
Deep Learning
Image Generation: Autoencoders and VAEs

Source: ChatGPT image generator, prompt “Ok, hear me out. I need a friendly
cartoon mole person with a hat and magnifying glass looking at the earth's
core all in one image.”

Eric Ewing Tuesday, 10/28 CSCI 1470

Logistics

• Final Project groups will come out this afternoon (or evening)
• If you haven’t filled out the form, you should fill it out even if you don’t

have group-mates in mind

• Weekly Quiz is out

Recap: Supervised Learning
Is it an image of someone cooking?

- Supervised learning requires labels
- Learn a function that takes in input
features and outputs labels

What are some pros and cons of supervised learning?

Recap: Supervised Learning

Pros:
- Can produce very high

quality models with
sufficient data

- Performance is easy to
measure (e.g., accuracy)

Cons:
- Reliant on availability of

labels
- Reliant on quality of labels

What’s Left?

Unsupervised Learning: Learning without labels

Reinforcement Learning: Learning from experiences

Encoder Decoder

Image Capabilities in LLMs
How might we incorporate other
capabilities into our LLMs?
1. Generate Images (call other model)
2. Take images as input and generate text

What might this look like?

Source: OmniGen: Unified Image Generation: https://arxiv.org/pdf/2409.11340

Take in multiple modes of input (text, images, etc.)
(Multi-modal learning)

Output embedding vectorOutput image

What might this look like?

Source: OmniGen: Unified Image Generation: https://arxiv.org/pdf/2409.11340

What’s this?

And This?

And why is
there noise?

VAE: Variational Auto-Encoder
Noise: for “Diffusion” process

Foundation Models

Key Question: What is the equivalent of Language Modeling for data
other than natural language? (From last class)
Desired Properties:
1. No need for human labeling
2. Large amount of data available
3. Ability to learn a “general” representation of the data

Encoder Decoder

One such method for images:
Can you output the same

image that comes as input?

Autoencoders

Encoder Decoder

Autoencoder: an encoder-decoder architecture that
tries to produce its own input

But what’s hard about this? It’s very easy to learn a function that
outputs the input to the function (i.e., the identity function)

Autoencoders

Encoder Decoder

Vector in embedding space (latent space)
Much smaller than the original input size

Convolutional Autoencoders: Encoding

Transposed Convolution

Standard Convolution: Kernel
slides along input

Transpose Convolution: Single
input is multiplied by entire kernel,
summed

Green: Input
Blue: Output

Green: output
Blue: input

Source: https://github.com/vdumoulin/conv_arithmetic/tree/master

(stride of 1)

Source: https://d2l.ai/chapter_computer-vision/transposed-conv.html

Convolutional Autoencoder

Encoder Decoder

Standard Convolutions Transpose Convolutions

Loss Function

What do you think is an appropriate loss function?

Reconstruction loss (MSE): How far is each output pixel from the corresponding input pixel?

Autoencoders

What do Autoencoders actually learn?
1. Encoder learns a dimensionality reduction (from image to vector)
2. Decoder learns an image generation function (from vector to image)

Encodings of MNIST data points with a trained
autoencoder (dimensionality reduced further by PCA)

Encoders can be used to learn
insights into structure of data

Decoders can be used to generate
“new” images

Generating Images

• How can we generate a “new” image
using a decoder?

• Sample a vector in latent space and
send it to the decoder…

• But how do you choose which vector?
• What if you wanted to generate a

specific image? How would you find
the right vector?

Is this a good
autoencoder?

(Encoding size = 32)

Why is loss alone (even
with validation loss) not

enough to tell us?

Grid sample latent space and pass to
encoder

Autoencoders can generate, but are not
generative
Recall:
- Discriminative models learn P(y | X)
- Generative models learn P(X)

When we randomly sample, we
may get some “invalid” outputs. A
generative model could assign
these invalid outputs a low
probability P(X)

Nothing constrains the latent space
of an autoencoder to represent
probability distributions

Issues with Autoencoders

• Vectors close together in latent space may
not produce similar outputs

• Tend to overfit data (struggle to produce
“new” outputs)

How to address issues with overfitting
outputs? Try to learn more variation in outputs.

