10/23/2024
CSCI 1470
Eric Ewing

Deep Learnlng
Ire 14: Large Language Mo

Decoder Only Transformer

Language modeling does not have a separate
Input-output sequence, they are one and the
same (unlike machine translation)

We don’t need a separate encoder and decoder in
the transformer

A decoder-only transformer is just the decoder of
a transformer and is the primary building block of

LLMs

QOutput Probability

(next token)

Softmax

+

Linear

A

Block 2 ... N

ry

| Block 1 |

Add & Norm <€—
I

Feed
Forward

T_

Add & Norm <€—

I
Masked
Multi-Head
Attention

t 1!

Fositional

; Encoding

Input |

. Embedding

.T.

Input (prompt)

Decoder-Only Architecture

Token Output]

Generating Autoregressive Output

T T T T Time Step #1 Time Step #2 Time Step #3
sat | down | | <E0S> |
(Decoder Block \] 4 4 A
Decoder Block
Decoder-Only Decoder-Only Decoder-Only
Architecture Architecture Architecture
{ Feed Forward Neural Network - £t = R B B
[Masked Self-Attention] I the I dog I | . I | the I dog I sat l I | I the l dog Rat l down I

[]

[Token Input

#tokens in input is the context length

Source: Cameron Wolfe, https:

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

Self-Attention

List of Token Vectors

LLM #s are cool
Token vectors are either: Matrix of Token Vectors
1. Token Embedding + Positional Encoding LR
2. Output of previous decoder block 4o
are
cool

Sequence of token vectors in list and matrix form

Source: Cameron Wolfe, h

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

Self-Attention

Separate Q, K, V projection
matrices (linear layers)

Source: Cameron Wolfe, h

LLM
#s
are
cool

Input Matrix

Query Projection

Key Projection

P e

— | |

Query Matrix

Key Matrix

Value Projection

—» | | P>

Value Matrix

Creating the query, key, and token vectors

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

Self-Attention

Source: Cameron Wolfe, h

Compute Attention Score

(H- 2

Query Vectors

T

Query Projection

L1 1 i

Key Vectors

!

Key Projection

r

L1 1

Input Token Vectors

Computing attention scores from query and key vectors

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

Self-Attention

Source: Cameron Wolfe, https:

Query Matrix

Transposed Key

Matrix

X

Softmax

. Vd

Computing the attention matrix

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

Causal-Masked Self-Attention

Softmax

Source: Cameron Wolfe, h

Query Matrix

Transposed Key
Matrix

X

d

Unnormalized

Attention Scores

1.1

2.3

5.3

21

-1.2

-0.1

0.5

1.3

-0.1

6.1

2.3

0.2

3.3

-1.0

-0.4

0.3

1.2

-0.3

5.0

1.4

5.1

=2.9

-1.1

-4.2

0.4

Masked
Attention Scores

1154 ~c0 -c0 -0 00

0.1] 05 | =0 [0 | -e0

23 |02 | 33| = [-=

0.3]11.2(-03]|5.0 (-

51 1-29 [-1.1|-4.2 (0.4

Masking attention scores in causal self-attention

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

Decoder Only Transformer

Cutput Probability

(next token)

Softmax

A

Linear

A

[Block2..N

| Block 1 T

Add & Norm

.1_

[Feed
Forward

s
&

T

Add & Norm
|

Masked
Multi-Head
Attention

t 1 ¢

.1_

o

| Input
Embedding

Input (prompt)

Positional
Encoding

Full Pipeline

‘Machine’

‘learning’
lisl'
[PAD]

[PAD]
[PAD]

Input
prompt

Compute
Loss

Compare

Hidden size
€ > i
Vocabulary size
(Transformer) .10 sive p Y >
LLM < > HERR
—— *_Brd token of
‘ I ‘.....‘ -.--I)! sequence
. 4th token of
’i 000 .‘ | |vocabulary
r—— 00000
Q0000
Hidden states
Language predictions
modeling
head
(Linear Layer)
. J
Backpropagate

gradients

Image Source: https://newsletter.theaiedge.io/p/fine-tuning-llms-from-a-to-z

‘learning’
ig!

