Deep Learning

Image Generation: Autoencoders and VAEs

Eric Ewing Tuesday, 10/28 CSCI11470

Source: ChatGPT image generator, prompt “Ok, hear me out. | need a friendly
cartoon mole person with a hat and magnifying glass looking at the earth's
core all inone image.”



Logistics

* Final Project groups will come out this afternoon (or evening)

* If you haven’t filled out the form, you should fill it out even if you don’t
have group-mates in mind

* Weekly Quiz is out



Recap: Supervised Learning

Is it an image of someone cooking?

Input: X Output: Y

- Supervised learning requires labels ”Cooking?”
- Learn afunction that takes in input

features and outputs labels

What are some pros and cons of supervised learning?




Recap: Supervised Learning

Pros: Cons:

- Can produce very high - Reliant on availability of
quality models with labels
sufficient data - Reliant on quality of labels

- Performance is easy to
measure (e.g., accuracy)



What’s Left?

Unsupervised Learning: Learning without labels

Reinforcement Learning: Learning from experiences
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How might we incorporate other

|mage Capabllltles in LLMS capabilities into our LLMs?

1. Generate Images (call other model)
2. Take images as input and generate text

from openai import OpenAl
import base64

client = OpenAI( ) Give this cat a detective hat and a monocle
response = client.responses.create(

model="gpt-5", )

input="Generate an image of gray tabby cat hugging an otter with an orange scarf"

tools=[{"type": "image_generation"}],

image_data = [
output.result
for output in response.output
if output.type == "image_generation_call"

if image_data:
image_base64 = image_datal0]
with open("otter.png", "wb") as f:
f.write(base64.b64decode(image_base64))




What might this look like?
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(Multi-modal learning)

Take in multiple modes of input (text, images, etc.)

Source: OmniGen: Unified Image Generation: https://arxiv.org/pdf/2409.11340




What might this look like?

VAE: Variational Auto-Encoder
Noise: for “Diffusion” process

What’s this?
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And This?

Source: OmniGen: Unified Image Generation: https://arxiv.org/pdf/2409.11340



Foundation Models

Key Question: What is the equivalent of Language Modeling for data
other than natural language? (From last class)

Desired Properties:

1. No need for human labeling

2. Large amount of data available

3. Ability to learn a “general” representation of the data

One such method forimages:
Can you output the same
image that comes as input?

g —| Encoder| — Decoder




Autoencoders

Autoencoder: an encoder-decoder architecture that
tries to produce its own input
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But what’s hard about this? It’s very easy to learn a function that
outputs the input to the function (i.e., the identity function)




Autoencoders
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Vector in embedding space (latent space)
Much smaller than the original input size




Convolutional Autoencoders: Encoding

Same as Conv Nets from before: Encoding
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Autoencoders: Decoding

* Convolution as we know it only keeps resolution same or decreases it
* How do we go up in resolution?




Transposed Convolution

Standard Convolution: Kernel
slides along input

Green: output
Blue: input

Transpose Convolution: Single
input is multiplied by entire kernel, ES———
summed Blue: Output

Source: https://github.com/vdumoulin/conv_arithmetic/tree/master
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Source: https://d2l.ai/chapter_computer-vision/transposed-conv.html




Transpose Convolution in Tensorflow

tf.nn.conv2d transpose(input, filters, output_shape, strides, padding='SAME’)

4D tensor of shap€ [batch, height, 4-D Tensor 4“ length 4 1D tensor representing

width, in_channels] [height, width, output_channels, in_channels] the output shape. Strid(‘?‘s alorTg String
each dimension representing
(list of integers) type of padding

D OC U m e n ta tl 0 n h e I'e: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/nn/conv2d




Specifying Output Size

- An image can be the result of the same

convolution on images of different resolution

- We need to specify which one we want.
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Any questions?

Transpose Convolution in Keras

tf.keras.layers.Conv2DTranspose (filters, kernel size, strides, padding=’'SAME'’

== 7

Number of filters
(Integer) Size of Convolution Strides along

. Strin
Window (tuple) each dimension represer?ting
(list of integers) type of padding

Note: Output Shape is inferred, but can be specified via the “output_padding” parameter

Documentation here; https://www.tensorflow.ora/api_docs/python/tf/keras/layers/Conv2DTranspose




Convolutional Autoencoder
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Loss Function

What do you think is an appropriate loss function?

Reconstruction loss (MSE): How far is each output pixel from the corresponding input pixel?




Autoencoders

What do Autoencoders actually learn?
1. Encoder learns a dimensionality reduction (from image to vector)

2. Decoderlearns animage generation function (from vector to image)

Encodings of MNIST data points with a trained !Enc.:oder.s can be usedto learn
autoencoder (dimensionality reduced further by PCA) Insights into structure of data

Decoders can be used to generate
“new” images



Generating Images

* How can we generate a “new” image
using a decoder?

