
Deep Learning
Image Generation: Autoencoders and VAEs

Source: ChatGPT image generator, prompt “Ok, hear me out. I need a friendly 
cartoon mole person with a hat and magnifying glass looking at the earth's 
core all in one image.”

Eric Ewing Tuesday, 10/28 CSCI 1470



Logistics

• Final Project groups will come out this afternoon (or evening)
• If you haven’t filled out the form, you should fill it out even if you don’t 

have group-mates in mind

• Weekly Quiz is out



Recap: Supervised Learning
Is it an image of someone cooking?

- Supervised learning requires labels
- Learn a function that takes in input 
features and outputs labels

What are some pros and cons of supervised learning?



Recap: Supervised Learning

Pros:
- Can produce very high 

quality models with 
sufficient data

- Performance is easy to 
measure (e.g., accuracy)

Cons:
- Reliant on availability of 

labels
- Reliant on quality of labels



What’s Left?

Unsupervised Learning: Learning without labels

Reinforcement Learning: Learning from experiences

Encoder Decoder



Image Capabilities in LLMs
How might we incorporate other 
capabilities into our LLMs?
1. Generate Images (call other model)
2. Take images as input and generate text



What might this look like?

Source: OmniGen: Unified Image Generation: https://arxiv.org/pdf/2409.11340

Take in multiple modes of input (text, images, etc.)
(Multi-modal learning)

Output embedding vectorOutput image



What might this look like?

Source: OmniGen: Unified Image Generation: https://arxiv.org/pdf/2409.11340

What’s this?

And This?

And why is 
there noise?

VAE: Variational Auto-Encoder
Noise: for “Diffusion” process



Foundation Models

Key Question: What is the equivalent of Language Modeling for data 
other than natural language?  (From last class)
Desired Properties:
1. No need for human labeling
2. Large amount of data available
3. Ability to learn a “general” representation of the data

Encoder Decoder

One such method for images:
Can you output the same 

image that comes as input?



Autoencoders

Encoder Decoder

Autoencoder: an encoder-decoder architecture that 
tries to produce its own input

But what’s hard about this? It’s very easy to learn a function that 
outputs the input to the function (i.e., the identity function)



Autoencoders

Encoder Decoder

Vector in embedding space (latent space)
Much smaller than the original input size



Convolutional Autoencoders: Encoding





Transposed Convolution

Standard Convolution: Kernel 
slides along input

Transpose Convolution: Single 
input is multiplied by entire kernel, 
summed

Green: Input
Blue: Output

Green: output
Blue: input

Source: https://github.com/vdumoulin/conv_arithmetic/tree/master



(stride of 1)

Source: https://d2l.ai/chapter_computer-vision/transposed-conv.html









Convolutional Autoencoder

Encoder Decoder

Standard Convolutions Transpose Convolutions



Loss Function

What do you think is an appropriate loss function?

Reconstruction loss (MSE): How far is each output pixel from the corresponding input pixel?



Autoencoders

What do Autoencoders actually learn?
1. Encoder learns a dimensionality reduction (from image to vector)
2. Decoder learns an image generation function (from vector to image)

Encodings of MNIST data points with a trained 
autoencoder (dimensionality reduced further by PCA)

Encoders can be used to learn 
insights into structure of data

Decoders can be used to generate 
“new” images



Generating Images

• How can we generate a “new” image 
using a decoder?

• Sample a vector in latent space and 
send it to the decoder…

• But how do you choose which vector?
• What if you wanted to generate a 

specific image? How would you find 
the right vector?



Is this a good 
autoencoder?

(Encoding size = 32)

Why is loss alone (even 
with validation loss) not 

enough to tell us?



Grid sample latent space and pass to 
encoder



Autoencoders can generate, but are not 
generative
Recall: 
- Discriminative models learn P(y | X)
- Generative models learn P(X)

When we randomly sample, we 
may get some “invalid” outputs. A 
generative model could assign 
these invalid outputs a low 
probability P(X) 

Nothing constrains the latent space 
of an autoencoder to represent 
probability distributions



Issues with Autoencoders

• Vectors close together in latent space may 
not produce similar outputs

• Tend to overfit data (struggle to produce 
“new” outputs)

How to address issues with overfitting 
outputs? Try to learn more variation in outputs.



Issues with Autoencoders

What might a better latent space look like for generation?

Autoencoder Variational Autoencoder



Variational Autoencoders

Autoencoder’s goal: Reconstruct the original input

Variational Autoencoder’s goal: Generate a new output that 
resembles the input















Output≠





VAE Losses

𝐿1 is easy, we’ve seen this before

𝐿1(𝑥, ො𝑥) = 𝑥 − ො𝑥
2

 (MSE)

But what is 𝐿2? How do we measure how much variation our output 
has?

𝐿2 ? ? , ? ? =? ? ? ? 



Defining the Variation Loss

Whatever our loss function, it needs to encourage 𝜎 > 0, or else the model will 
force 𝜎 to 0 in an effort to create the best recreations possible.

If 𝜎 = 0, then the VAE will behave 
the same as an autoencoder!



Defining the Variation Loss

Whatever our loss function, it needs to encourage 𝜎 > 0, or else the model will 
force 𝜎 to 0 in an effort to create the best recreations possible.

But it can’t be too big… because too much variation will create poor reconstructions.



Defining the Variation Loss

Whatever our loss function, it needs to encourage 𝜎 > 0, or else the model will 
force 𝜎 to 0 in an effort to create the best recreations possible.

But it can’t be too big… because too much variation will create poor reconstructions.

Also, what should 𝜇 be?



Defining the Variation Loss

The idea:
- Introduce a prior probability function we we want our latent 

space to look like.
- Encourage 𝑁(𝜇, 𝜎) close to 𝑁 0, 1
- (This will have beneficial properties we’ll see later)



How do we measure distance between 
probabilities?
Kullback–Leibler (KL) Divergence

(For most problems in DL, minimizing Cross Entropy minimizes KL-Divergence)



KL Divergence

K is the dimensionality of Ԧ𝜇, Ԧ𝜎 (i.e., the size of the encoding)







There’s just one issue

How do we take the gradient of a sampling operation?

z∼ 𝑁(𝜇, 𝜎)



Reparametization Trick

Can be rewritten as:
𝑧 = 𝜇 + 𝜖𝜎, where 𝜖 ∼ 𝑁(0, 1)

z∼ 𝑁(𝜇, 𝜎)
Random sampling operation 
(𝜖) no longer depends on 
learnable parameters

Another explanation of why this is needed: https://gregorygundersen.com/blog/2018/04/29/reparameterization/

https://gregorygundersen.com/blog/2018/04/29/reparameterization/
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