Deep Learning
Day 13: Transformers

and Large Language
Models

Eric Ewing
CSCI11470

Image generated by ChatGPT 5: Can you make me an image of Optimus
Prime fighting a large geologic entity

Transformer Model Overview

 The Transformer model breaks
down into Encoder and Decoder
blocks.

« At a high level, similar to the
seq2seq architecture we've seen
already...

« ..butthere are no recurrent nets
inside the Encoder and Decoder
blocks!

ff

\S

ENCODERS

DECODERS

/J

40

Transformer Model Overview

The Transformer model breaks
down into Encoder and Decoder
blocks.

At a high level, similar to the
seq2seq architecture we've seen
already...

...but there are no recurrent nets
inside the Encoder and Decoder

blocks!

For better performance, often
stack multiple Encoder and
Decoder blocks (deeper network)

am a student

(f ' \
ENCODER DECODER
\ _ J
4 4
s e ~
ENCODER DECODER
\ _ J
4 4
s 3 ~
ENCODER DECODER
_ _ J
4+ 4
r G ~
ENCODER DECODER
. \ J
4 4
e ~)
ENCODER DECODER
4 : J
4 &
' r =)
ENCODER DECODER
" \ J
k. 7Y ¥

suis eétudiant

41

Transformer Model Overview

* Let's look at what goes on inside

one of these Encoder blocks

'y

[ENCODER J
Y

Encoder Block Map
A

These per-word output I
vectors are analogoustothe EEFD
LSTM hidden states from the

seg2seq2 model

* They should capture “what
information about the input
sentence is relevant to
translating this word?”

Words in input sentence —

|

|

|

Encoder Block Map

= =2
1

 Encoder block breaks down into r. [T
A

two main parts: Self-Attention, and S
P - :

Feed Forward layers.
Feed Forward Feed Forward
Neural Network Neural Network

Z4 [:]:[:Ij Z2D:]:I:J
: 1 1

Self-Attention

e ®) "/

X1 [:':I:D X2DII:|

Thinking Machines

10
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Encoder Block Map

\S

Encoder block breaks down into
two main parts: Self-Attention, and
Feed Forward layers.

Self-Attention layer is applied to
each word individually. —

)

Feed Forward Feed Forward
Neural Network Neural Network

Self-Attention

- F F
X1 | | | . X2
Thinking Machines

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

11

Predictions

f

[Linear]

[]
The Transformer e

1

1

1

| | Feed-Forward
1 Network
1
1
1
1
]

OUTPUT | am a student —_—

— [Norm]
A A
(7 \ - 3) O @ " SN
ENCODER g DECODER ! I
\. J \ J ' '
4 4 | | Feed-Forward !
[¢ h f 3 ' Network '
ENCODER DECODER 1)
- > & = X !
4 * ! 1
-) 5) 1 1
ENCODER DECODER Nx Nx
L) | S "Layers" "Layers"
r] R 7 4 5
ENCODER DECODER : Ml e e
Multi-Headed A
~ 7y / ~ 7y / Self-Attention Self-Attention
4 ™ G)
ENCODER DECODER
- J Nz J
4 4
g~ ~\ (~\
ENCODER DECODER
- J . J
L i Positional + + Positional
Encoding Encoding
INPUT Je suis étudiant Embeddings/ Embeddings/
|) Projections Projections
T
Source Sequence Shifted

Target Sequence

Components

Self-Attention

* Cross-Attention

* Position Encoding
* Norm

Nx
"Layers"

Positional
Encoding

Feed-Forward
Network

Multi-Headed
Self-Attention
A A A
v K Q

Embeddings/
Projections

Source Sequence

Predictions

f

Linear

T

Norm

Feed-Forward
Network

Multi-Headed
Cross-Attention

O

Masked

Multi-Headed
Self-Attention

Embeddings/
Projections

Shifted
Target Sequence

v Nx
"Layers"

Positional
Encoding

Self-Attention:

Input’s attention on itself

The_ The_
animal_ animal_
didn_ didn_
- k.
Cross_ Cross_
the_ the_
street_ street_
because_ because_
it_ it_
was_ was_
too_ too_
tire tire

d d

Self-Attention: Overview

The big idea:

Self-attention computes the output vector z;
for each word via a weighted sum of vectors
extracted from each word in the input
sentence

Here, self-attention learns that “it” should
pay attention to “the animal” (i.e. the entity
that “it” refers to)

Why the name self-attention?
This describes attention that the input
sentence pays to itself

street_
because_
it_
was_

too

tire

The_
animal_
didn_

t
Cross_
the_
street_

because

was_
too_
tire

Key Vectors i:

The
animal
didn

t

Cross
the
street_
because_
it_

was_

too

tire
d

Self-Attention: Input’s attention on itself

The_
animal_
didn_

8
Cross_
the_
street_

because
was_

too_
tire

15

Self-Attention: Input’s attention on itself

Key Vectors i:

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

The_
animal_
didn_
K
Cross_
the_
street_
because_
it_
was_
too_
tire

d

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_

was_
too_

tire

d

Query Vector

15

Self-Attention: Input’s attention on itself

Key Vectors i:

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

Which use use to compute
the alignment scores a; ;

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_
was_
too_
tire

d

The_
animal_
didn_

8

Cross_
the_
street_
because_
it_

was_
too_

tire

d

Query Vector

15

Self-Attention: Input’s attention on itself

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

Which use use to compute
the alignment scores a; ;

0.5

0.5

0.25

0.25

0.5

0.5

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_
was_
too_
tire

d

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_

was_
too_

tire

d

15

Self-Attention: Input’s attention on itself

0.5

What do we do next?

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

Which use use to compute
the alignment scores a, ;

0.5

0.25

0.25

0.5

0.5

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_
was_
too_
tire

d

The_
animal_
didn_

t

Cross_
the_
street_
because_

it

was_
too_
tire
d

15

Self-Attention: Input’s attention on itself

To determine how much

attention a word should pay to

each other other, we
compute a

for the

word and compare itto a
for every other word...

Which use use to compute the

alignment scores a; ;

To produce the output vector,

we sum up the
for each word, weighted

by the

score we computed in step 1

0.5

0.5

0.25

0.25

0.5

0.5

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_
was_
too_
tire

d

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_

was_
too_

tire

d

-

15

Self-Attention: Details

Input Thinking
Embedding X+ (B
Queries g1 LJ_]_}

Extract 3 /

vectors from
K
each word o [

embedding

Values vil []

Machines

X, (S|

HAEEE

[l

24

Self-Attention: Details

Input Machines

Embedding X,/ [| | |

Queries o =
Extract 3
vectors from -
each word Keys E=E =
embedding

Values { =

Each vector is obtained
by multiplying the
embedding with the
respective weight
matrix.