‘fun’
[PAD]
[PAD]
[PAD]

Labels

LLM Training

During training:

* Feed in sequence of n tokens

* Outputis also sequence of n tokens

* Correct labels are input sequence shifted by 1
* Use (sparse) Cross Entropy

What = —)=
is r --------- >
—
the 7‘— —————————)|:
capital % --------- >
of J— --------- >
Erance T == >
? L --------- |
[sEP] % _________ >
The — >
capital L _________)r__
Input Labels
data

Sequence Prediction

One forward pass of a transformer produces many outputs

Image Source: https://newsletter.theaiedge.io/p/fine-tuning-llms-from-a-to-z

is

the
capital
of
France
?

[SEP]
The
capital

of

Language Modeling Assignment

Pipeline Overview:

1.

ok~ b

Tokenize data and split data into sequences

mplement RNN and LSTM
mplement Sampling techniques for token generation
mplement Decoder Only Transformer

mplement Training Loop

QOutput Probability
(next token)

. . A
Sampling Technigques s
| Llrj:ar
Our outputs will be a probability e
distribution over tokens. M;dd._Jmmm -
=
How can select the next token for T—
generation? ﬁ“ﬁ:;:ﬂ“:m A
1. Choose the token with highest Aticriin
probability t 1 ¢
2. Sample token from probability - Eﬁii;isiiagl
distribution it)
Emb;ddlng

Input (prompt)

Temperature Sampling

Add “temperature” parameter to softmax to control how soft/hard
the softmaxis

eyi/T

— 5" oVilT

Di

Top-K Sampling
Select Ktokens with highest probabilities, throw out the rest.

Renormalize probabilities so that they sum to 1 on for the K tokens.

Sample from distribution

Top-K Sampling
Select Ktokens with highest probabilities, throw out the rest.

Renormalize probabilities so that they sum to 1 on for the K tokens.

Sample from distribution

Why might this work better than sampling from the original distribution

Top-P Sampling (Nucleus Sampling)

Given P, a value in (0, 1], select the smallest set of tokens such that
their cumulative probability is greater than p.

That is, sorttokens in decreasing order by probability, iterate
through the tokens keeping track of the total probability until it is
greater than p.

Top-P Sampling (Nucleus Sampling)

Given P, a value in (0, 1], select the smallest set of tokens such that
their cumulative probability is greater than p.

That is, sorttokens in decreasing order by probability, iterate
through the tokens keeping track of the total probability until it is
greater than p.

I How is this different than Top-K? When might it be better? When might it be worse? I

The Training Loop

You’ve probably written this exact loop many times...

while ((batch_idx+1)xmodel.batch _size) < train_len:
imgs, anss = get_next_batch(batch_idx, train_inputs, train_labels, batch_size=model.batch_c
with tf.GradientTape() as tape:
predictions = model(imgs, is_testing=False)
loss = model.loss_fn(predictions, anss)

model. loss_list.append(loss)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients|(zip(gradients, model.trainable_variables)|)

sum_acc += model.accuracy(model(imgs, is_testing=False), anss).numpy()
batch_idx += 1

But we there are plenty of problems that we’ll face as we start to scale up:

1. How do we track performance of our model? How can we tell if it’s working well enough to keep running it?
2. What if our computer crashes after 30 minutes of training? It would be a shame to lose all that work...

Experiment Tracking

There are a number of tools made for __
tracking experiments and model
performance (other than print

statements) o

© @ fmnist_full_test

P fmnist_e_15

Tensorboard: Comes with
tensorflow, publishes data and > o i

® @ batch 64 (v2, 5K train)

graphs to a port, can open with a -
local browser or through ssh if '

® @ batch641GPU

working remotely. :

.
]

50K examples (b 64)

batch 324 GPU

batch 128 (5K train)
O batch 256 4 GPU
O batch 1284 GPU

®© @ 4GPU,b64,e25

Weights and Biases: Online :

O 4GPU,b32,e50

platform for visualizing performance, e
data, and other information.

batch 128 1 GPU

]

® @ 8gpu rmsprop 64 e 50

@ 8gpurmsprop b 128 e 50

© @ 8gpurmspropb512e50

(and many others)

