
Deep Learning
Lecture 14: Large Language Models

10/23/2024
CSCI 1470
Eric Ewing

Decoder Only Transformer

Language modeling does not have a separate
input-output sequence, they are one and the
same (unlike machine translation)

We don’t need a separate encoder and decoder in
the transformer

A decoder-only transformer is just the decoder of
a transformer and is the primary building block of
LLMs

Source: Cameron Wolfe, https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

#tokens in input is the context length

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

Self-Attention

Token vectors are either:
1. Token Embedding + Positional Encoding
2. Output of previous decoder block

Source: Cameron Wolfe, https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

Self-Attention

Separate Q, K, V projection
matrices (linear layers)

Source: Cameron Wolfe, https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

Self-Attention

Source: Cameron Wolfe, https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

Self-Attention

Source: Cameron Wolfe, https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

Causal-Masked Self-Attention

Source: Cameron Wolfe, https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

Decoder Only Transformer

Full Pipeline

(Transformer)

Image Source: https://newsletter.theaiedge.io/p/fine-tuning-llms-from-a-to-z

LLM Training

During training:
• Feed in sequence of n tokens
• Output is also sequence of n tokens
• Correct labels are input sequence shifted by 1
• Use (sparse) Cross Entropy

One forward pass of a transformer produces many outputs

Image Source: https://newsletter.theaiedge.io/p/fine-tuning-llms-from-a-to-z

Language Modeling Assignment

Pipeline Overview:
1. Tokenize data and split data into sequences
2. Implement RNN and LSTM
3. Implement Sampling techniques for token generation
4. Implement Decoder Only Transformer
5. Implement Training Loop

Sampling Techniques

Our outputs will be a probability
distribution over tokens.

How can select the next token for
generation?
1. Choose the token with highest

probability
2. Sample token from probability

distribution

Temperature Sampling

Add “temperature” parameter to softmax to control how soft/hard
the softmax is

𝑝𝑖 =
𝑒𝑦𝑖/𝑇

σ𝑗
𝑛 𝑒𝑦𝑗/𝑇

Top-K Sampling

Select K tokens with highest probabilities, throw out the rest.

Renormalize probabilities so that they sum to 1 on for the K tokens.

Sample from distribution

Top-K Sampling

Select K tokens with highest probabilities, throw out the rest.

Renormalize probabilities so that they sum to 1 on for the K tokens.

Sample from distribution

Why might this work better than sampling from the original distribution

Top-P Sampling (Nucleus Sampling)

Given P, a value in (0, 1], select the smallest set of tokens such that
their cumulative probability is greater than p.

That is, sort tokens in decreasing order by probability, iterate
through the tokens keeping track of the total probability until it is
greater than p.

Top-P Sampling (Nucleus Sampling)

Given P, a value in (0, 1], select the smallest set of tokens such that
their cumulative probability is greater than p.

That is, sort tokens in decreasing order by probability, iterate
through the tokens keeping track of the total probability until it is
greater than p.

How is this different than Top-K? When might it be better? When might it be worse?

The Training Loop
You’ve probably written this exact loop many times…

But we there are plenty of problems that we’ll face as we start to scale up:

1. How do we track performance of our model? How can we tell if it’s working well enough to keep running it?
2. What if our computer crashes after 30 minutes of training? It would be a shame to lose all that work…

Experiment Tracking

There are a number of tools made for
tracking experiments and model
performance (other than print
statements)

Tensorboard: Comes with
tensorflow, publishes data and
graphs to a port, can open with a
local browser or through ssh if
working remotely.

Weights and Biases: Online
platform for visualizing performance,
data, and other information.

(and many others)

Checkpointing

A checkpoint saves model weights at a specific point of training (i.e., every epoch, every 10 minutes, etc.)

Tensorflow provides a CheckPoint Manager that can handle a number of useful cases:
1. Save a checkpoint if it performs better on a given metric (i.e., validation loss)
2. Save a checkpoint every X amount of time
3. Overwrite other checkpoints
4. Load from checkpoints

LLM Hyperparameters

Large Language Model Scaling “Laws”

The bigger the better

Kaplan et al. “Scaling Laws for Neural Language Models”

Open AI, Gpt-4 technical report, 2023

Open AI, Gpt-4 technical report, 2023

We can predict, with high
accuracy, how well a model
will do after a certain amount
of training just from
extrapolating historical
patterns

Finetuning, a brief interlude

Image Source: Multi-view Deep Representations with Cross-Dataset Transfer for Remote Sensing Image Retrieval and Classification

On specific tasks where data is scarce:

1. “pretrain” a model on a larger dataset
2. “Freeze” some weights of model (make

them not trainable)
3. Finetune by training the remaining weights

on task-specific dataset

Generative Pre-Training

Many diverse tasks involve understanding natural language
• Machine Translation
• Text Generation
• Sentiment Analysis
• Multiple-choice questions
• Entailment/Proofs

Generative Pre-Training

Many diverse tasks involve understanding natural language
• Machine Translation
• Text Generation
• Sentiment Analysis
• Multiple-choice questions
• Entailment/Proofs

Do we really need to start
from scratch each time?