How do we get these
weight matrices?

These matrices are the
trainable parameters
of the network

25

Scaled Dot Product Attention

| Mathdul I

_.l. &
| Softhax |
x - i
[Mask [opt.)]
Generate Q, K, V, by 4
multiplying word [Soake]

embedding X by weight
matrix (i.e., pass through X = |_1_|
a fully connected layer) Mathul

bt
. . W

. QKT
Attention(Q, K, V) = softmax v

7z

Multi-Headed Attention

Similar to convolutional layers with multiple filters,
we can have “multi-headed attention”

MultiHead(Q, K,V) = Concat(heady, ..., heady)W?
Where: head; = Attention(QW.}, KW, VW,")

Projected Attention:
Project (Q, K, V) with
learned parameters
wa,wk wv

Separate learned fully-
connected layer for each head i
and for each of (Q, K, V)

|

Linear

1

Concat

AA

r~

Scaled Dot-Product I \Z s

Attention
1l t 1
Linear J Linear J Linear ,]
V K Q

Predictions

f

[Linear]

Outputs of Encoder _

Feed-Forward
Network

| 2. What s this? | -

-

Feed-Forward

What does the encoder output? | Feed-Forw: |

L

"

Nx Nx

"Layers" :’ : "Layers”
1 . What |S thlS? I E Masked :
1 | Multi-Headed !
: Self-Attention :
An embedding (vector) for each word in source sequence! I { ;
Positional Positional
Encoding Encoding

Embeddings/ Embeddings/
Projections Projections

Source Sequence Shifted
Target Sequence

Cross Attention

e Self-Attention is how much each input “attends” to every other
Input

* Cross-Attention is how much every output “attends” to every input
(i.e., our original motivation for attention)

1
| 1 Dense
1

decoder

Generating Tokens

Nx
"Layers"

Positional
Encoding

Feed-Forward
Network

Multi-Headed
Self-Attention

Embeddings/
Projections

Source Sequence

Predictions

f

[Linear

T

Norm

Feed-Forward
Network

1

: Masked

1 Multi-Headed
: Self-Attention
1
1
1

Nx
"Layers"

Embeddings/
Projections

Shifted
Target Sequence

Positional
Encoding

Generating Tokens

How do we generate new output
sentences (English to French)?

Nx
"Layers"

Positional
Encoding

Feed-Forward
Network

Multi-Headed
Self-Attention
A A A

v K Q

Embeddings/
Projections

Source Sequence

Predictions

f

[Linear

T

Norm

Feed-Forward
Network

Multi-Headed
Cross-Attention

O

v K Q

Masked
Multi-Headed
Self-Attention

Embeddings/
Projections

Shifted
Target Sequence

Nx
"Layers"

Positional
Encoding

Generating Tokens

How do we generate new output
sentences (French to English)?

1. Take in source sentence (in French)
and one initial token <Start> in target
sequence

Embeddings/
Projections

Embeddings/
Projections

Predi;tion
| Lin;ar]

Generating Tokens _——
How do we generate new output |
sentences (French to English)? . P C{F ------ 3
1. Take in source sentence (in French) | et _H_f_fr_f
and one initial token <Start> in target s | [} e ,
sequence ‘ AT \
2. Generate one output token (first
English word)

Embeddings/
Projections

Embeddings/
Projections

Generating Tokens

How do we generate new output
sentences (French to English)?

1. Take in source sentence (in French)
and one initial token <Start> in target
sequence

2. Generate one output token (first
English word)

3. Rerun model with target sequence
“<Start> + Robot”

1
1 Multi-Headed
: Self-Attention

A A A
V K Qa

H—J

Predictions

' | Feed-Forward
Network

Embeddings/
Projections

Source Sequence

1

1

1

I 1

1 1

1 1

1 1

1 1

\ !

LI s— L4

Positional
Encoding

1 1
1 1
' i
: Multi-Headed !
1 | Cross-Attention :
1

FA A A X
' v K Q 1
L_)_|_J_J 1
1 1
1 1
1 Norm :
! A ’
———

~\ Nx

, | "Layers
1
1
\ U
! Multi-Headed !
! Self-Attention |
U
1
. A\ K Q I
U
['
1 Norm '
! 1
\‘ ___________ ”

Positional

Encoding

Embeddings/
Projections

Shifted
Target Sequence

(Masked) Self Attention

<Start> <Start>

Robot Robot

(Masked) Self Attention

Key Vectors

<Start> <Start>

Robot Robot

(Masked) Self Attention

Key Vectors

<Start>

Robot

<Start>

Robot

Query Vectors

(Masked) Self Attention

Key Vectors

Compute Attention Scores

<Start>

Robot

>< o
Robot

Query Vectors

(Masked) Self Attention

Key Vectors

Compute Attention Scores

<Start> >< <Start>
Robot —~ Robot

Query Vectors

(Masked) Self Attention

Compute Attention Scores

<Start> >< <Start>
Robot Robot

Key Vectors Query Vectors

——

Wait... <Start> is paying attention to Robot?
<Start>was generated before Robot, why would it pay attention to Robot?

(Masked) Self Attention

Key Vectors Compute Attention Scores

Query Vectors

<Start> <Start>

Robot —~ Robot

Masked Self-Attention: Words in the (Target) sequence should not pay attention to words that come after them

Maintain “causality”: later words should not have an effect on the outputs of earlier words

Source:

Masked Self-Attention

MASKING: MAKING SELF-ATTENTION CAUSAL

XT
r— X apply mask softmax . r
0
XT Wl YT
\\% \W%
W =X'X Wi+ —o00 ifj>1 W =softmax(W’) YT =wxT
vU¥

2y=

https://www.youtube.com/watch?v=oUhGZMCTHtI&themeRefresh=1

Transformer

Cross-Attention

Self Attention

Predictions

f

[Linear

T

Norm

Feed-Forward

[}
1
1
1
1
1
1 Network
1
1
1
1
1

Nx
"Layers"

v

Feed-Forward
Network

Positional
Encoding

Norm

Embeddings/
Projections

Source Sequence

Masked
Multi-Headed
Self-Attention

Embeddings/
Projections

Shifted
Target Sequence

Nx
"Layers"

Positional
Encoding

Predictions

f

[Linear]

T

Norm

Transformer

Feed-Forward
Network

What’s left?
1. Position Encoding Cross-Attention
2. Norm

Nx Nx
"Layers" "Layers"
Masked
Multi-Headed
: > Self-Attention
Self Attention

Positional Positional
Encoding Encoding

Embeddings/
Projections

Embeddings/
Projections

Source Sequence Shifted
Target Sequence

Transformer

What’s left?
1. Position Encoding
2. Norm

Cross-Attention

Self Attention

Predictions

f

[Linear]

