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Decoder Only Transformer

Language modeling does not have a separate 
input-output  sequence, they are one and the 
same (unlike machine translation)

We don’t need a separate encoder and decoder in 
the transformer

A decoder-only transformer is just the decoder of 
a transformer and is the primary building block of 
LLMs



Source: Cameron Wolfe, https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse 

#tokens in input is the context length
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Self-Attention

Token vectors are either:
1. Token Embedding + Positional Encoding
2. Output of previous decoder block

Source: Cameron Wolfe, https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse 

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse


Self-Attention

Separate Q, K, V projection 
matrices (linear layers)

Source: Cameron Wolfe, https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse 
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Self-Attention
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Self-Attention

Source: Cameron Wolfe, https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse 
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Causal-Masked Self-Attention

Source: Cameron Wolfe, https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse 
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Decoder Only Transformer



Full Pipeline

(Transformer)

Image Source: https://newsletter.theaiedge.io/p/fine-tuning-llms-from-a-to-z



LLM Training

During training:
• Feed in sequence of n tokens
• Output is also sequence of n tokens
• Correct labels are input sequence shifted by 1
• Use (sparse) Cross Entropy

One forward pass of a transformer produces many outputs

Image Source: https://newsletter.theaiedge.io/p/fine-tuning-llms-from-a-to-z



Language Modeling Assignment

Pipeline Overview:
1. Tokenize data and split data into sequences
2. Implement RNN and LSTM
3. Implement Sampling techniques for token generation
4. Implement Decoder Only Transformer
5. Implement Training Loop



Sampling Techniques

Our outputs will be a probability 
distribution over tokens.

How can select the next token for 
generation?
1. Choose the token with highest 

probability
2. Sample token from probability 

distribution



Temperature Sampling

Add “temperature” parameter to softmax to control how soft/hard 
the softmax is

𝑝𝑖 =
𝑒𝑦𝑖/𝑇

σ𝑗
𝑛 𝑒𝑦𝑗/𝑇



Top-K Sampling

Select K tokens with highest probabilities, throw out the rest.

Renormalize probabilities so that they sum to 1 on for the K tokens.

Sample from distribution



Top-K Sampling

Select K tokens with highest probabilities, throw out the rest.

Renormalize probabilities so that they sum to 1 on for the K tokens.

Sample from distribution

Why might this work better than sampling from the original distribution



Top-P Sampling (Nucleus Sampling)

Given P, a value in (0, 1], select the smallest set of tokens such that 
their cumulative probability is greater than p.

That is, sort tokens in decreasing order by probability, iterate 
through the tokens keeping track of the total probability until it is 
greater than p.



Top-P Sampling (Nucleus Sampling)

Given P, a value in (0, 1], select the smallest set of tokens such that 
their cumulative probability is greater than p.

That is, sort tokens in decreasing order by probability, iterate 
through the tokens keeping track of the total probability until it is 
greater than p.

How is this different than Top-K? When might it be better? When might it be worse?



The Training Loop
You’ve probably written this exact loop many times…

But we there are plenty of problems that we’ll face as we start to scale up:

1. How do we track performance of our model? How can we tell if it’s working well enough to keep running it?
2. What if our computer crashes after 30 minutes of training? It would be a shame to lose all that work…



Experiment Tracking

There are a number of tools made for 
tracking experiments and model 
performance (other than print 
statements)

Tensorboard: Comes with 
tensorflow, publishes data and 
graphs to a port, can open with a 
local browser or through ssh if 
working remotely.

Weights and Biases: Online 
platform for visualizing performance, 
data, and other information.

(and many others)



Checkpointing

A checkpoint saves model weights at a specific point of training (i.e., every epoch, every 10 minutes, etc.)

Tensorflow provides a CheckPoint Manager that can handle a number of useful cases:
1. Save a checkpoint if it performs better on a given metric (i.e., validation loss)
2. Save a checkpoint every X amount of time
3. Overwrite other checkpoints
4. Load from checkpoints



LLM Hyperparameters



Large Language Model Scaling “Laws”

The bigger the better

Kaplan et al. “Scaling Laws for Neural Language Models”



Open AI, Gpt-4 technical report, 2023



Open AI, Gpt-4 technical report, 2023

We can predict, with high 
accuracy, how well a model 
will do after a certain amount 
of training just from 
extrapolating historical 
patterns



Finetuning, a brief interlude

Image Source: Multi-view Deep Representations with Cross-Dataset Transfer for Remote Sensing Image Retrieval and Classification

On specific tasks where data is scarce:

1. “pretrain” a model on a larger dataset
2. “Freeze” some weights of model (make 

them not trainable)
3. Finetune by training the remaining weights 

on task-specific dataset



Generative Pre-Training

Many diverse tasks involve understanding natural language
• Machine Translation
• Text Generation
• Sentiment Analysis
• Multiple-choice questions
• Entailment/Proofs
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from scratch each time?



Generative Pre-Training

Many diverse tasks involve understanding natural language
• Machine Translation
• Text Generation
• Sentiment Analysis
• Multiple-choice questions
• Entailment/Proofs

Do we really need to start 
from scratch each time?

GPT: Generative Pre-Trained 
Transformer



Generative Pre-Training

Pre-Training: train a model to perform language modeling on a large 
corpus of unlabeled text data.