State

finished

finished

finished

crashed

finished

finished

finished

finished

finished

finished

finished

finished

finished

finished

finished

finished

finished

finished

finished

finished

finished

finished

finished

Tags

0.9649

0.9297

0.9398

0.9262

0.9284

0.4514

0.4305

0.4343

0.4042

0.4032

0.4465

0.4181

0.3882

0.4189

0.5337

0.4225

0.6129

0.4323

0.4141

0.6094

0.6841

0.5225

Hyperparameter Optimization 2

Runtime

2m 28s b batch,
1m33s

55s

0s %

Im1s

%

2h47m 8s

2h 7m 58s

Parameter importance with respect to
5h 36m 555

1d 7h 56m 5s

2h 13m 45s Config parameter

5h 38m 30s optimizer.value_NAN

epochs
3h 35m 65

batch_size
2h2m 31s

GPU
2h8m27s
3h52m 37s

Panel Section 6

5h 39m 20s
12h 34m 43s
3h33m 20s -
3h 29m 30s
4h42m 20s

4h37m 22s

4h 24m 455

Create report

acc
Parameters 8
Importance () ¥ Correlation
e ——— g |
== € 1
- e——————=
& (==
loss GPU Utilization (%)
— }

0 LLJM<..«.. (RNE T

Checkpointing

tf.train.CheckpointManager 0 -

O View source on GitHub

Manages multiple checkpoints by keeping some and deleting unneeded ones.

A checkpoint saves model weights at a specific point of training (i.e., every epoch, every 10 minutes, etc.)

Tensorflow provides a CheckPoint Manager that can handle a number of useful cases:
1. Save a checkpoint if it performs better on a given metric (i.e., validation loss)

2. Save a checkpoint every X amount of time

3. Overwrite other checkpoints

4. Load from checkpoints

LLM Hyperparameters

OLMo-7B LLaMA2-7B OpenLM-7B Falcon-7B PaLM-8B
Dimension 4096 4096 4096 4544 4096
Num heads 32 32 32 71 16
Num layers 32 32 32 32 32
MLP ratio ~8/3 ~8/3 ~8/3 4 4
Layer norm type non-parametric RMSNorm parametric parametric parametric
Positional embeddings | RoPE RoPE RoPE RoPE RoPE
Attention variant full GQA full MQA MQA
Biases none none in LN only in LN only none
Block type sequential sequential sequential parallel parallel
Activation SwiGLU SwiGLU SwiGLU GeLU SwiGLU
Sequence length 2048 4096 2048 2048 2048
Batch size (instances) | 2160 1024 2048 2304 512
Batch size (tokens) ~4M ~4M ~4M ~4M ~1M
Weight tying no no no no yes

Table 2: LM architecture comparison at the 7-8B scale. In the “layer norm type” row, “parametric”
and “non-parametric” refer to the usual layer norm implementation with and without adaptive gain
and bias, respectively.

Large Language Model Scaling “Laws”

The bigger the better

Test Loss 10

7 42
6 —— L=(D/5.4-10%3)-0095 | 5.6 —— L=(N/8.8+1013)-0.076
3.9
4.8
oy
@ 3.6 4.0
- 4
*g,'; 3.3 39
F 3
3.0
2.4
L={Crnnf2:3-108)~%950
2 . 2.7 . .
io® 107 105 103 10! 10! 108 10° 103 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not

bottlenecked by the other two.

Kaplan et al. “Scaling Laws for Neural Language Models”

Larger models require fewer samples
to reach the same performance

10° Params —

R, .
—— T e o RN

107 109 101
Tokens Processed

OpenAl codebase next word prediction

Bits per word

6.0

. ® Observed

Prediction
5.0 gpt-4
o
4.0
o
3.0 O
o
®
®

2.0 ® °
1.0 | T T | T]

100p 10n 1y 100y 0.01 1

Compute

Figure 1. Performance of GPT-4 and smaller models. The metric is final loss on a dataset derived
from our internal codebase. This is a convenient, large dataset of code tokens which is not contained in
the training set. We chose to look at loss because it tends to be less noisy than other measures across
different amounts of training compute. A power law fit to the smaller models (excluding GPT-4) is
shown as the dotted line; this fit accurately predicts GPT-4’s final loss. The x-axis is training compute
normalized so that GPT-4 is 1.

Open Al, Gpt-4 technical report, 2023

OpenAl codebase next word prediction

Bits per word

6.0

5.0

4.0

3.0

2.0

1.0

e Observed
Prediction

gpt-4

We can predict, with high
accuracy, how well a model
will do after a certain amount
o of training just from
extrapolating historical

o patterns

T T
100p 10n 1y 100y 0.01 1
Compute

Figure 1. Performance of GPT-4 and smaller models. The metric is final loss on a dataset derived
from our internal codebase. This is a convenient, large dataset of code tokens which is not contained in
the training set. We chose to look at loss because it tends to be less noisy than other measures across
different amounts of training compute. A power law fit to the smaller models (excluding GPT-4) is
shown as the dotted line; this fit accurately predicts GPT-4’s final loss. The x-axis is training compute
normalized so that GPT-4 is 1.

