Deep Learning

Image Generation: Autoencoders and VAEs

Eric Ewing Tuesday, 10/28 CSCI11470

Source: ChatGPT image generator, prompt “Ok, hear me out. | need a friendly
cartoon mole person with a hat and magnifying glass looking at the earth's
core all inone image.”

Logistics

* Final Project groups will come out this afternoon (or evening)

* If you haven’t filled out the form, you should fill it out even if you don’t
have group-mates in mind

* Weekly Quiz is out

Recap: Supervised Learning

Is it an image of someone cooking?

Input: X Output: Y

- Supervised learning requires labels ”Cooking?”
- Learn afunction that takes in input

features and outputs labels

What are some pros and cons of supervised learning?

Recap: Supervised Learning

Pros: Cons:

- Can produce very high - Reliant on availability of
quality models with labels
sufficient data - Reliant on quality of labels

- Performance is easy to
measure (e.g., accuracy)

What’s Left?

Unsupervised Learning: Learning without labels

Reinforcement Learning: Learning from experiences

reward
R,

’_[Agent]

-~

Environment]4—

action
A

I

How might we incorporate other

|mage Capabllltles in LLMS capabilities into our LLMs?

1. Generate Images (call other model)
2. Take images as input and generate text

from openai import OpenAl
import base64

client = OpenAI() Give this cat a detective hat and a monocle
response = client.responses.create(

model="gpt-5",)

input="Generate an image of gray tabby cat hugging an otter with an orange scarf"

tools=[{"type": "image_generation"}],

image_data = [
output.result
for output in response.output
if output.type == "image_generation_call"

if image_data:
image_base64 = image_datal0]
with open("otter.png", "wb") as f:
f.write(base64.b64decode(image_base64))

What might this look like?

Attention Mechanism

/

-

Text
Tokens

Noise

Text

Tokens
'd —A—\

Image
Patch Timestep Noise
f—/%

OO0ooooooodd
I o O
I o o o

Timestep [A EEEEE A0

i i v e
OO0000000880E8

OO0000000E88008
O008008000nm0na /

N

JDDDDDDDDEIDDD

Outputimage

Output embedding vector

VAE

Generated /

Final Latent Embedding

A

X Dif fusion steps]

Transformer

B B B B B B B NEmmgmmgesageewie |

I Visual|[Embeddings

[

VAE 3#¥](

Text Tokenizer] [

[1

1 T 1
Replace the fruit in the m E

(Multi-modal learning)

Take in multiple modes of input (text, images, etc.)

Source: OmniGen: Unified Image Generation: https://arxiv.org/pdf/2409.11340

What might this look like?

VAE: Variational Auto-Encoder
Noise: for “Diffusion” process

What’s this?

. . l Final Latent Embedding
Attention Mechanism G ted (e
/ Text Image enf;?aege x‘_[VAE ﬁ ey B B
/Tokens\ Patch Timestep Noise X Dif fusion stepsI
JDDDDDDDDDDDD
- 1000000000000
Tekens I 1O 000000000 Transformer
OO0O0O000000O00004
mage) L1 11O O OO 000000
petch | OO OO DO00000 I I T
%SEE%%%%S%%% MO @O OO /||| OO)| 3 | e S
Timestep k _ .)
D I:] D D D L—_I [—_—] [:] D D I:I D I Visual Embeddlngs I T%giiip Noise
N OO00000008E00808 [Text Tokenizer][VAE *][] And why is
SEHEmmmesman T g |ternose
K / Replace the fruit in the middle with a cat ? E E

And This?

Source: OmniGen: Unified Image Generation: https://arxiv.org/pdf/2409.11340

Foundation Models

Key Question: What is the equivalent of Language Modeling for data
other than natural language? (From last class)

Desired Properties:

1. No need for human labeling

2. Large amount of data available

3. Ability to learn a “general” representation of the data

One such method forimages:
Can you output the same
image that comes as input?

g —| Encoder| — Decoder

Autoencoders

Autoencoder: an encoder-decoder architecture that
tries to produce its own input

\/

Encoder —_— Decoder

/ \

But what’s hard about this? It’s very easy to learn a function that
outputs the input to the function (i.e., the identity function)

Autoencoders

\/

Encoder —_— Decoder

Vector in embedding space (latent space)
Much smaller than the original input size

Convolutional Autoencoders: Encoding

Same as Conv Nets from before: Encoding

64

N
AY
~ : N RelLU
~
- =3 o
- Pool

60

64

Autoencoders: Decoding

* Convolution as we know it only keeps resolution same or decreases it
* How do we go up in resolution?