Issues with Autoencoders

What might a better latent space look like for generation?

Autoencoder Variational Autoencoder

Variational Autoencoders

Autoencoder’s goal: Reconstruct the original input

Variational Autoencoder’s goal: Generate a new output that
resembles the input

Output≠

VAE Losses

𝐿1 is easy, we’ve seen this before

𝐿1(𝑥, ො𝑥) = 𝑥 − ො𝑥
2

 (MSE)

But what is 𝐿2? How do we measure how much variation our output
has?

𝐿2 ? ? , ? ? =? ? ? ?

Defining the Variation Loss

Whatever our loss function, it needs to encourage 𝜎 > 0, or else the model will
force 𝜎 to 0 in an effort to create the best recreations possible.

If 𝜎 = 0, then the VAE will behave
the same as an autoencoder!

Defining the Variation Loss

Whatever our loss function, it needs to encourage 𝜎 > 0, or else the model will
force 𝜎 to 0 in an effort to create the best recreations possible.

But it can’t be too big… because too much variation will create poor reconstructions.

Defining the Variation Loss

Whatever our loss function, it needs to encourage 𝜎 > 0, or else the model will
force 𝜎 to 0 in an effort to create the best recreations possible.

But it can’t be too big… because too much variation will create poor reconstructions.

Also, what should 𝜇 be?

Defining the Variation Loss

The idea:
- Introduce a prior probability function we we want our latent

space to look like.
- Encourage 𝑁(𝜇, 𝜎) close to 𝑁 0, 1
- (This will have beneficial properties we’ll see later)

How do we measure distance between
probabilities?
Kullback–Leibler (KL) Divergence

(For most problems in DL, minimizing Cross Entropy minimizes KL-Divergence)

KL Divergence

K is the dimensionality of Ԧ𝜇, Ԧ𝜎 (i.e., the size of the encoding)

There’s just one issue

How do we take the gradient of a sampling operation?

z∼ 𝑁(𝜇, 𝜎)

Reparametization Trick

Can be rewritten as:
𝑧 = 𝜇 + 𝜖𝜎, where 𝜖 ∼ 𝑁(0, 1)

z∼ 𝑁(𝜇, 𝜎)
Random sampling operation
(𝜖) no longer depends on
learnable parameters

Another explanation of why this is needed: https://gregorygundersen.com/blog/2018/04/29/reparameterization/

https://gregorygundersen.com/blog/2018/04/29/reparameterization/

	Slide 1: Deep Learning
	Slide 2: Logistics
	Slide 3: Recap: Supervised Learning
	Slide 4: Recap: Supervised Learning
	Slide 5: What’s Left?
	Slide 6: Image Capabilities in LLMs
	Slide 7: What might this look like?
	Slide 8: What might this look like?
	Slide 9: Foundation Models
	Slide 10: Autoencoders
	Slide 11: Autoencoders
	Slide 12: Convolutional Autoencoders: Encoding
	Slide 13
	Slide 14: Transposed Convolution
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Convolutional Autoencoder
	Slide 20: Loss Function
	Slide 21: Autoencoders
	Slide 22: Generating Images
	Slide 23
	Slide 24
	Slide 25: Autoencoders can generate, but are not generative
	Slide 26: Issues with Autoencoders
	Slide 27: Issues with Autoencoders
	Slide 28: Variational Autoencoders
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: VAE Losses
	Slide 38: Defining the Variation Loss
	Slide 39: Defining the Variation Loss
	Slide 40: Defining the Variation Loss
	Slide 41: Defining the Variation Loss
	Slide 42: How do we measure distance between probabilities?
	Slide 43
	Slide 44
	Slide 45
	Slide 46: There’s just one issue
	Slide 47: Reparametization Trick
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