Generative Pre-Training

Many diverse tasks involve understanding natural language
• Machine Translation
• Text Generation
• Sentiment Analysis
• Multiple-choice questions
• Entailment/Proofs

Do we really need to start
from scratch each time?

GPT: Generative Pre-Trained
Transformer

Generative Pre-Training

Pre-Training: train a model to perform language modeling on a large
corpus of unlabeled text data.

Fine-Tuning: take that pre-trained model and continue training on
the specific task of interest (i.e., change the loss function, dataset,
and some parts of the model if needed)

Alec Radford et al., Improving Language Understanding by Generative Pre-Training, 2018

Alec Radford et al., Improving Language Understanding by Generative Pre-Training, 2018

Starting with language modeling and fine tuning to a
specific task improves performance over just

training on the desired task

Foundation Models: Beyond Language

• Foundation Model: An AI model that is trained on broad data;
generally uses self-supervision; contains at least tens of billions of
parameters; is applicable across a wide range of contexts.
• Definition from executive order on AI Safety passed on May 4th 2023

• (Rescinded on January 20th, 2025)

https://en.wikipedia.org/wiki/Self-supervised_learning
https://en.wikipedia.org/wiki/Self-supervised_learning
https://en.wikipedia.org/wiki/Self-supervised_learning

Foundation Models
AI Foundation Models: Transforming Big Business

(Foundation models will not replace deep learning,
this is just helpful for contextualizing the process)

https://dataforest.ai/blog/ai-foundation-models-for-big-business-innovation

https://www.google.com/url?sa=i&url=https%3A%2F%2Fdataforest.ai%2Fblog%2Fai-foundation-models-for-big-business-innovation&psig=AOvVaw3J4ieSoUq5Q3FVGj-deVzN&ust=1742610460084000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqGAoTCMjyqf2PmowDFQAAAAAdAAAAABCQAg

Foundation Models

Key Question: What is the equivalent of language modeling for other modalities?

Turning GPT to Chat-GPT

Source: OpenAI

Step 0: Train GPT

Turning GPT to Chat-GPT

Source: OpenAI

Step 0: Train GPT

Computationally expensive

Turning GPT to Chat-GPT

Source: OpenAI

Step 0: Train GPT

Computationally expensive

Smaller dataset, less computationally expensive

Supervised Fine Tuning (SFT)

• The LLM after Pre-Training may have some problems
• Outputs may be repetitive
• May be rude, racist, or otherwise not a good “chatter”

• Need to align the LLMs behavior with desired behavior
• Collect data on “good” responses to questions

Supervised Fine Tuning (SFT)

• The LLM after Pre-Training may have some problems
• Outputs may be repetitive
• May be rude, racist, or otherwise not a good “chatter”

• Need to align the LLMs behavior with desired behavior
• Collect data on “good” responses to questions

Supervised Fine Tuning (SFT)

• The LLM after Pre-Training may have some problems
• Outputs may be repetitive
• May be rude, racist, or otherwise not a good “chatter”

• Need to align the LLMs behavior with desired behavior
• Collect data on “good” responses to questions

I do not guarantee this is not a scam job

Supervised Fine Tuning (SFT)

SFT is where LLMs “learn to answer questions”

Reinforcement Learning with Human
Feedback
• Train a model to rank possible outputs from an LLM
• Turn these rankings into rewards
• Use these rewards for reinforcement learning (next topic, after

break)

Hallucinations

• Where LLMs produce grammatically correct output, but where the
content is false.

Hallucinations

• Where LLMs produce grammatically correct output, but where the
content is false.

Hallucinations

• Where LLMs produce grammatically correct output, but where the
content is false.

Hallucinations

• Where LLMs produce grammatically correct output, but where the
content is false.