Open Al, Gpt-4 technical report, 2023

Finetuning, a brief interlude

4096 4096 4096

On specific tasks where data is scarce: Pretrained on ImageNet

Weight transfer

“ pl’etra in ”? am Od e I. on a la I’ge r d ata S et Finetune all layers Finetune the last few layers

—_—

2. “Freeze” some weights of model (make
them not trainable)

3. Finetune by training the remaining weights
on task-specific dataset

4096 4096 4096

il

weights in the red dashed box remain unchanged

D, 4

Finetuned on NWPU

Two types of fine-tuning techniques using pretrained model trained on ImageNet. The first strategy: fine-tuning
the parameters of the entire model on the target dataset (e.g., NWPU). The second strategy: fine-tuning the
parameters of the last layers (e.g., fully-connected layers) in the pretrained model

Image Source: Multi-view Deep Representations with Cross-Dataset Transfer for Remote Sensing Image Retrieval and Class

Generative Pre-Training

Many diverse tasks involve understanding natural language
* Machine Translation

* Text Generation

* Sentiment Analysis

* Multiple-choice questions

* Entailment/Proofs

Generative Pre-Training

Many diverse tasks involve understanding natural language
* Machine Translation

* Text Generation

* Sentiment Analysis

* Multiple-choice questions

* Entailment/Proofs

Do we really need to start
from scratch each time?

Generative Pre

-Training

Many diverse tasks involve understanding natural language

e Machine Translation
e Text Generation
* Sentiment Analysis

* Multiple-choice questions

e Entailment/Proofs

Do we really need to start
from scratch each time?

GPT: Generative Pre-Trained
Transformer

Generative Pre-Training

Pre-Training: train a model to perform language modeling on a large
corpus of unlabeled text data.

Fine-Tuning: take that pre-trained model and continue training on
the specific task of interest (i.e., change the loss function, dataset,
and some parts of the model if needed)

Text Task I .
Prediction | Classifier Classification Start Text Extract]—' Transformer = Linear
. L
Entailment Start Premise Delim | Hypothesis | Extract | > Transformer > Linear
Layer Norm |
e lE Start Text 1 Delim Text 2 Extract |+ Transformer
7y Similarity - Linear
12x — .
Start Text 2 Delim Text 1 Extract | Transformer
Layer Norm -
! : Start Context Delim Answer 1 | Extract | > Transformer [Linear
Masked Multi |
Self Attention —
t Multiple Choice Start Context Delim Answer 2 Extract | > Transformer H Linear
Text & Position Embed Start Context Delim | Answer N | Extract | > Transformer [~ Linear

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

Alec Radford et al., Improving Language Understanding by Generative Pre-Training, 2018

Table 5: Analysis of various model ablations on different tasks. Avg. score is a unweighted average
of all the results. (mc= Mathews correlation, acc=Accuracy, pc=Pearson correlation)

Method Avg. Score CoLA SST2 MRPC STSB QQP MNLI QNLI RTE

(mc) (acc) (F1) (pc) (FD) (acc) (acc) (acc)
Transformer w/ aux LM (full) 74.7 45.4 91.3 82.3 82.0 70.3 81.8 88.1 56.0
Transformer w/o pre-training 59.9 18.9 84.0 79.4 30.9 65.5 75.7 71.2 53.8
Transformer w/o aux LM 75.0 47.9 92.0 84.9 83.2 69.8 81.1 86.9 544
LSTM w/ aux LM 69.1 30.3 90.5 83.2 71.8 68.1 73.7 81.1 54.6

Table 1: A list of the different tasks and datasets used in our experiments.

Task Datasets
Starting with language modeling and fine tuning to a Natural language inference SNLI [5], MultiNLI [66], Question NLI [64], RTE [4], SciTail [25]
Question Answering RACE [30], Story Cloze [40]
S pe C |f| C ta S k | m p roves p erfo rmance over J USt Sentence similarity MSR Paraphrase Corpus [14], Quora Question Pairs [9], STS Benchmark [6]
L. . Classification Stanford Sentiment Treebank-2 [54], CoLA [65]
training on the desired task

Alec Radford et al., Improving Language Understanding by Generative Pre-Training, 2018

Foundation Models: Beyond Language

* Foundation Model: An Al model that is trained on broad data;
generally uses self-supervision; contains at least tens of billions of
parameters; is applicable across a wide range of contexts.