Transposed Convolution

Standard Convolution: Kernel
slides along input

Green: output
Blue: input

Transpose Convolution: Single
input is multiplied by entire kernel, ES———
summed Blue: Output

Source: https://github.com/vdumoulin/conv_arithmetic/tree/master

ol 1 Transposed 011
2 3 Conv 2 3
Output
GE e 011 0
= |EOUNIEG + Z &+ 9|2 + 0 4
416 6 12
(stride of 1)

Source: https://d2l.ai/chapter_computer-vision/transposed-conv.html

Transpose Convolution in Tensorflow

tf.nn.conv2d transpose(input, filters, output_shape, strides, padding='SAME’)

4D tensor of shap€ [batch, height, 4-D Tensor 4“ length 4 1D tensor representing

width, in_channels] [height, width, output_channels, in_channels] the output shape. Strid(‘?‘s alorTg String
each dimension representing
(list of integers) type of padding

D OC U m e n ta tl 0 n h e I'e: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/nn/conv2d

Specifying Output Size

- An image can be the result of the same

convolution on images of different resolution

- We need to specify which one we want.

57

60

66

61

\

oO]jlWwW|]OoO | N

N[Rr|o]| R

NIN]HFH]|O

R O I DN W

O jJ]OoO|lW]|J]O]|DN

o|jMNMN|BRFH|]O|R

O IN|DN|H+H]O

oO|lRr |]O|IDNMNMN]|W

O] O0]|]O | O] O

Any questions?

Transpose Convolution in Keras

tf.keras.layers.Conv2DTranspose (filters, kernel size, strides, padding=’'SAME'’

== 7

Number of filters
(Integer) Size of Convolution Strides along

. Strin
Window (tuple) each dimension represer?ting
(list of integers) type of padding

Note: Output Shape is inferred, but can be specified via the “output_padding” parameter

Documentation here; https://www.tensorflow.ora/api_docs/python/tf/keras/layers/Conv2DTranspose

Convolutional Autoencoder

\ /

Encoder Decoder

/ \

Standard Convolutions Transpose Convolutions

Loss Function

What do you think is an appropriate loss function?

Reconstruction loss (MSE): How far is each output pixel from the corresponding input pixel?

Autoencoders

What do Autoencoders actually learn?
1. Encoder learns a dimensionality reduction (from image to vector)

2. Decoderlearns animage generation function (from vector to image)

Encodings of MNIST data points with a trained !Enc.:oder.s can be usedto learn
autoencoder (dimensionality reduced further by PCA) Insights into structure of data

Decoders can be used to generate
“new” images

Generating Images

* How can we generate a “new” image
using a decoder?

* Sample a vector in latent space and
send it to the decoder...

* But how do you choose which vector?

* What if you wanted to generate a
specific image? How would you find
the right vector?

Autoencoder Loss

0.20 - —— Training Loss
Validation Loss
0.18 ~
0.16 -
i
]
3 0.14 -
0.12 ~
0.10 ~
T T T T T T T T
)] 2 4 5] 8 10 12 14
Epoch
Original Original Original Original Original Original Original Original Original Original

?

Reconstructed Reconstructed Reconstructed Reconstructed Reconstructed Reconstructed Reconstructed Reconstructed Reconstructed Reconstructed

7121 /10l4l/]9]als]7

71Zl/10ld]/[7]Ale

(Encoding size = 32)

Is this a good
autoencoder?

Why is loss alone (even
with validation loss) not
enough to tell us?

Dimension 2

20.0 A

17.5 A

15.0 ~

12.5 A

10.0 4

754

5.0 1

2.5 1

0.0 A

Visualization of the Latent Space

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Dimension 1

17.5

Grid sample latent space and passto

encoder

Grid Sampling of Latent Space Using PCA

L

\Aqe

- »
s Sy

(3 (:: /5 8
GG GGGBOOOo
(» 121030303000
i303030000 0
L3000 0

111
I &3
] 3 3
333
333
388
388
888
6060
000
000
000
000

!
!
!
3
8
G
O
0O
0O
O

Explained variance: PC1=0.32, PC2=0.11

:
S
L
3
3
3
S
3
8
3
0
0o
4
0

:
:
3
3
3
3
3
3
3
8
3
3
0o
4
4

:
L
3
3
3
3
3
3
8
8
3
3
o
(4
0

Autoencoders can generate, but are not
generative

Recall:

