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The Transformer



Components

• Self-Attention
• Cross-Attention
• Position Encoding
• Norm
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To determine how much 

attention a word should pay to 

each other other, we

compute a query vector for the 

word and compare it to a key 
vector for every other word...

Which use use to compute the 
alignment scores 𝑎𝑡,𝑖

To produce the output vector, 
we sum up the value vectors 

for each word, weighted by the 

score we computed in step 1
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Scaled Dot Product Attention

Generate Q, K, V, by 
multiplying word 
embedding X by weight 
matrix (i.e., pass through 
a fully connected layer)

Attention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾T

𝑑𝑘

𝑉



Multi-Headed Attention
Similar to convolutional layers with multiple filters, 
we can have “multi-headed attention”

MultiHead 𝑄, 𝐾, 𝑉 = Concat head1, … , headh 𝑊0

Where: ℎ𝑒𝑎𝑑𝑖 = Attention(QWi
q

, KWi
k, VWi

v)

Separate learned fully-
connected layer for each head i 
and for each of (Q, K, V)

Projected Attention: 
Project (Q, K, V) with 
learned parameters 
𝑊𝑞, 𝑊𝑘, 𝑊𝑣



Outputs of Encoder

1. What is this?

What does the encoder output?

2. What is this?

An embedding (vector) for each word in source sequence!



Cross Attention

• Self-Attention is how much each input “attends” to every other 
input

• Cross-Attention is how much every output “attends” to every input 
(i.e., our original motivation for attention)
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Generating Tokens

How do we generate new output 
sentences (French to English)?

1. Take in source sentence (in French) 
and one initial token <Start> in target 
sequence
2. Generate one output token (first 
English word)
3. Rerun model with target sequence 
“<Start> + Robot”
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(Masked) Self Attention

Robot

<Start>

Robot

<Start>

Key Vectors Query Vectors
Compute Attention Scores

Wait… <Start> is paying attention to Robot?
<Start> was generated before Robot, why would it pay attention to Robot?



(Masked) Self Attention

Robot

<Start>

Robot

<Start>

Key Vectors Query Vectors
Compute Attention Scores

Masked Self-Attention: Words in the (Target) sequence should not pay attention to words that come after them

Maintain “causality”: later words should not have an effect on the outputs of earlier words



Masked Self-Attention

Source: https://www.youtube.com/watch?v=oUhGZMCTHtI&themeRefresh=1 

https://www.youtube.com/watch?v=oUhGZMCTHtI&themeRefresh=1
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Position Encoding

• Part of the original motivation behind using RNNs for sequence 
data was to incorporate the structure of the problem (i.e., that 
order matters in the sequence)

• Attention (so far) does not care about the order that inputs arrive, 
all the operations are symmetric

• How can we get our networks to realize that there is an ordering to 
our inputs without using RNNs?
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• Part of the original motivation behind using RNNs for sequence 
data was to incorporate the structure of the problem (i.e., that 
order matters in the sequence)

• Attention (so far) does not care about the order that inputs arrive, 
all the operations are symmetric

• How can we get our networks to realize that there is an ordering to 
our inputs without using RNNs?

What’s the difference between:
1. The cow jumped over the moon
2. Over the jumped cow moon the
Word order matters!
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Option 1:
 Make this a learnable parameter.
 Learn an embedding for every position a word can be in (i.e., 
1, 2, 3,… max_length)

Want: a unique encoding 
(vector) for every value of 
position



Positional Encoding

Option 1:
 Make this a learnable parameter.
 Learn an embedding for every position a word can be in (i.e., 
1, 2, 3,… max_length)
Option 2:
 Do what “Attention is All you Need” did

 𝑃𝐸 pos, 2𝑖 = sin(pos/10000
2𝑖

𝑑 )

 𝑃𝐸 pos, 2𝑖 + 1 = cos(pos/10000
2𝑖

𝑑 )

Want: a unique encoding 
(vector) for every value of 
position



Positional Encoding

Option 1:
 Make this a learnable parameter.
 Learn an embedding for every position a word can be in (i.e., 
1, 2, 3,… max_length)
Option 2:
 Do what “Attention is All you Need” did

 𝑃𝐸 pos, 2𝑖 = sin(pos/10000
2𝑖

𝑑 )

 𝑃𝐸 pos, 2𝑖 + 1 = cos(pos/10000
2𝑖

𝑑 )