« Definition from executive order on Al Safety passed on May 4t 2023
 (Rescinded on January 20%, 2025)

https://en.wikipedia.org/wiki/Self-supervised_learning
https://en.wikipedia.org/wiki/Self-supervised_learning
https://en.wikipedia.org/wiki/Self-supervised_learning

Foundation Models

A New Era of Al: Foundation Models

Step function improvements over legacy Al technologies

-0

@ ne Learning o,
-0
2000s — 2010s
Feature - centric
Model1 | Task1 | classifier |
Pretrain
Dl T Model
Model2 Task2 Pretrain
Model
Model3 Task3

https://dataforest.ai/blog/ai-foundation-models-for-big-business-innovation

(Foundation models will not replace deep learning,
this is just helpful for contextualizing the process)

Data - centric

Task1
Generative f‘

Tuning » Task2
Model

Task3

Y DATAFOREST

https://www.google.com/url?sa=i&url=https%3A%2F%2Fdataforest.ai%2Fblog%2Fai-foundation-models-for-big-business-innovation&psig=AOvVaw3J4ieSoUq5Q3FVGj-deVzN&ust=1742610460084000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqGAoTCMjyqf2PmowDFQAAAAAdAAAAABCQAg

Foundation Models

Cytosine Cytosine
yosine W nosne W
N/ko N’J\o
H H
Guanine . Guanine .
o} 0
I\ A~nH I\ A~nw
(N N 2 (N N 2
' OpenAl : :
' Adeni Adeni
© OpenAI .. s = TEY e ®
DALLE-2 b -
H H
Uracil . Thymine .
o] o]
(U\NH HaC\fLNH
N/go N/go
H H
Nucleobases Nucleobas
- of RNA of DNA

Key Question: What is the equivalent of language modeling for other modalities?

Turning GPT to Chat-GPT

Step 0: Train GPT

Source: OpenAl

Step 1

Collect demonstration data
and train a supervised policy.

A prompt is sample from
our prompt dataset.

A labeler demonstrates
the desired output
behavior.

This data is used to
fine-tune GPT-3.5 with
supervised learning.

~
L

Explain reinforcement

learning to a 6 year old.

o)

V4

We give treats and

punishments to teach...

Step 2

Collect comparison data and

train a reward model.

A prompt and several
model outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This data is used to

train our reward model.

f'\n

L9
Explain reinforcement
learning to a 6 year old.

) o

In reinforcement Explain rewards...
learning, the
agentis.

o)

In machine ‘We give treats and
learning... punishments to
teach...

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates

an output.

The reward model
calculates a reward
for the output.

The reward is used

to update the policy

using PPO.

A=

Write a story
about otters.

Once upon a time...

Turning GPT to Chat-GPT

Step 0: Train GPT

Source: OpenAl

Step 1

Collect demonstration data
and train a supervised policy.

F
A prompt is sample from ./

our prompt dataset. Explain reinforcement

learning to a 6 year old.

A labeler demonstrates @

the desired output

behavior. 4
We give treats and
punishments to teach...
SFT
o._0®
/ N
This data is used to '\5’;7;/'
fine-tune GPT-3.5 with e e
supervised learning. V4

22

Computationally expensive

Step 2

Collect comparison data and
train a reward model.

A prompt and several f:}
model outputs are Explain reinforcement
sampled. learning to a 6 year old.

) o

In reinforcement Explain rewards...
learning, the
agentis.

o)

In machine ‘We give treats and
learning... punishments to
teach...

L. y v
A labeler ranks the
outputs from best
to worst. o,o,o,,e
RM

.0
This data is used to ./\9?.5&}
train our reward model. }52{

0-0-0-0

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is . ¢
sampled from Write a story
the dataset. about otters.

|

Y

PPO

The PPO model is P
initialized from the .’9?.?“.
supervised policy. W

The policy generates

an output.

RM
The reward model o @
calculates a reward .‘9?.5&\.
for the output. W

The reward is used
to update the policy rk
using PPO.