T

Norm

Feed-Forward
Network

Nx Nx
"Layers" "Layers"
Masked
Multi-Headed
> Self-Attention
Positional Positional
Encoding Encoding

Embeddings/
Projections

Embeddings/
Projections

Source Sequence Shifted
Target Sequence

Transformer

What’s left?
1. Position Encoding
2. Norm

Cross-Attention

Self Attention

Predictions

f

[Linear]

T

Norm

Feed-Forward
Network

Nx Nx
"Layers" "Layers"
Masked
Multi-Headed
> Self-Attention
Positional Positional
Encoding Encoding

Embeddings/
Projections

Embeddings/
Projections

Source Sequence Shifted
Target Sequence

Position Encoding

* Part of the original motivation behind using RNNs for sequence
data was to incorporate the structure of the problem (i.e., that
order matters in the sequence)

* Attention (so far) does not care about the order that inputs arrive,
all the operations are symmetric

* How can we get our networks to realize that there is an ordering to
our inputs without using RNNs?

Position Encoding

* Part of the original motivation behind using RNNs for sequence
data was to incorporate the structure of the problem (i.e., that
order matters in the sequence)

* Attention (so far) does not care about the order that inputs arrive,
all the operations are symmetric

* How can we get our networks to realize that there is an ordering to
our inputs without using RNNs?

What’s the difference between:

1. The cow jumped over the moon
2. Overthe jumped cow moon the
Word order matters!

Positional Encoding

Option 1:
Make this a learnable parameter.

Want: a unique encoding
(vector) for every value of
position

Learn an embedding for every position a word can be in (i.e.,

1, 2, 3,... max_length)

Want: a unique encoding
(vector) for every value of
position

Positional Encoding

Option 1:
Make this a learnable parameter.

Learn an embedding for every position a word can be in (i.e.,
1, 2, 3,... max_length)

Option 2:
Do what “Attention is All you Need” did

21

PE (pos, 2i) = sin(pos/100004)
21
PE(pos, 2i + 1) = cos(pos/100004)

Positional Encoding

Option 1:
Make this a learnable parameter.
Learn an embedding for every position a word can be in (i.e.,

1, 2, 3,... max_length) 1. Fix a size for the output of your
. Position embedding d (has to match
OptIO n2: size of embeddings/projections)

Do what “Attention is All you Need” did
21
PE (pos, 2i) = sin(pos/100004)
21
PE(pos,2i + 1) = cos(pos/100004)

Positional Encoding

Option 1:
Make this a learnable parameter.
Learn an embedding for every position a word can be in (i.e.,

1, 2, 3,... max_length) 1. Fix a size for the output of your
) . Position embedding d (has to match
OptIO n2: size of embeddings/projections)

Do what “Attention is All you Need” did |3, ateach index of the encoding,

evaluate the properformula (i.e., even

2i
PE (pOS, 2 i) = Sln (pos/l OOOOE) positions use sin, odd positions use

cos)

21
PE(pos, 2i + 1) = cos(pos/100004)

Positional Encoding

“We chose this function because we hypothesized it would allow the
model to easily learn to attend by relative positions, since for any fixed
offset k, PE(pos+k) can be represented as a linear function of PE(pos).”

-- Vaswani et al. 2017, Attention is All You Need

Positional Encoding

“We chose this function because we hypothesized it would allow the
model to easily learn to attend by relative positions, since for any fixed
offset k, PE(pos+k) can be represented as a linear function of PE(pos).”

-- Vaswani et al. 2017, Attention is All You Need

PE(pos + k) = A - PE(pos)

Any Linear function
can berepresented as
a matrix multiplication

Positional Encoding

For every pair of adjacent values in the position encoding

A sin(c - pos) B sin(c - (pos + k))
| (cos(c - pos)) B (cos(c - (pos + k)))

__ [cos(c'k), sin(c-k)
A= (—sin(c-k), Cos(c-k))

Normalization

Normalization

BatchNorm: Normalize outputs of neurons based on mean and
standard deviation of the values for a batch of inputs

Normalization

BatchNorm: Normalize outputs of neurons based on mean and
standard deviation of the values for a batch of inputs

Issues:

Normalization

BatchNorm: Normalize outputs of neurons based on mean and
standard deviation of the values for a batch of inputs

Issues:
1. RNNs don’t batch well (LayerNorm came before Transformers)

Normalization

BatchNorm: Normalize outputs of neurons based on mean and
standard deviation of the values for a batch of inputs

Issues:
1. RNNs don’t batch well (LayerNorm came before Transformers)

2. When batches are small, mean and standard deviation can vary
highly

Normalization

BatchNorm: Normalize outputs of neurons based on mean and
standard deviation of the values for a batch of inputs

Issues:
1. RNNs don’t batch well (LayerNorm came before Transformers)

2. When batches are small, mean and standard deviation can vary
highly

LayerNorm: Instead of normalizing based on the batch dimension,
normalize the outputs of a layer based on the mean and standard
deviation of the outputs of that layer.

LayerNorm

_x—E[x]
Y= std(x) *Y+p

LayerNorm

x — E|x]

7std(x) Y B

Outputs before normalization
(i.e., inputs to LayerNorm layer)

LayerNorm

— E
y=x [;C]*V+ﬁ

/Std(x

Normalization

Outputs before normalization
(i.e., inputs to LayerNorm layer)

Two learnable
parameters,

Laye rNorm because... why not,

it’s deep learning...

x — E|x] /\

Y= std(x *Y+p

Normalization L.
Outputs before normalization

(i.e., inputs to LayerNorm layer)

Predictions

f

[Linear]

Transformer —

Feed-Forward
Network

-

Feed-Forward
Network

N oo

----------- < Y
Allintermediate outputs have same — E
dimension, only one hyperparameter for | | seit-aention | | !
dimension (many more for number of heads, i
number of encoder/decoders) 5
i ing

Embeddings/ Embeddings/
Projections Projections

Source Sequence Shifted
Target Sequence

Predictions

f

[Linear |

T

Norm

Transformer

Feed-Forward
Network

1
1
1
: Multi-Headed
1
1
1
1

1
1
]
1
1 1
1 : Cross-Attention :
1
- : S Y '
: Feed-Forward ! '
1 Network ' !
1 { .
1 1~ X '
1 1 .
! Norm \ '
!) rd
Nx \ Nx
"Layers" : "Layers"
] 1
1 1 :
: : Masked 1
H 1
1 Multi-Headed ! Multi-Headed !
' | Self-Attention ' Self-Attention i
! 1
A S S \ ! .
1 VvV K Q 1 :
1 H'_’ 1 .
1 1
1 Norm I :
1} 1 '
!
Positional Positional
Encoding Encoding