* Sample a vector in latent space and
send it to the decoder...

* But how do you choose which vector?

* What if you wanted to generate a
specific image? How would you find
the right vector?



Autoencoder Loss
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(Encoding size = 32)

Is this a good
autoencoder?

Why is loss alone (even
with validation loss) not
enough to tell us?




Dimension 2
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Visualization of the Latent Space
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Autoencoders can generate, but are not
generative

Recall:

- Discriminative models learn P(y | X) Standard Autoencoder
- Generative models learn P(X)

When we randomly sample, we Smiling faces
. . (90% of data)

may get some “invalid” outputs. A

generative model could assign

these invalid outputs a low Frowning

probability P(X) (10% of data)

Nothing constrains the latent space
of an autoencoder to represent
probability distributions




Issues with Autoencoders

* VVectors close together in latent space may

not produce similar outputs

* Tend to overfit data (struggle to produce

“new” outputs)

How to address issues with overfitting
outputs? Try to learn more variation in outputs.

Visualization of the Latent Space

Explained variance: PC1=0.32, PC2=0.11

4




Issues with Autoencoders

What might a better latent space look like for generation?

Autoencoder Variational Autoencoder



Variational Autoencoders

Autoencoder’s goal: Reconstruct the original input

Variational Autoencoder’s goal: Generate a new output that
resembles the input



Building up the VAE Architecture

If we were to describe an autoencoder functionally:

Output = Decoder(Encoder(Input))
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Building up the VAE Architecture

For variational autoencoders, we also do a random sampling operation
at the bottleneck

Output = Decoder(random_sample(Encoder(Input)))
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How does random sampling in latent space
lead to variation?
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« The random sampling should be
designed to produce random
points in latent space that are
close to the output of the
encoder

« Nearby points in the latent space
should decode to similar images



How should random_sample be defined?

Output = Decoder(random_sample(Encoder(Input)))
* We want the sample to be close to the encoder output
* One option: sample from a Gaussian centered at Encoder(Input)

What can we modify?
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How should random sample be defined?

Output = Decoder(random_sample(Encoder(Input)))
« We want the sample to be close to the encoder output
* One option: sample from a Gaussian centered at Encoder(Input)

» Use two dense layers to convert the encoder output into the mean
and standard deviation of the Gaussian
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How should random_sample be defined?
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Training a VAE

Two goals:
1. Reproduce an output similar to the input (Input = Output)
2. Have some variation in our output (Input # Output )

* Seems like two conflicting goals!
* How do we resolve these two goals?
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Weighted Combination of Losses

L, =loss associated with producing output similar to input

L, =loss associated with producing output with some variation to
input

L =1L+ Lo
Total Loss: ‘
A € |0, oo
\ /

o"*&e :
Input Encoder Latent __,| Decoder | | 5,tput
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VAE Losses

L, is easy, we’ve seen this before

Li(x,%) = |lx — 2I|, (MSE)

But whatis L,? How do we measure how much variation our output
has?

L,(??7,7?7) =72727



Defining the Variation Loss

Whatever our loss function, it needs to encourage o > 0, or else the model will
force o to 0in an effort to create the best recreations possible.
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If o = 0, then the VAE will behave
the same as an autoencoder!
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Defining the Variation Loss

Whatever our loss function, it needs to encourage o > 0, or else the model will
force o to 0in an effort to create the best recreations possible.

But it can’t be too big... because too much variation will create poor reconstructions.
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Defining the Variation Loss

Whatever our loss function, it needs to encourage o > 0, or else the model will
force o to 0in an effort to create the best recreations possible.

But it can’t be too big... because too much variation will create poor reconstructions.

Also, what should u be?
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Defining the Variation Loss

The idea:

- Introduce a prior probability function we we want our latent
space to look like.

- Encourage N(u, o) close to N(0,1)

- (This will have beneficial properties we’ll see later)
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How do we measure distance between
probabilities?
Kullback—Leibler (KL) Divergence

Dg(Pl|Q) = / ' p(z) log (IM> dx

— 00

What this says:

- “Everywhere that p has probability density..."

je
_ iAo y =1 PP T T . N 7N 1 -
1€ J ‘ | 1 € "NcCe D eLween p dllil ¢ SI10Ul ‘: ‘

- Difference in log probabilities (remember that log (%) = log(a) — log(b))

(Formost problems in DL, minimizing Cross Entropy minimizes KL-Divergence)



KL Divergence

* Expensive to compute, in general (no closed form, have to
numerically approximate the integral)

* But! There is a closed form for Gaussians:

k
.. 1
2
Dyp(N(p,0%)||IN(0,1)) =5 gz e+ o —Inor —1)

K is the dimensionality of /i, ¢ (i.e., the size of the encoding)



The Final VAE Loss Function

We now have all the tools necessary to construct our loss function.