Fine-Tuning: take that pre-trained model and continue training on 
the specific task of interest (i.e., change the loss function, dataset, 
and some parts of the model if needed)



Alec Radford et al., Improving Language Understanding by Generative Pre-Training, 2018



Alec Radford et al., Improving Language Understanding by Generative Pre-Training, 2018

Starting with language modeling and fine tuning to a 
specific task improves performance over just 

training on the desired task



Foundation Models: Beyond Language

• Foundation Model: An AI model that is trained on broad data; 
generally uses self-supervision; contains at least tens of billions of 
parameters; is applicable across a wide range of contexts.
• Definition from executive order on AI Safety passed on May 4th 2023

• (Rescinded on January 20th, 2025)

https://en.wikipedia.org/wiki/Self-supervised_learning
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Foundation Models
AI Foundation Models: Transforming Big Business

(Foundation models will not replace deep learning, 
this is just helpful for contextualizing the process) 

https://dataforest.ai/blog/ai-foundation-models-for-big-business-innovation

https://www.google.com/url?sa=i&url=https%3A%2F%2Fdataforest.ai%2Fblog%2Fai-foundation-models-for-big-business-innovation&psig=AOvVaw3J4ieSoUq5Q3FVGj-deVzN&ust=1742610460084000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqGAoTCMjyqf2PmowDFQAAAAAdAAAAABCQAg


Foundation Models

Key Question: What is the equivalent of language modeling for other modalities?



Turning GPT to Chat-GPT

Source: OpenAI

Step 0: Train GPT



Turning GPT to Chat-GPT

Source: OpenAI

Step 0: Train GPT

Computationally expensive



Turning GPT to Chat-GPT

Source: OpenAI

Step 0: Train GPT

Computationally expensive

Smaller dataset, less computationally expensive



Supervised Fine Tuning (SFT)

• The LLM after Pre-Training may have some problems
• Outputs may be repetitive
• May be rude, racist, or otherwise not a good “chatter”

• Need to align the LLMs behavior with desired behavior
• Collect data on “good” responses to questions
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Supervised Fine Tuning (SFT)

• The LLM after Pre-Training may have some problems
• Outputs may be repetitive
• May be rude, racist, or otherwise not a good “chatter”

• Need to align the LLMs behavior with desired behavior
• Collect data on “good” responses to questions

*I do not guarantee this is not a scam job*



Supervised Fine Tuning (SFT)

SFT is where LLMs “learn to answer questions”



Reinforcement Learning with Human 
Feedback
• Train a model to rank possible outputs from an LLM
• Turn these rankings into rewards
• Use these rewards for reinforcement learning (next topic, after 

break)



Hallucinations

• Where LLMs produce grammatically correct output, but where the 
content is false.
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Hallucinations

• Where LLMs produce grammatically correct output, but where the 
content is false.



Hallucinations

• Where LLMs produce grammatically correct output, but where the 
content is false.

But isn’t this the same as the errors 
we always had with neural networks? 
Why the need to now call them 
“hallucinations”



Retrieval Augmented Generation (RAG)

• Build large database of reference 
materials (sources)

• Allow the LLM retrieve 
documents from this source and 
add it to the context

• Make predictions from the 
original query and the augmented 
context



Optimizers

• Adam is pretty good for everything we do 
in this class, but there are better 
optimizers for LLMs

• Better optimizers == better/faster results

https://kellerjordan.github.io/posts/muon/



Reducing Climate Impact

• These models take a lot of electricity to train and 
run inference (make responses)

• This can have costly environmental impacts
• Concerns for both the amount of CO2 generated 

and the amount of water required for cooling data 
centers.



Reducing Climate Impact

Can we achieve similar results with smaller models?



Quantization

Can we use smaller 
representation of 
parameters? 

DeepSeek was able to 
create distilled and 
quantized models that 
only used 4 bits per 
parameter
https://huggingface.co/neuralmagic/DeepSeek-
R1-Distill-Llama-8B-quantized.w4a16



Memorization or Generalization?

Do LLMs “just memorize the training data”?

Grokking: The network suddenly generalizes well after initially overfitting the training data

https://pair.withgoogle.com/explorables/grokking/



Memorization or Generalization?

Do LLMs “just memorize the training data”?

Why this really matters:
• If a language model is memorizing its inputs, it should not fall under fair use
• If a language model uses its training data to train and generalize, it probably falls under fair use

Fair use: under certain circumstances, the use of copyrighted materials without permission is allowed

One key consideration: The use must be transformative



Source: NPR

Settlements cannot be used as a 
precedent in future cases

There are currently ~50 pending 
copyright cases pending against AI 
companies in America

(This does not include other lawsuits, 
including wrongful death lawsuits)



Chain of Thought (CoT)



KV Caching

During generation (i.e., 
when deployed), we only 
need to compute a very 
small number of new 
vectors

Image source: https://training.continuumlabs.ai/inference/why-is-inference-important/key-value-cache 
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Helpful Resources

• Andrej Karpathy:
• Youtube videos and code recreating GPT2, Nano-GPT, Tokenizers, and 

many other LLM things

• Cameron Wolfe:
• Decoder-only Transformers walkthrough 

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-
workhorse
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Recap

LLMs are Decoder-Only Transformers

They are trained to predict next tokens 
(Language Modeling)

Language Modeling is useful for many 
other downstream tasks
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