Embeddings/
Projections

Embeddings/
Projections

Source Sequence Shifted
Target Sequence

Transformer

Transformers are... complicated

They have many unique components, unlike networks we’ve covered so far

« CNNs can be large, but they only really have 2 components:
Convolutions and linear layers

 Theinternals of an RNN can be complicated, but it’s 3 or 4 operations

Nx
"Layers"

Positional
Encoding

Feed-Forward
Network

Multi-Headed
Self-Attention
A A A

v K Q

Embeddings/
Projections

Source Sequence

Predictions

f

[Linear |

Feed-Forward
Network

Multi-Headed
Cross-Attention

O

v K Q

Multi-Headed
Self-Attention

Embeddings/
Projections

Shifted
Target Sequence

-

N oo

Nx
"Layers"

- e

-~

Positional
Encoding

Predictions

f

[Linear]

Transformer —

Feed-Forward
Network

Transformers are... complicated — ,
They have many unique components, unlike networks we’ve covered so far Norm \
« CNNs can be large, but they only really have 2 components: CELEE i ------ S :
Convolutions and linear layers
Network .

 Theinternals of an RNN can be complicated, but it’s 3 or 4 operations feed o

Nx . v Nx
Why do they work so well? "Layers” : | "Layers"
E Masked :
1 | Multi-Headed !
: Self-Attention 1
Positional Positional
Encoding Encoding

Embeddings/ Embeddings/
Projections Projections

Source Sequence Shifted
Target Sequence

|s Attention All We Need?

https://arxiv.org/pdf/1703.10724

|s Attention All We Need?

LSTMs and RNNs have some nice theoretical properties...

https://arxiv.org/pdf/1703.10724

|s Attention All We Need?

LSTMs and RNNs have some nice theoretical properties...

They can take in an infinite length sequence!

https://arxiv.org/pdf/1703.10724

|s Attention All We Need?

LSTMs and RNNs have some nice theoretical properties...

They can take in an infinite length sequence!

An N-Gram LSTM model with n=13 is as good as an LSTM with
arbitrarily large context size. Google Report

https://arxiv.org/pdf/1703.10724

|s Attention All We Need?

LSTMs and RNNs have some nice theoretical properties...

They can take in an infinite length sequence!

An N-Gram LSTM model with n=13 is as good as an LSTM with
arbitrarily large context size. Google Report

Just because RNNs can take in large contexts, doesn’t mean they
will work as well as we want them to.

https://arxiv.org/pdf/1703.10724

Transformer Strengths

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, & is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n® - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional Ok -n-d?) 0(1) O(logx(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

1. Attentionisfasterthan RNNs (n < d)
2. Don’trequire sequential operations, like RNNs

3. Have a lower path length (how many operations does it take for information about words n
distance apartto spread to each other)

Transformer Strengths

params dimension n heads nlayers learningrate batchsize n tokens 2.2 —T
2.11
6.7B 4096 32 32 3.0e4 4M 1.0T a o B g
13.0B 5120 40 40 3.0e74 Y 1.0T - — LLaMA65B
32.5B 6656 52 60 1.5e~4 4M 1.4T 2
65.2B 8192 64 80 1.5¢~* 4M 1.4T £ 189
= 1.7
Table 2: Model sizes, architectures, and optimization hyper-parameters. 1.6-
125 200 400 600 800 1000 1200 1400
Billion of tokens
Figure 1: Training loss over train tokens for the 7B,
Deep Networks do better. More parameters are better. 13B, 33B, and 65 models. LLaMA-33B and LLaMA-
65B were trained on 1.4T tokens. The smaller models
Transformers have many learnable parameters. were trained on 1.0T tokens. All models are trained

with a batch size of 4M tokens.

LLaMA: Open and Efficient Foundation Language Models

Logistics

Final Project:
Group formation Survey: https://forms.gle/o1iBzmebcFI98xdxTA

Weekly Quiz is up!

https://forms.gle/o1iBzmebcF98xdxTA

I’m tired of pretending to speak French. Let’s
go back to language modeling

Decoder Only Transformer

Language modeling does not have a separate
Input-output sequence, they are one and the
same (unlike machine translation)

We don’t need a separate encoder and decoder in
the transformer

A decoder-only-transformer is just the decoder of
a transformer and is the primary building block of

LLMs

QOutput Probability

(next token)

Softmax

+

Linear

A

Block 2 ... N

ry

| Block 1 |

Add & Norm <€—
I

Feed
Forward

T_

Add & Norm <€—

I
Masked
Multi-Head
Attention

t 1!

Fositional

; Encoding

Input |

. Embedding

.T.

Input (prompt)

Decoder-Only Architecture

Token Output]

Generating Autoregressive Output

T T T T Time Step #1 Time Step #2 Time Step #3
sat | down | | <E0S> |
(Decoder Block \] 4 4 A
Decoder Block
Decoder-Only Decoder-Only Decoder-Only
Architecture Architecture Architecture
{ Feed Forward Neural Network - £t = R B B
[Masked Self-Attention]: I the I dog I | . I | the I dog I sat l I | I the l dog Rat l down I

[]

[Token Input

#tokens in input is the context length

Source: Cameron Wolfe, https:

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

Language Modeling Assignment

Pipeline Overview:

1.

ok~ b

Tokenize data and split data into sequences

mplement RNN and LSTM
mplement Sampling techniques for token generation
mplement Decoder Only Transformer

mplement Training Loop

QOutput Probability
(next token)

Sampling Techniques I

Linear
) 4
| Block 2 ... N
T

Our outputs will be a probability
distribution over tokens.

Block 1
Add & Morm -
|

| Feed |
Forward

How can select the next token? T—

Add & Norm <€—

1. Choose the token with highest Masked
probability Aonion

2. Sample token from probability =
distribution Posiionl

; Encoding

Input |
. Embedding |

.T.

Input (prompt)

Top-K Sampling
Select Ktokens with highest probabilities, throw out the rest.

Renormalize probabilities so that they sum to 1 on for the K tokens.

Sample from distribution

Top-K Sampling
Select Ktokens with highest probabilities, throw out the rest.

Renormalize probabilities so that they sum to 1 on for the K tokens.

Sample from distribution

Why might this work better than sampling from the original distribution

Top-P Sampling (Nucleus Sampling)

Given P, a value in (0, 1], select the smallest set of tokens such that
their cumulative probability is greater than p.