L =Li+ ALs A € 0, 00|
Which turns into this:

L= ||z —&||5+ ADkr(N(p, o), N(0,1))



Putting it all together

L= |jz — &[[3 + ADk(N (1, 0), N'(0, 1))
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There’s just one issue

How do we take the gradient of a sampling operation?
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Reparametization Trick

z~ N(u, o)

Can be rewritten as:

z=u+eo,wheree ~N(0,1)
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Another explanation of why this is needed: https://g

Random sampling operation
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learnable parameters
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https://gregorygundersen.com/blog/2018/04/29/reparameterization/

Random Sampler with Reparameterization Trick

Random Sampler
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Random Sampler with Reparameterization Trick
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Random Sampler with Reparameterization Trick
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One more practical detail

Let’s again consider our sampling operation

IIIII
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* Nothing prevents the neural network from outputting negative

values for the standard deviation.

* Instead of predicting o, we will instead predict |og(5?) . This ensures

that every ;. c (0, o0

* i.e. just treat the output of the Dense layer as if it is log(oz)

uuuuuu




One more practical detail j <

Let’s again consider our sampling operation

2~ N(p,o)
/ \
1 € [—0o0, 0] o; € |0, o]

#E
, 0

* Instead of predicting o, we will instead predict ]og(o?) . This ensures

that every 5, c [0, o]
* i.e. just treat the output of the Dense layer as if it is log(JQ)

k

Dir(N (1, 0)[IN(0,1)) = 5} _(pf + 0F —=Ino? —1)

1=1

27

uuuuuu




Sampling from a VAE

 Discard this part of the network...
« ..andset (u,0) = (0,1)

N(0,1)
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Sampling from a VAE

* We can use a trained VAE to generate random variants of an input
data point...
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Sampling from a VAE

... But ultimately, we want to draw random samples from a VAE

0.2

0.5 VAE
-3 =
/ -2
Random Noise 0.8

How can we do this?
This is where our particular choice of training loss will pay off



Encoding different points into latent space

Let this circle represent the
probability density of a unit
Gaussian in latent space




Encoding different points into latent space

Let this circle represent the N (u(xy), 0(xy))
probability density of the

N (u, o) distribution that the
encoder predicts given an
input data point x,



Encoding different points into latent space

L = ||z — &[|3 + ADgr(N (1, 0), N(0, 1))

N(H(xﬂ: cr(x4))

N(ﬂ(_xl): U(.x1))

N(#(x(i)! O'(X6

N(Au'(x3)1 O'(X3

N(ﬂ(x”/): cr(x7))

Because of our KL
divergence loss, the
N (u, o) for any input
data point has to be
somewhat similar to
N(0,1)

So, if we sample a point
From N°(0,1), it is very
likely to fall within one
of these encoded



Latent Space Interpolation

* Trace a linear path between two points in latent space, put all points
along the path into the decoder




Latent Space Interpolation

* Trace a linear path between two points in latent space, put all points
along the path into the decoder

Encoder(x;)




Latent Space Interpolation

* Trace a linear path between two points in latent space, put all points
along the path into the decoder

De?i(livncoder(xl)) Decoder(Encoder(x,))
X1 [\ X2
i@ £
e

Encoder(x,)




Latent Space Interpolation

* Trace a linear path between two points in latent space, put all points
along the path into the decoder

DWncoder(xl)) Decoder(Encoder(x,))

Encoder(x,)



Discriminative vs Generative Models
P( g |cat)

P([E|cat) P(#|cat)
] ] m P&

P([EH 1dog)
(1 Idog) j e

Conditional Generative Conditional Generative Model: Each possible label
Model: Learn p(x | y) induces a competition among all images

Credit: UMich EECS498



Conditional VAE
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Conditional VAE
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https://towardsdatascience.com/understanding-conditional-variational-autoencoders-cd62b4f57bf8

/

N (w, 0)

\

—]

\

Decoder

4

Output




VAE output

| What's the issue here?

| Why?

https://towardsdatascience.com/what-the-heck-are-vae-gans-17b86023588a



Why are VAE samples blurry?

e Our reconstruction loss is the culprit

e Mean Square Error (MSE) loss looks at each pixel in
isolation

* If no pixel is too far from its target value, the loss won’t be
too bad

* Individual pixels look OK, but larger-scale features in the
image aren’t recognizable

e Solutions?
e Let’s choose a different reconstruction loss!

https://towardsdatascience.com/what-the-heck-are-vae-gans-17b86023588a



Recap

| Loss Function |
Variational | Reparameterization Trick I
Autoencoders
(VAEs)
| Conditional VAEs |
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