Turning GPT to Chat-GPT

Step 1 Step 2 Step 3
Collect demonstration data Collect comparison data and Optimize a policy against the
and train a supervised policy. train a reward model. reward model using the PPO

reinforcement learning algorithm.

r~ A prompt and several r~ A new prompt is
A prompt is sample from (¥ promp w promp v ¢
our prompt dataset. Explain reinforcement model outputs are Explain reinforcement sampled from Write a story
learning to a 6 year old. sampled. learning to a 6 year old. the dataset. about otters.
¢ In ‘re-nfprcemem Explain rewards..
) e e . PPO
Step 0: Train GPT The PPO model is 2
A labeler demonstrates () 0 initialized from the QWQ
n machine ‘We give treats and . .
the desired output f I‘Ea,m,?g,_ pu?uutser;rgiu?tstc Super\”SEd pO“Cy. o e
behavior. L= “ v
We give treats and *

punishments to teach...

outputs from best

The policy generates)
¢ A labeler ranks the @ an output. Once upon atime...

SFT
M to worst. 0>0>0>9 *

. . RM
ThIS data is used to . .\\'S.Q(/. The reward model s &
f|ne'tune GPT‘35 W|th L] ® Calcu|ates a reward .ay.K\.
supervised learning. @ é@ au for the output. W

o._®
This data is used to o’\y?f&)o *
train our reward model. }5&{

The reward is used
to update the policy rk

Computationally expensive 0-0-0-0

Source: OpenAl Smaller dataset, less computationally expensive I

Supervised Fine Tuning (SFT)

* The LLM after Pre-Training may have some problems
* Outputs may be repetitive
* May be rude, racist, or otherwise not a good “chatter”

* Need to align the LLMs behavior with desired behavior
* Collect data on “good” responses to questions

Supervised Fine Tuning (SFT)

* The LLM after Pre-Training may have some problems

* Outputs may be repetitive
* May be rude, racist, or otherwise not a good “chatter”

* Collect dataon “good” responses to

DA

DA

Math Tutor - Al Trainer

DataAnnotation & - 39 W

Tallahassee, FL « Remote

From $40 an hour - Part-time, Full-time
You must create an Indeed account before continuing to the company website to apply

Apply now &] (D)

Supervised Fine Tuning (SFT)

* The LLM after Pre-Training may have some problems

* Outputs may be repetitive

* May be rude, racist, or otherwise not a good “chatter”

* Need to align the LLMs behavior wi
* Collect dataon “good” responses to

We pay smart folks to train Al.

D\ DA &

Math Tutor - Al Trainer

DataAnnotation & - 39 W

Tallahassee, FL « Remote

From $40 an hour - Part-time, Full-time
You must create an Indeed account before continuing to the company website to apply

Apply now &] (D)

| do not guarantee this is not a scam job

Supervised Fine Tuning (SFT)

I SFT is where LLMs “learn to answer questions”

Step1
Collect demonstration data,
and train a supervised policy.

Raw text Demonstrations
A (low quality, high quantity) (high quality, low quantity)
promptis
sampled from our .
Ex_plaln the moon Prompt:
prompt dataset. landing to a 6 year old -
| Pre-training Supervised fine-tuning Should | add chorizo
Y to my paella?
A labeler
demonstrates the @ Feedback (completion):
desired output Y Absolutely! Chorizo is a
behavior. S Br e et popular ingredient in many
e paella recipes
This data is used SFT Base LLM SFT Model
to fine-tune GPT-3 2 ,
with supervised AT GPT, PaLM, LLaMA, MPT-7B, StableLM, Alpaca, Dolly, Vicuna, Guanaco, MPT-
. i Falcon, RedPajama-INCITE, StarCoder 7B-Instruct, StarChat
g. 2
EEE

Initialized with random weights Initialized with Base Model

Reinforcement Learning with Human
Feedback

* Train a model to rank possible outputs from an LLM

* Turn these rankings into rewards
* Use these rewards for reinforcement learning (next topic, after

break)
:[Agent]

state reward action
s, | IR A,

R, (|

5., | Environment]-l

e

-+

Hallucinations

* Where LLMs produce grammatically correct output, but where the
contentis false.

Hallucinations

* Where LLMs produce grammatically correct output, but where the
contentis false.

@ How many R's are in the word strawberry

The word "strawberry" contains one 'r'.

@ Are you sure? Aren't there two?

I apologize for the error in my previous response. You are absolutely correct, and I thank
you for catching that mistake. Let me provide the correct answer:
The word "strawberry" contains two 'r's.