That is, sorttokens in decreasing order by probability, iterate
through the tokens keeping track of the total probability until it is
greater than p.

Top-P Sampling (Nucleus Sampling)

Given P, a value in (0, 1], select the smallest set of tokens such that
their cumulative probability is greater than p.

That is, sorttokens in decreasing order by probability, iterate
through the tokens keeping track of the total probability until it is
greater than p.

I How is this different than Top-K? When might it be better? When might it be worse? I

The Training Loop

You’ve probably written this exact loop many times...

while ((batch_idx+1)xmodel.batch _size) < train_len:
imgs, anss = get_next_batch(batch_idx, train_inputs, train_labels, batch_size=model.batch_c
with tf.GradientTape() as tape:
predictions = model(imgs, is_testing=False)
loss = model.loss_fn(predictions, anss)

model. loss_list.append(loss)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients|(zip(gradients, model.trainable_variables)|)

sum_acc += model.accuracy(model(imgs, is_testing=False), anss).numpy()
batch_idx += 1

But we there are plenty of problems that we’ll face as we start to scale up:

1. How do we track performance of our model? How can we tell if it’s working well enough to keep running it?
2. What if our computer crashes after 30 minutes of training? It would be a shame to lose all that work...

Experiment Tracking

There are a number of tools made for
tracking experiments and model
performance (other than print
statements

Tensorboard: Comes with tensorflow,
publishes data and graphs to a port,
can open with a local browser or
through ssh.

Weights and Biases: Online platform
for visualizing performance, data,
and other information.

Name
@ fmnist_g_4_b_64_e_50
gCp_4_test
clean_4_gpu
fragrant-haze-94
@ fmnist_full_test
@ fmnist_e_15
@ batch 64 local
batch 64 4 GPU
@ batch 64 (V2, 5K train)
50K examples (b 64)
batch 324 GPU
@ batch 641GPU
batch 128 (5K train)
batch 256 4 GPU
batch 1284 GPU
® 4GPU,b64,e25
batch 128 1 GPU
4GPU,b32,e50

@ batch 64 (5K train)

]

batch 32 (5K train)

8 gpu rmsprop 64 e 50

™

8 gpu rmsprop b 128 e 50

@ 8gpurmspropb512e 50

State

finished

finished

finished

crashed

finished

finished

finished

finished

finished

finished

finished

finished

finished

finished

finished

finished

finished

finished

finished

finished

finished

finished

finished

Tags

0.9905

0.9649

0.9297

0.9398

0.9262

0.9284

0.4514

0.4305

0.4343

0.4032

0.4465

0.4181

0.3882

0.4189

0.4323

0.4141

0.6094

0.6841

Runtime

2m 28s

1m33s

55s

0s

im1s

2h47m 8s

2h 7m 58s

5h 36m 55s

1d 7h 56m 5s

2h 13m 45s

5h 38m 30s

3h 35m 65

2h2m31s

2h8m27s

3h52m 37s

5h 39m 20s

12h 34m 43s

3h33m20s

3h 29m 30s

4h 42m 20s

4h37m 22s

4h 24m 455

Hyperparameter Optimization 2

Parameter importance with respect to

Config parameter
optimizer.value_NAN
epochs

batch_size

GPU

Panel Section 6

/ \
/ =T
;) \
/. \
/ \
i’ X
\
, \
\
\
\
1 > \
/; \
v/
- ! - i
acc
Parameters A}
Importance) ¥ Correlation
s snen s ————| | il
= 22 i}
=] [——
& ===
loss GPU Utilization (%)
L
ARAY
.
=y

Checkpointing
tf.train.CheckpointManager 0 -

O View source on GitHub

Manages multiple checkpoints by keeping some and deleting unneeded ones.

A checkpoint saves model weights at a specific point of training (i.e., every epoch, every 10 minutes, etc.)

Tensorflow provides a CheckPoint Manager that can handle a number of useful cases:
1. Save a checkpoint if it performs better on a given metric (i.e., validation loss)

2. Save a checkpoint every X amount of time

3. Overwrite other checkpoints

4. Load from checkpoints

Large Language Model Scaling “Laws”

The bigger the better

Test Loss 10

7 42
6 —— L=(D/5.4-10%3)-0095 | 5.6 —— L=(N/8.8+1013)-0.076
3.9
4.8
oy
@ 3.6 4.0
- 4
*g,'; 3.3 39
F 3
3.0
2.4
L={Crnnf2:3-108)~%950
2 . 2.7 . .
io® 107 105 103 10! 10! 108 10° 103 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not

bottlenecked by the other two.

Kaplan et al. “Scaling Laws for Neural Language Models”

Larger models require fewer samples
to reach the same performance

10° Params —

R, .
—— T e o RN

107 109 101
Tokens Processed

OpenAl codebase next word prediction

Bits per word

6.0
(]
e Observed
Prediction
5.0 gpt-4
e
4.0
o
3.0 ®
(]
®
o)
2.0 ® °
1.0 |] 1 | | 1 |
100p 10n 1y 100y 0.01 1

Compute

Figure 1. Performance of GPT-4 and smaller models. The metric is final loss on a dataset derived
from our internal codebase. This is a convenient, large dataset of code tokens which is not contained in
the training set. We chose to look at loss because it tends to be less noisy than other measures across
different amounts of training compute. A power law fit to the smaller models (excluding GPT-4) is
shown as the dotted line; this fit accurately predicts GPT-4’s final loss. The x-axis is training compute
normalized so that GPT-4 is 1.

Open Al, Gpt-4 technical report, 2023

OpenAl codebase next word prediction

Bits per word

6.0

5.0

4.0

3.0

2.0

1.0

e Observed
Prediction

gpt-4

We can predict, with high
accuracy, how well a model
will do after a certain amount
o of training just from
extrapolating historical

o patterns

T T
100p 10n 1y 100y 0.01 1
Compute

Figure 1. Performance of GPT-4 and smaller models. The metric is final loss on a dataset derived
from our internal codebase. This is a convenient, large dataset of code tokens which is not contained in
the training set. We chose to look at loss because it tends to be less noisy than other measures across
different amounts of training compute. A power law fit to the smaller models (excluding GPT-4) is
shown as the dotted line; this fit accurately predicts GPT-4’s final loss. The x-axis is training compute
normalized so that GPT-4 is 1.

Open Al, Gpt-4 technical report, 2023

Generative Pre-Training

Many diverse tasks involve understanding natural language
* Machine Translation

* Text Generation

* Sentiment Analysis

* Multiple-choice questions

* Entailment/Proofs

Generative Pre-Training

Many diverse tasks involve understanding natural language
* Machine Translation

* Text Generation

* Sentiment Analysis

* Multiple-choice questions

* Entailment/Proofs

Do we really need to start
from scratch each time?