- Discriminative models learn P(y | X) Standard Autoencoder
- Generative models learn P(X)

When we randomly sample, we Smiling faces
. . (90% of data)

may get some “invalid” outputs. A

generative model could assign

these invalid outputs a low Frowning

probability P(X) (10% of data)

Nothing constrains the latent space
of an autoencoder to represent
probability distributions

Issues with Autoencoders

* VVectors close together in latent space may

not produce similar outputs

* Tend to overfit data (struggle to produce

“new” outputs)

How to address issues with overfitting
outputs? Try to learn more variation in outputs.

Visualization of the Latent Space

Explained variance: PC1=0.32, PC2=0.11

4

Issues with Autoencoders

What might a better latent space look like for generation?

Autoencoder Variational Autoencoder

Variational Autoencoders

Autoencoder’s goal: Reconstruct the original input

Variational Autoencoder’s goal: Generate a new output that
resembles the input

Building up the VAE Architecture

If we were to describe an autoencoder functionally:

Output = Decoder(Encoder(Input))

\

"'a

Latent Representation

Input

T

Encoder

/

Latent
Representation

/

Decoder

T

Output

Building up the VAE Architecture

For variational autoencoders, we also do a random sampling operation
at the bottleneck

Output = Decoder(random_sample(Encoder(Input)))

\ /

Random
Sampling of
Latent Space

— T

Latent Decoder Output

Representation

Input Encoder

How does random sampling in latent space
lead to variation?

Input

T

Encoder

/

Latent

/

Representation

Random

Sampling of
Latent Space

Decoder

T

E

Output

« The random sampling should be
designed to produce random
points in latent space that are
close to the output of the
encoder

« Nearby points in the latent space
should decode to similar images

How should random_sample be defined?

Output = Decoder(random_sample(Encoder(Input)))
* We want the sample to be close to the encoder output
* One option: sample from a Gaussian centered at Encoder(Input)

What can we modify?

\ /

Random
Latent sampling of Decoder Output

Latent Space

| T

Input Encoder

Representation

How should random sample be defined?

Output = Decoder(random_sample(Encoder(Input)))
« We want the sample to be close to the encoder output
* One option: sample from a Gaussian centered at Encoder(Input)

» Use two dense layers to convert the encoder output into the mean
and standard deviation of the Gaussian

\ é\c,‘?' p \ /
Q
Input Encoder Latent / .| Decoder | | oytpyt

Representation x N, 0)
Go"‘@ /

How should random_sample be defined?

Qr

_ O

Input

T

Encoder

Q=

/

Latent
Representation

_

/

N, o)

\

Decoder

T

Output

Any questions?

q'?:o

Training a VAE

Two goals:
1. Reproduce an output similar to the input (Input = Output)
2. Have some variation in our output (Input # Output)

* Seems like two conflicting goals!
* How do we resolve these two goals?

\ £ U /
Oé\ \
Input Encoder Latent __| Decoder | | gytput
g Representation N(u, o) P
o@%
e

—
/ \

Weighted Combination of Losses

L, =loss associated with producing output similar to input

L, =loss associated with producing output with some variation to
input

L =1L+ Lo
Total Loss: ‘
A € |0, oo
\ /

o"*&e :
Input Encoder Latent __,| Decoder | | 5,tput
g Representation > N (u, 0) P
%&@

/ : \

/

\

VAE Losses

L, is easy, we’ve seen this before

Li(x,%) = |lx — 2I|, (MSE)

But whatis L,? How do we measure how much variation our output
has?

L,(??7,7?7) =72727

Defining the Variation Loss

Whatever our loss function, it needs to encourage o > 0, or else the model will
force o to 0in an effort to create the best recreations possible.

Input

T

Encoder

If o = 0, then the VAE will behave
the same as an autoencoder!

/

Latent
Representation

2
9
@
\@

/

Ny, 0)

\

—

/

Decoder

T

Output

Defining the Variation Loss

Whatever our loss function, it needs to encourage o > 0, or else the model will
force o to 0in an effort to create the best recreations possible.

But it can’t be too big... because too much variation will create poor reconstructions.