To break it down:

s-t-r-a-w-b-e-r-r-y
There is one 't' after the initial "st" and another 'r' near the end of the word.

Thank you for bringing this to my attention. It's a good reminder of the importance of
double-checking even seemingly simple information.

Hallucinations

* Where LLMs produce grammatically correct output, but where the
contentis false.

Hallucinations

* Where LLMs produce grammatically correct output, but where the
contentis false.

But isn’t this the same as the errors
we always had with neural networks?
Why the need to now call them
“hallucinations”

Retrieval Augmented Generation (RAG)

* Build large database of reference
materials (sources)

retrieve context
from relevant
documents

Reference
documents

* Allow the LLM retrieve fnd relovant

documents from this source and [uSe.-query D ooy [Context

embeddings

embedding comparing
add it to the context

* Make predictions from the (" Augmented)
original query and the augmented | o
context ek 15,

\<chunk 3>, /

LLM

generation

Response

Optimizers

* Adam is pretty good for everything we do

II’] th |S ClaSS, but the re a re better i1 Optimizer comparison by time (NanoGPT speedrun)
0 pti m i Ze rS fO r L LM S 4.0 1 - g?sat:?butedShampoo (UpdateFreq=10) 13222‘:’?;22
—— DistributedShampoo (UpdateFreq=32) 154ms/step
» Better optimizers == better/faster results > " en Yeomarten
" 3.8
E 3.7
E 3.6
3.5
3.4 4
33

6 é 1I0 115 2'0 2|5
Wallclock time on 8xH100

*SOAP is under active development. Future versions will significantly improve the wallclock overhead.
Figure 2. Optimizer comparison by wallclock time.

https://kellerjordan.github.io/posts/muon/

Reducing Climate Impact

* These models take a lot of electricity to train and
run inference (make responses)

* This can have costly environmental impacts

* Concerns for both the amount of CO2 generated
and the amount of water required for cooling data

centers.

What is the

Carbon
Footprint of

ChatGPT?

ChatGPT is a large language model that has been
shown to be extremely power-hungry. As a result,
it produces a lot of CO2 emissions.

Here's a breakdown of its carbon footprint:

1 Each query 4.32g of CO2

Using a CO2 calculator and some

basic math, ChatGPT produces more il

€02 per query than Google 8:8
(apparently, each search query in

Google results in 0.2g CO2 per query.) cCo2

16 queries is equivalent to boiling a kettle 2

“ Co2

J

139 queries produce as much CO2
as doing laundry

Co2
That's assuming you started a load
at 86 degrees Fahrenheit and used
a clothesline to dry them.

Reducing Climate Impact

Can we achieve similar results with smaller models?

Large Language Model
{Actual)

Quantization

Quantization

Can we use smaller
representation of
parameters?

<) Datature | Blog

FLOAT32 WEIGHTS

DeepSeek was able to
create distilled and
quantized models that
only used 4 bits per
parameter

https://huggingface.co/neuralmagic/DeepSeek-
R1-Distill-Llama-8B-quantized.w4a16

BIAS
(OPTIONAL)

X

INT8 WEIGHTS

INT8 QUANTIZATION PROCESS

Memorization or Generalization?

Do LLMs “just memorize the training data”?

Grokking: The network suddenly generalizes well after initially overfitting the training data

An Example Of Grokking: Memorization Followed By Sudden Generalization

The model quickly fits the
training data with 100%
accuracy...

After more training, accuracy
...but doesn't do better on the test data improves —

than random guessing the model generalizes!
on the 1

https://pair.withgoogle.com/explorables/grokking/

Memorization or Generalization?

Do LLMs “just memorize the training data”?

Why this really matters:
* If alanguage model is memorizing its inputs, it should not fall under fair use
* Ifalanguage model uses its training data to train and generalize, it probably falls under fair use

Fair use: under certain circumstances, the use of copyrighted materials without permission is allowed

One key consideration: The use must be transformative

Anthropic settles with authors in first-of-
its-kind Al copyright infringement lawsuit

SEPTEMBER 5, 2025 - 8:19 PM ET

g Chloe Veltman

A case against Anthropic Al brought by a group of authors was settled on Friday.
Riccardo Milani/Hans Lucas/AFP via Getty Images

Source: NPR

Settlements cannot be used as a
precedentin future cases

There are currently ~50 pending
copyright cases pending against Al
companies in America

(This does not include other lawsuits,
including wrongful death lawsuits)

Chain of Thought (Cof)

MaJorlty vote

(a) Input-Output (c) Chain of Thought (c) Self Consistency
Prompting (I0) Prompting (CoT) with CoT (CoT-SC)

(d) Tree of Thoughts (ToT)

Figure 1: Schematic illustrating various approaches to problem solving with LLMs. Each rectangle
box represents a thought, which is a coherent language sequence that serves as an intermediate
step toward problem solving. See concrete examples of how thoughts are generated, evaluated, and
searched in Figures 2,4,6.