Generative Pre

-Training

Many diverse tasks involve understanding natural language

e Machine Translation
e Text Generation
* Sentiment Analysis

* Multiple-choice questions

e Entailment/Proofs

Do we really need to start
from scratch each time?

GPT: Generative Pre-Trained
Transformer

Generative Pre-Training

Pre-Training: train a model to perform language modeling on a large
corpus of unlabeled text data.

Fine-Tuning: take that pre-trained model and continue training on
the specific task of interest (i.e., change the loss function, dataset,
and some parts of the model if needed)

Text Task I .
Prediction | Classifier Classification Start Text Extract]—' Transformer = Linear
. L
Entailment Start Premise Delim | Hypothesis | Extract | > Transformer > Linear
Layer Norm |
e lE Start Text 1 Delim Text 2 Extract |+ Transformer
7y Similarity - Linear
12x — .
Start Text 2 Delim Text 1 Extract | Transformer
Layer Norm -
! : Start Context Delim Answer 1 | Extract | > Transformer [Linear
Masked Multi |
Self Attention —
t Multiple Choice Start Context Delim Answer 2 Extract | > Transformer H Linear
Text & Position Embed Start Context Delim | Answer N | Extract | > Transformer [~ Linear

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

Alec Radford et al., Improving Language Understanding by Generative Pre-Training, 2018

Table 5: Analysis of various model ablations on different tasks. Avg. score is a unweighted average
of all the results. (mc= Mathews correlation, acc=Accuracy, pc=Pearson correlation)

Method Avg. Score CoLA SST2 MRPC STSB QQP MNLI QNLI RTE

(mc) (acc) (F1) (pc) (FD) (acc) (acc) (acc)
Transformer w/ aux LM (full) 74.7 45.4 91.3 82.3 82.0 70.3 81.8 88.1 56.0
Transformer w/o pre-training 59.9 18.9 84.0 79.4 30.9 65.5 75.7 71.2 53.8
Transformer w/o aux LM 75.0 47.9 92.0 84.9 83.2 69.8 81.1 86.9 544
LSTM w/ aux LM 69.1 30.3 90.5 83.2 71.8 68.1 73.7 81.1 54.6

Table 1: A list of the different tasks and datasets used in our experiments.

Task Datasets
Starting with language modeling and fine tuning to a Natural language inference SNLI [5], MultiNLI [66], Question NLI [64], RTE [4], SciTail [25]
Question Answering RACE [30], Story Cloze [40]
S pe C |f| C ta S k | m p roves p erfo rmance over J USt Sentence similarity MSR Paraphrase Corpus [14], Quora Question Pairs [9], STS Benchmark [6]
L. . Classification Stanford Sentiment Treebank-2 [54], CoLA [65]
training on the desired task

Alec Radford et al., Improving Language Understanding by Generative Pre-Training, 2018

Foundation Models: Beyond Language

* Foundation Model: An Al model that is trained on broad data;
generally uses self-supervision; contains at least tens of billions of
parameters; is applicable across a wide range of contexts.

« Definition from executive order on Al Safety passed on May 4t 2023
 (Rescinded on January 20%, 2025)

https://en.wikipedia.org/wiki/Self-supervised_learning
https://en.wikipedia.org/wiki/Self-supervised_learning
https://en.wikipedia.org/wiki/Self-supervised_learning

Foundation Models

A New Era of Al: Foundation Models

Step function improvements over legacy Al technologies

-0

@ ne Learning o,
-0
2000s — 2010s
Feature - centric
Model1 | Task1 | classifier |
Pretrain
Dl T Model
Model2 Task2 Pretrain
Model
Model3 Task3

https://dataforest.ai/blog/ai-foundation-models-for-big-business-innovation

(Foundation models will not replace deep learning,
this is just helpful for contextualizing the process)

Data - centric

Task1
Generative f‘

Tuning » Task2
Model

Task3

Y DATAFOREST

https://www.google.com/url?sa=i&url=https%3A%2F%2Fdataforest.ai%2Fblog%2Fai-foundation-models-for-big-business-innovation&psig=AOvVaw3J4ieSoUq5Q3FVGj-deVzN&ust=1742610460084000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqGAoTCMjyqf2PmowDFQAAAAAdAAAAABCQAg

Foundation Models

Cytosine Cytosine
yosine W nosne W
N/ko N’J\o
H H
Guanine . Guanine .
o} 0
I\ A~nH I\ A~nw
(N N 2 (N N 2
' OpenAl : :
' Adeni Adeni
© OpenAI .. s = TEY e ®
DALLE-2 b -
H H
Uracil . Thymine .
o] o]
(U\NH HaC\fLNH
N/go N/go
H H
Nucleobases Nucleobas
- of RNA of DNA

Key Question: What is the equivalent of language modeling for other modalities?

Turning GPT to Chat-GPT

Step 0: Train GPT

Source: OpenAl

Step 1

Collect demonstration data
and train a supervised policy.

A prompt is sample from
our prompt dataset.

A labeler demonstrates
the desired output
behavior.

This data is used to
fine-tune GPT-3.5 with
supervised learning.

~
L

Explain reinforcement

learning to a 6 year old.

o)

V4

We give treats and

punishments to teach...

Step 2

Collect comparison data and

train a reward model.

A prompt and several
model outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This data is used to

train our reward model.

f'\n

L9
Explain reinforcement
learning to a 6 year old.

) o

In reinforcement Explain rewards...
learning, the
agentis.

o)

In machine ‘We give treats and
learning... punishments to
teach...

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates

an output.

The reward model
calculates a reward
for the output.

The reward is used

to update the policy

using PPO.

A=

Write a story
about otters.

Once upon a time...

Turning GPT to Chat-GPT

Step 0: Train GPT

Source: OpenAl

Step 1

Collect demonstration data
and train a supervised policy.

F
A prompt is sample from ./

our prompt dataset. Explain reinforcement

learning to a 6 year old.

A labeler demonstrates @

the desired output

behavior. 4
We give treats and
punishments to teach...
SFT
o._0®
/ N
This data is used to '\5’;7;/'
fine-tune GPT-3.5 with e e
supervised learning. V4

22

Computationally expensive

Step 2

Collect comparison data and
train a reward model.

A prompt and several f:}
model outputs are Explain reinforcement
sampled. learning to a 6 year old.

) o

In reinforcement Explain rewards...
learning, the
agentis.

o)

In machine ‘We give treats and
learning... punishments to
teach...