\ /

& |
7 I~
Input Encoder Latent | Decoder | | qutout
g Representation \ Ny, 0) P
6,29@ /

—/ : \

Defining the Variation Loss

Whatever our loss function, it needs to encourage o > 0, or else the model will
force o to 0in an effort to create the best recreations possible.

But it can’t be too big... because too much variation will create poor reconstructions.

Also, what should u be?

\ /

& |
7 I~
Input Encoder Latent | Decoder | | qutout
g Representation \ Ny, 0) P
6,29@ /

—/ : \

Defining the Variation Loss

The idea:

- Introduce a prior probability function we we want our latent
space to look like.

- Encourage N(u, o) close to N(0,1)

- (This will have beneficial properties we’ll see later)

\ 7E\/

Input Encoder Latent Decoder

— Output
Representation \ Ny, 0) P

How do we measure distance between
probabilities?
Kullback—Leibler (KL) Divergence

Dg(Pl|Q) = / ' p(z) log (IM> dx

— 00

What this says:

- “Everywhere that p has probability density..."

je
_ iAo y =1 PP T T . N 7N 1 -
1€ J ‘ | 1 € "NcCe D eLween p dllil ¢ SI10Ul ‘: ‘

- Difference in log probabilities (remember that log (%) = log(a) — log(b))

(Formost problems in DL, minimizing Cross Entropy minimizes KL-Divergence)

KL Divergence

* Expensive to compute, in general (no closed form, have to
numerically approximate the integral)

* But! There is a closed form for Gaussians:

k
.. 1
2
Dyp(N(p,0%)||IN(0,1)) =5 gz e+ o —Inor —1)

K is the dimensionality of /i, ¢ (i.e., the size of the encoding)

The Final VAE Loss Function

We now have all the tools necessary to construct our loss function.

L =Li+ ALs A € 0, 00|
Which turns into this:

L= ||z —&||5+ ADkr(N(p, o), N(0,1))

Putting it all together

L= |jz — &[[3 + ADk(N (1, 0), N'(0, 1))

T . _

<LK
Input Encoder Latent | Decoder | | oytput
g Representation > N (u, 0) P
@/)J‘@ i

| T~

/

\

There’s just one issue

How do we take the gradient of a sampling operation?

Input

T

Encoder

/

Latent
Representation

z~ N(u,0)
AN’ \ /
g /N('p,o‘) Decoder

T

Output

Reparametization Trick

z~ N(u, o)

Can be rewritten as:

z=u+eo,wheree ~N(0,1)

Input

T

Encoder

/

Latent
Representation

Another explanation of why this is needed: https://g

Random sampling operation
(€) no longer depends on
learnable parameters

/

Decoder Output

https://gregorygundersen.com/blog/2018/04/29/reparameterization/

Random Sampler with Reparameterization Trick

Random Sampler

> <

Random Sampler with Reparameterization Trick

0z
Random Sampler — =1
Op
ﬁ Z

Random Sampler with Reparameterization Trick

y’ 0z
Random Sampler — — €
Jo
_/ ———
//
14

€

One more practical detail

Let’s again consider our sampling operation

IIIII

B

Representation

2~ N(p, o)
_— \
i € [—00, 00] o; € |0, 00

N

a)

* Nothing prevents the neural network from outputting negative

values for the standard deviation.

* Instead of predicting o, we will instead predict |og(5?) . This ensures

that every ;. c (0, o0

* i.e. just treat the output of the Dense layer as if it is log(oz)

uuuuuu

One more practical detail j <

Let’s again consider our sampling operation

2~ N(p,o)
/ \
1 € [—0o0, 0] o; € |0, o]

#E
, 0

* Instead of predicting o, we will instead predict]og(o?) . This ensures

that every 5, c [0, o]
* i.e. just treat the output of the Dense layer as if it is log(JQ)

k

Dir(N (1, 0)[IN(0,1)) = 5} _(pf + 0F —=Ino? —1)

1=1

27

uuuuuu

Sampling from a VAE

 Discard this part of the network...
« ..andset (u,0) = (0,1)

N(0,1)

/

Decoder

T

Output

Sampling from a VAE

* We can use a trained VAE to generate random variants of an input
data point...

(0.2)

-3

1.2

0.5 .
1.2 b

&‘-5 P

'0.1 3

-2

1.6 .