But isn’t this the same as the errors
we always had with neural networks?
Why the need to now call them
“hallucinations”

Retrieval Augmented Generation (RAG)

• Build large database of reference
materials (sources)

• Allow the LLM retrieve
documents from this source and
add it to the context

• Make predictions from the
original query and the augmented
context

Optimizers

• Adam is pretty good for everything we do
in this class, but there are better
optimizers for LLMs

• Better optimizers == better/faster results

https://kellerjordan.github.io/posts/muon/

Reducing Climate Impact

• These models take a lot of electricity to train and
run inference (make responses)

• This can have costly environmental impacts
• Concerns for both the amount of CO2 generated

and the amount of water required for cooling data
centers.

Reducing Climate Impact

Can we achieve similar results with smaller models?

Quantization

Can we use smaller
representation of
parameters?

DeepSeek was able to
create distilled and
quantized models that
only used 4 bits per
parameter
https://huggingface.co/neuralmagic/DeepSeek-
R1-Distill-Llama-8B-quantized.w4a16

Memorization or Generalization?

Do LLMs “just memorize the training data”?

Grokking: The network suddenly generalizes well after initially overfitting the training data

https://pair.withgoogle.com/explorables/grokking/

Memorization or Generalization?

Do LLMs “just memorize the training data”?

Why this really matters:
• If a language model is memorizing its inputs, it should not fall under fair use
• If a language model uses its training data to train and generalize, it probably falls under fair use

Fair use: under certain circumstances, the use of copyrighted materials without permission is allowed

One key consideration: The use must be transformative

Source: NPR

Settlements cannot be used as a
precedent in future cases

There are currently ~50 pending
copyright cases pending against AI
companies in America

(This does not include other lawsuits,
including wrongful death lawsuits)

Chain of Thought (CoT)

KV Caching

During generation (i.e.,
when deployed), we only
need to compute a very
small number of new
vectors

Image source: https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache

https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache

Helpful Resources

• Andrej Karpathy:
• Youtube videos and code recreating GPT2, Nano-GPT, Tokenizers, and

many other LLM things

• Cameron Wolfe:
• Decoder-only Transformers walkthrough

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-
workhorse

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

Recap

LLMs are Decoder-Only Transformers

They are trained to predict next tokens
(Language Modeling)

Language Modeling is useful for many
other downstream tasks

	Slide 1
	Slide 2: Decoder Only Transformer
	Slide 3
	Slide 4: Self-Attention
	Slide 5: Self-Attention
	Slide 6: Self-Attention
	Slide 7: Self-Attention
	Slide 8: Causal-Masked Self-Attention
	Slide 9: Decoder Only Transformer
	Slide 10: Full Pipeline
	Slide 11: LLM Training
	Slide 12: Language Modeling Assignment
	Slide 13: Sampling Techniques
	Slide 14: Temperature Sampling
	Slide 15: Top-K Sampling
	Slide 16: Top-K Sampling
	Slide 17: Top-P Sampling (Nucleus Sampling)
	Slide 18: Top-P Sampling (Nucleus Sampling)
	Slide 19: The Training Loop
	Slide 20: Experiment Tracking
	Slide 21: Checkpointing
	Slide 22: LLM Hyperparameters
	Slide 23: Large Language Model Scaling “Laws”
	Slide 24
	Slide 25
	Slide 26: Finetuning, a brief interlude
	Slide 27: Generative Pre-Training
	Slide 28: Generative Pre-Training
	Slide 29: Generative Pre-Training
	Slide 30: Generative Pre-Training
	Slide 31
	Slide 32
	Slide 33: Foundation Models: Beyond Language
	Slide 34: Foundation Models
	Slide 35: Foundation Models
	Slide 36: Turning GPT to Chat-GPT
	Slide 37: Turning GPT to Chat-GPT
	Slide 38: Turning GPT to Chat-GPT
	Slide 39: Supervised Fine Tuning (SFT)
	Slide 40: Supervised Fine Tuning (SFT)
	Slide 41: Supervised Fine Tuning (SFT)
	Slide 42: Supervised Fine Tuning (SFT)
	Slide 43: Reinforcement Learning with Human Feedback
	Slide 44: Hallucinations
	Slide 45: Hallucinations
	Slide 46: Hallucinations
	Slide 47: Hallucinations
	Slide 48: Retrieval Augmented Generation (RAG)
	Slide 49: Optimizers
	Slide 50: Reducing Climate Impact
	Slide 51: Reducing Climate Impact
	Slide 52: Quantization
	Slide 53: Memorization or Generalization?
	Slide 54: Memorization or Generalization?
	Slide 55
	Slide 56: Chain of Thought (CoT)
	Slide 57: KV Caching
	Slide 58: Helpful Resources
	Slide 59: Recap