L. y v
A labeler ranks the
outputs from best
to worst. o,o,o,,e
RM

.0
This data is used to ./\9?.5&}
train our reward model. }52{

0-0-0-0

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is . ¢
sampled from Write a story
the dataset. about otters.

|

Y

PPO

The PPO model is P
initialized from the .’9?.?“.
supervised policy. W

The policy generates

an output.

RM
The reward model o @
calculates a reward .‘9?.5&\.
for the output. W

The reward is used
to update the policy rk
using PPO.

Turning GPT to Chat-GPT

Step 1 Step 2 Step 3
Collect demonstration data Collect comparison data and Optimize a policy against the
and train a supervised policy. train a reward model. reward model using the PPO

reinforcement learning algorithm.

r~ A prompt and several r~ A new prompt is
A prompt is sample from (¥ promp w promp v ¢
our prompt dataset. Explain reinforcement model outputs are Explain reinforcement sampled from Write a story
learning to a 6 year old. sampled. learning to a 6 year old. the dataset. about otters.
¢ In ‘re-nfprcemem Explain rewards..
) e e . PPO
Step 0: Train GPT The PPO model is 2
A labeler demonstrates () 0 initialized from the QWQ
n machine ‘We give treats and . .
the desired output f I‘Ea,m,?g,_ pu?uutser;rgiu?tstc Super\”SEd pO“Cy. o e
behavior. L= “ v
We give treats and *

punishments to teach...

outputs from best

The policy generates)
¢ A labeler ranks the @ an output. Once upon atime...

SFT
M to worst. 0>0>0>9 *

. . RM
ThIS data is used to . .\\'S.Q(/. The reward model s &
f|ne'tune GPT‘35 W|th L] ® Calcu|ates a reward .ay.K\.
supervised learning. @ é@ au for the output. W

o._®
This data is used to o’\y?f&)o *
train our reward model. }5&{

The reward is used
to update the policy rk

Computationally expensive 0-0-0-0

Source: OpenAl Smaller dataset, less computationally expensive I

Supervised Fine Tuning (SFT)

* The LLM after Pre-Training may have some problems
* Outputs may be repetitive
* May be rude, racist, or otherwise not a good “chatter”

* Need to align the LLMs behavior with desired behavior
* Collect data on “good” responses to questions

Supervised Fine Tuning (SFT)

* The LLM after Pre-Training may have some problems

* Outputs may be repetitive
* May be rude, racist, or otherwise not a good “chatter”

* Collect dataon “good” responses to

DA

DA

Math Tutor - Al Trainer

DataAnnotation & - 39 W

Tallahassee, FL « Remote

From $40 an hour - Part-time, Full-time
You must create an Indeed account before continuing to the company website to apply

Apply now &] (D)

Supervised Fine Tuning (SFT)

* The LLM after Pre-Training may have some problems

* Outputs may be repetitive

* May be rude, racist, or otherwise not a good “chatter”

* Need to align the LLMs behavior wi
* Collect dataon “good” responses to

We pay smart folks to train Al.

D\ DA &

Math Tutor - Al Trainer

DataAnnotation & - 39 W

Tallahassee, FL « Remote

From $40 an hour - Part-time, Full-time
You must create an Indeed account before continuing to the company website to apply

Apply now &] (D)

| do not guarantee this is not a scam job

Supervised Fine Tuning (SFT)

I SFT is where LLMs “learn to answer questions”

Step1
Collect demonstration data,
and train a supervised policy.

Raw text Demonstrations
A (low quality, high quantity) (high quality, low quantity)
promptis
sampled from our .
Ex_plaln the moon Prompt:
prompt dataset. landing to a 6 year old -
| Pre-training Supervised fine-tuning Should | add chorizo
Y to my paella?
A labeler
demonstrates the @ Feedback (completion):
desired output Y Absolutely! Chorizo is a
behavior. S Br e et popular ingredient in many
e paella recipes
This data is used SFT Base LLM SFT Model
to fine-tune GPT-3 2 ,
with supervised AT GPT, PaLM, LLaMA, MPT-7B, StableLM, Alpaca, Dolly, Vicuna, Guanaco, MPT-
. i Falcon, RedPajama-INCITE, StarCoder 7B-Instruct, StarChat
g. 2
EEE

Initialized with random weights Initialized with Base Model

Reinforcement Learning with Human
Feedback

* Train a model to rank possible outputs from an LLM

* Turn these rankings into rewards
* Use these rewards for reinforcement learning (next topic, after

break)
:[Agent]

state reward action
s, | IR A,

R, (|

5., | Environment]-l

e

-+

Hallucinations

* Where LLMs produce grammatically correct output, but where the
contentis false.

Hallucinations

* Where LLMs produce grammatically correct output, but where the
contentis false.

@ How many R's are in the word strawberry

The word "strawberry" contains one 'r'.

@ Are you sure? Aren't there two?

I apologize for the error in my previous response. You are absolutely correct, and I thank
you for catching that mistake. Let me provide the correct answer:
The word "strawberry" contains two 'r's.

To break it down:

s-t-r-a-w-b-e-r-r-y
There is one 't' after the initial "st" and another 'r' near the end of the word.

Thank you for bringing this to my attention. It's a good reminder of the importance of
double-checking even seemingly simple information.

Hallucinations

* Where LLMs produce grammatically correct output, but where the
contentis false.

Hallucinations

* Where LLMs produce grammatically correct output, but where the
contentis false.

But isn’t this the same as the errors
we always had with neural networks?
Why the need to now call them
“hallucinations”

Retrieval Augmented Generation (RAG)

* Build large database of reference
materials (sources)

retrieve context
from relevant
documents

Reference
documents

* Allow the LLM retrieve fnd relovant

documents from this source and [uSe.-query D ooy [Context

embeddings

embedding comparing
add it to the context

* Make predictions from the (" Augmented)
original query and the augmented | o
context ek 15,

\<chunk 3>, /

LLM

generation

Response

Optimizers

* Adam is pretty good for everything we do

II’] th |S ClaSS, but the re a re better i1 Optimizer comparison by time (NanoGPT speedrun)
0 pti m i Ze rS fO r L LM S 4.0 1 - g?sat:?butedShampoo (UpdateFreq=10) 13222‘:’?;22
—— DistributedShampoo (UpdateFreq=32) 154ms/step
» Better optimizers == better/faster results > " en Yeomarten
" 3.8
E 3.7
E 3.6
3.5
3.4 4
33

6 é 1I0 115 2'0 2|5
Wallclock time on 8xH100

*SOAP is under active development. Future versions will significantly improve the wallclock overhead.
Figure 2. Optimizer comparison by wallclock time.

https://kellerjordan.github.io/posts/muon/

Reducing Climate Impact

* These models take a lot of electricity to train and
run inference (make responses)

* This can have costly environmental impacts

* Concerns for both the amount of CO2 generated
and the amount of water required for cooling data

centers.

