide 41: Denoising Auto Encoders (DAEs)
	Slide 42: Denoising Auto Encoders
	Slide 43: Denoising Auto Encoders (DAEs)
	Slide 44: Denoising Auto Encoders (DAEs)
	Slide 45: Denoising Auto Encoders
	Slide 46: Variational Autoencoders
	Slide 47: Hierarchical Features
	Slide 48: Hierarchical VAEs
	Slide 49: Hierarchical VAEs
	Slide 50: Hierarchical VAEs
	Slide 51: Hierarchical VAEs
	Slide 52: Hierarchical VAEs
	Slide 53: Hierarchical VAEs
	Slide 54: Denoising VAEs
	Slide 55: Adding Noise
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Diffusion Models
	Slide 64: Why Call it Diffusion?
	Slide 65: The Decoder
	Slide 66: Denoising Diffusion Models
	Slide 67: How To Generate New Samples
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75: Noise Schedules
	Slide 76: Noise Schedules
	Slide 77: Diffusion Training
	Slide 78: Examples
	Slide 79: Examples
	Slide 80: Visual Auto-Regressive Generation