0.9 _>
1.3

-1 J

o 0 T L’ ﬁ
ot — —_—— 3
1o

Input -6
Random Vector

—=

Sampling from a VAE

... But ultimately, we want to draw random samples from a VAE

0.2

0.5 VAE
-3 =
/ -2
Random Noise 0.8

How can we do this?
This is where our particular choice of training loss will pay off

Encoding different points into latent space

Let this circle represent the
probability density of a unit
Gaussian in latent space

Encoding different points into latent space

Let this circle represent the N (u(xy), 0(xy))
probability density of the

N (u, o) distribution that the
encoder predicts given an
input data point x,

Encoding different points into latent space

L = ||z — &[|3 + ADgr(N (1, 0), N(0, 1))

N(H(xﬂ: cr(x4))

N(ﬂ(_xl): U(.x1))

N(#(x(i)! O'(X6

N(Au'(x3)1 O'(X3

N(ﬂ(x”/): cr(x7))

Because of our KL
divergence loss, the
N (u, o) for any input
data point has to be
somewhat similar to
N(0,1)

So, if we sample a point
From N°(0,1), it is very
likely to fall within one
of these encoded

Latent Space Interpolation

* Trace a linear path between two points in latent space, put all points
along the path into the decoder

Latent Space Interpolation

* Trace a linear path between two points in latent space, put all points
along the path into the decoder

Encoder(x;)

Latent Space Interpolation

* Trace a linear path between two points in latent space, put all points
along the path into the decoder

De?i(livncoder(xl)) Decoder(Encoder(x,))
X1 [\ X2
i@ £
e

Encoder(x,)

Latent Space Interpolation

* Trace a linear path between two points in latent space, put all points
along the path into the decoder

DWncoder(xl)) Decoder(Encoder(x,))

Encoder(x,)

Discriminative vs Generative Models
P(g |cat)

P([E|cat) P(#|cat)
]] m P&

P([EH 1dog)
(1 Idog) j e

Conditional Generative Conditional Generative Model: Each possible label
Model: Learn p(x | y) induces a competition among all images

Credit: UMich EECS498

Conditional VAE

Input

T

Encoder

/

Latent
Representation

/

N(u, o)

\

/

Decoder

Any ideas?

T

Output

Conditional VAE

Input

.

Encoder

/

Latent
Representation

https://towardsdatascience.com/understanding-conditional-variational-autoencoders-cd62b4f57bf8

/

N (w, 0)

\

—]

\

Decoder

4

Output

VAE output

| What's the issue here?

| Why?

https://towardsdatascience.com/what-the-heck-are-vae-gans-17b86023588a

Why are VAE samples blurry?

e Our reconstruction loss is the culprit

e Mean Square Error (MSE) loss looks at each pixel in
isolation

* If no pixel is too far from its target value, the loss won’t be
too bad

* Individual pixels look OK, but larger-scale features in the
image aren’t recognizable

e Solutions?
e Let’s choose a different reconstruction loss!

https://towardsdatascience.com/what-the-heck-are-vae-gans-17b86023588a

Recap

| Loss Function |
Variational | Reparameterization Trick I
Autoencoders
(VAEs)
| Conditional VAEs |

/
I
ﬁ/ e
Input Encoder Latent N 0) Decoder | | ooyt
Representation 5
R Pl
S

	Slide 1: Deep Learning
	Slide 2: Logistics
	Slide 3: Recap: Supervised Learning
	Slide 4: Recap: Supervised Learning
	Slide 5: What’s Left?
	Slide 6: Image Capabilities in LLMs
	Slide 7: What might this look like?
	Slide 8: What might this look like?
	Slide 9: Foundation Models
	Slide 10: Autoencoders
	Slide 11: Autoencoders
	Slide 12: Convolutional Autoencoders: Encoding
	Slide 13
	Slide 14: Transposed Convolution
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Convolutional Autoencoder
	Slide 20: Loss Function
	Slide 21: Autoencoders
	Slide 22: Generating Images
	Slide 23
	Slide 24
	Slide 25: Autoencoders can generate, but are not generative
	Slide 26: Issues with Autoencoders
	Slide 27: Issues with Autoencoders
	Slide 28: Variational Autoencoders
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: VAE Losses
	Slide 38: Defining the Variation Loss
	Slide 39: Defining the Variation Loss
	Slide 40: Defining the Variation Loss
	Slide 41: Defining the Variation Loss
	Slide 42: How do we measure distance between probabilities?
	Slide 43
	Slide 44
	Slide 45
	Slide 46: There’s just one issue
	Slide 47: Reparametization Trick
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