What is the

Carbon
Footprint of

ChatGPT?

ChatGPT is a large language model that has been
shown to be extremely power-hungry. As a result,
it produces a lot of CO2 emissions.

Here's a breakdown of its carbon footprint:

1 Each query 4.32g of CO2

Using a CO2 calculator and some

basic math, ChatGPT produces more il

€02 per query than Google 8:8
(apparently, each search query in

Google results in 0.2g CO2 per query.) cCo2

16 queries is equivalent to boiling a kettle 2

“ Co2

J

139 queries produce as much CO2
as doing laundry

Co2
That's assuming you started a load
at 86 degrees Fahrenheit and used
a clothesline to dry them.

Reducing Climate Impact

Can we achieve similar results with smaller models?

Large Language Model
{Actual)

Quantization

Quantization

Can we use smaller
representation of
parameters?

<) Datature | Blog

FLOAT32 WEIGHTS

DeepSeek was able to
create distilled and
quantized models that
only used 4 bits per
parameter

https://huggingface.co/neuralmagic/DeepSeek-
R1-Distill-Llama-8B-quantized.w4a16

BIAS
(OPTIONAL)

X

INT8 WEIGHTS

INT8 QUANTIZATION PROCESS

Memorization or Generalization?

Do LLMs “just memorize the training data”?

Grokking: The network suddenly generalizes well after initially overfitting the training data

An Example Of Grokking: Memorization Followed By Sudden Generalization

The model quickly fits the
training data with 100%
accuracy...

After more training, accuracy
...but doesn't do better on the test data improves —

than random guessing the model generalizes!
on the 1

https://pair.withgoogle.com/explorables/grokking/

Memorization or Generalization?

Do LLMs “just memorize the training data”?

Why this really matters:
* If alanguage model is memorizing its inputs, it should not fall under fair use
* Ifalanguage model uses its training data to train and generalize, it probably falls under fair use

Fair use: under certain circumstances, the use of copyrighted materials without permission is allowed

One key consideration: The use must be transformative

Chain of Thought (Cof)

MaJorlty vote

(a) Input-Output (c) Chain of Thought (c) Self Consistency
Prompting (I0) Prompting (CoT) with CoT (CoT-SC)

(d) Tree of Thoughts (ToT)

Figure 1: Schematic illustrating various approaches to problem solving with LLMs. Each rectangle
box represents a thought, which is a coherent language sequence that serves as an intermediate
step toward problem solving. See concrete examples of how thoughts are generated, evaluated, and
searched in Figures 2,4,6.

	Slide 1: Deep Learning Day 13: Transformers and Large Language Models
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: The Transformer
	Slide 9: Components
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Scaled Dot Product Attention
	Slide 21: Multi-Headed Attention
	Slide 22: Outputs of Encoder
	Slide 23: Cross Attention
	Slide 24: Generating Tokens
	Slide 25: Generating Tokens
	Slide 26: Generating Tokens
	Slide 27: Generating Tokens
	Slide 28: Generating Tokens
	Slide 29: (Masked) Self Attention
	Slide 30: (Masked) Self Attention
	Slide 31: (Masked) Self Attention
	Slide 32: (Masked) Self Attention
	Slide 33: (Masked) Self Attention
	Slide 34: (Masked) Self Attention
	Slide 35: (Masked) Self Attention
	Slide 36: Masked Self-Attention
	Slide 37: Transformer
	Slide 38: Transformer
	Slide 39: Transformer
	Slide 40: Transformer
	Slide 41: Position Encoding
	Slide 42: Position Encoding
	Slide 43: Positional Encoding
	Slide 44: Positional Encoding
	Slide 45: Positional Encoding
	Slide 46: Positional Encoding
	Slide 47: Positional Encoding
	Slide 48: Positional Encoding
	Slide 49: Positional Encoding
	Slide 50: Normalization
	Slide 51: Normalization
	Slide 52: Normalization
	Slide 53: Normalization
	Slide 54: Normalization
	Slide 55: Normalization
	Slide 56: LayerNorm
	Slide 57: LayerNorm
	Slide 58: LayerNorm
	Slide 59: LayerNorm
	Slide 60: Transformer
	Slide 61: Transformer
	Slide 62: Transformer
	Slide 63: Transformer
	Slide 64: Is Attention All We Need?
	Slide 65: Is Attention All We Need?
	Slide 66: Is Attention All We Need?
	Slide 67: Is Attention All We Need?
	Slide 68: Is Attention All We Need?
	Slide 69: Transformer Strengths
	Slide 70: Transformer Strengths
	Slide 71: Logistics
	Slide 72: I’m tired of pretending to speak French. Let’s go back to language modeling
	Slide 73: Decoder Only Transformer
	Slide 74
	Slide 75: Language Modeling Assignment
	Slide 76: Sampling Techniques
	Slide 77: Top-K Sampling
	Slide 78: Top-K Sampling
	Slide 79: Top-P Sampling (Nucleus Sampling)
	Slide 80: Top-P Sampling (Nucleus Sampling)
	Slide 81: The Training Loop
	Slide 82: Experiment Tracking
	Slide 83: Checkpointing
	Slide 84: Large Language Model Scaling “Laws”
	Slide 85
	Slide 86
	Slide 87: Generative Pre-Training
	Slide 88: Generative Pre-Training
	Slide 89: Generative Pre-Training
	Slide 90: Generative Pre-Training
	Slide 91
	Slide 92
	Slide 93: Foundation Models: Beyond Language
	Slide 94: Foundation Models
	Slide 95: Foundation Models
	Slide 96: Turning GPT to Chat-GPT
	Slide 97: Turning GPT to Chat-GPT
	Slide 98: Turning GPT to Chat-GPT
	Slide 99: Supervised Fine Tuning (SFT)
	Slide 100: Supervised Fine Tuning (SFT)
	Slide 101: Supervised Fine Tuning (SFT)
	Slide 102: Supervised Fine Tuning (SFT)
	Slide 103: Reinforcement Learning with Human Feedback
	Slide 104: Hallucinations
	Slide 105: Hallucinations
	Slide 106: Hallucinations
	Slide 107: Hallucinations
	Slide 108: Retrieval Augmented Generation (RAG)
	Slide 109: Optimizers
	Slide 110: Reducing Climate Impact
	Slide 111: Reducing Climate Impact
	Slide 112: Quantization
	Slide 113: Memorization or Generalization?
	Slide 114: Memorization or Generalization?
	Slide 115: Chain of Thought (CoT)