KV Caching

During generation (i.e.
when deployed), we only
need to compute a very

small number of new
vectors

Image source: https://training

(Q* K*T) * V computation process with caching

Keys T
Step 1 e e
b
Queries Values Results
—
o « K« X —
e b
(s
64 = 64
\ 4
lf.ac hing K l(aching v
Restoring l Restoring
from cache K from cache V
Step N Keys_Transpose
(d \ Values
Q
O Queries Results
() T
O I] " 3
QD 64 64
Q
64
S
Values that will be computed on this step Values that will be taken from cache
OnNunuuirmitian C NETSeNCe/VWNV-I1S-INIerernce-1mportall KEV-Vd c-CalCllC

https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache
https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache

Helpful Resources

* Andrej Karpathy:

* Youtube videos and code recreating GPT2, Nano-GPT, Tokenizers, and
many other LLM things

e Cameron Wolfe:

* Decoder-only Transformers walkthrough
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-
workhorse

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

QOutput Probability
(next token)

Reca p Softmax

A

Linear

) A
| Block 2 ... N

LLMs are Decoder-Only Transformers | %

Block 1 |
Add & Norm =€—

| Feed |
Forward

They are trained to predict next tokens
(Language Modeling) %

Add & Norm <€—

I
Masked
Multi-Head
Attention

Language Modeling is useful for many ¥ 1%

other downstream tasks

Fositional

; Encoding

Imput
| ~ Embedding |

,T;

Input (prompt)

	Slide 1
	Slide 2: Decoder Only Transformer
	Slide 3
	Slide 4: Self-Attention
	Slide 5: Self-Attention
	Slide 6: Self-Attention
	Slide 7: Self-Attention
	Slide 8: Causal-Masked Self-Attention
	Slide 9: Decoder Only Transformer
	Slide 10: Full Pipeline
	Slide 11: LLM Training
	Slide 12: Language Modeling Assignment
	Slide 13: Sampling Techniques
	Slide 14: Temperature Sampling
	Slide 15: Top-K Sampling
	Slide 16: Top-K Sampling
	Slide 17: Top-P Sampling (Nucleus Sampling)
	Slide 18: Top-P Sampling (Nucleus Sampling)
	Slide 19: The Training Loop
	Slide 20: Experiment Tracking
	Slide 21: Checkpointing
	Slide 22: LLM Hyperparameters
	Slide 23: Large Language Model Scaling “Laws”
	Slide 24
	Slide 25
	Slide 26: Finetuning, a brief interlude
	Slide 27: Generative Pre-Training
	Slide 28: Generative Pre-Training
	Slide 29: Generative Pre-Training
	Slide 30: Generative Pre-Training
	Slide 31
	Slide 32
	Slide 33: Foundation Models: Beyond Language
	Slide 34: Foundation Models
	Slide 35: Foundation Models
	Slide 36: Turning GPT to Chat-GPT
	Slide 37: Turning GPT to Chat-GPT
	Slide 38: Turning GPT to Chat-GPT
	Slide 39: Supervised Fine Tuning (SFT)
	Slide 40: Supervised Fine Tuning (SFT)
	Slide 41: Supervised Fine Tuning (SFT)
	Slide 42: Supervised Fine Tuning (SFT)
	Slide 43: Reinforcement Learning with Human Feedback
	Slide 44: Hallucinations
	Slide 45: Hallucinations
	Slide 46: Hallucinations
	Slide 47: Hallucinations
	Slide 48: Retrieval Augmented Generation (RAG)
	Slide 49: Optimizers
	Slide 50: Reducing Climate Impact
	Slide 51: Reducing Climate Impact
	Slide 52: Quantization
	Slide 53: Memorization or Generalization?
	Slide 54: Memorization or Generalization?
	Slide 55
	Slide 56: Chain of Thought (CoT)
	Slide 57: KV Caching
	Slide 58: Helpful Resources
	Slide 59: Recap