1. Fix a size for the output of your 
Position embedding d (has to match 
size of embeddings/projections)



Positional Encoding

Option 1:
 Make this a learnable parameter.
 Learn an embedding for every position a word can be in (i.e., 
1, 2, 3,… max_length)
Option 2:
 Do what “Attention is All you Need” did

 𝑃𝐸 pos, 2𝑖 = sin(pos/10000
2𝑖

𝑑 )

 𝑃𝐸 pos, 2𝑖 + 1 = cos(pos/10000
2𝑖

𝑑 )

1. Fix a size for the output of your 
Position embedding d (has to match 
size of embeddings/projections)

2. At each index of the encoding, 
evaluate the proper formula (i.e., even 
positions use sin, odd positions use 
cos)



Positional Encoding

“We chose this function because we hypothesized it would allow the 
model to easily learn to attend by relative positions, since for any fixed 
offset k, PE(pos+k) can be represented as a linear function of PE(pos).”

-- Vaswani et al. 2017, Attention is All You Need



Positional Encoding

“We chose this function because we hypothesized it would allow the 
model to easily learn to attend by relative positions, since for any fixed 
offset k, PE(pos+k) can be represented as a linear function of PE(pos).”

-- Vaswani et al. 2017, Attention is All You Need

𝑃𝐸 𝑝𝑜𝑠 + 𝑘 = 𝐴 ⋅ 𝑃𝐸(𝑝𝑜𝑠)

Any Linear function 
can be represented as 
a matrix multiplication



Positional Encoding

For every pair of adjacent values in the position encoding

𝐴 ⋅
sin 𝑐 ⋅ 𝑝𝑜𝑠

cos 𝑐 ⋅ 𝑝𝑜𝑠
=

sin 𝑐 ⋅ (𝑝𝑜𝑠 + 𝑘)

cos 𝑐 ⋅ (𝑝𝑜𝑠 + 𝑘)

𝐴 = cos c⋅𝑘 , sin 𝑐⋅𝑘
−sin c⋅𝑘 , cos 𝑐⋅𝑘
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Normalization

BatchNorm: Normalize outputs of neurons based on mean and 
standard deviation of the values for a batch of inputs
Issues:
1. RNNs don’t batch well (LayerNorm came before Transformers)
2. When batches are small, mean and standard deviation can vary 

highly

LayerNorm: Instead of normalizing based on the batch dimension, 
normalize the outputs of a layer based on the mean and standard 
deviation of the outputs of that layer.



LayerNorm
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LayerNorm

𝑦 =
𝑥 − 𝐸 𝑥

𝑠𝑡𝑑 𝑥
∗ 𝛾 + 𝛽

Outputs before normalization 
(i.e., inputs to LayerNorm layer)

Normalization

Two learnable 
parameters, 
because… why not, 
it’s deep learning…



Transformer

All intermediate outputs have same 
dimension, only one hyperparameter for 
dimension (many more for number of heads, 
number of encoder/decoders)



Transformer



Transformer

Transformers are… complicated
They have many unique components, unlike networks we’ve covered so far
• CNNs can be large, but they only really have 2 components: 

Convolutions and linear layers
• The internals of an RNN can be complicated, but it’s 3 or 4 operations



Transformer

Transformers are… complicated
They have many unique components, unlike networks we’ve covered so far
• CNNs can be large, but they only really have 2 components: 

Convolutions and linear layers
• The internals of an RNN can be complicated, but it’s 3 or 4 operations

Why do they work so well?



Is Attention All We Need?

≈

https://arxiv.org/pdf/1703.10724
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Is Attention All We Need?

LSTMs and RNNs have some nice theoretical properties…

They can take in an infinite length sequence!

An N-Gram LSTM model with n=13 is as good as an LSTM with 
arbitrarily large context size. Google Report

Just because RNNs can take in large contexts, doesn’t mean they 
will work as well as we want them to.

≈

https://arxiv.org/pdf/1703.10724


Transformer Strengths

1. Attention is faster than RNNs (𝑛 ≪ 𝑑)
2. Don’t require sequential operations, like RNNs
3. Have a lower path length (how many operations does it take for information about words n 

distance apart to spread to each other)



Transformer Strengths

LLaMA: Open and Efficient Foundation Language Models

Deep Networks do better. More parameters are better. 
Transformers have many learnable parameters.



Logistics

Final Project:
Group formation Survey: https://forms.gle/o1iBzmebcF98xdxTA 

Weekly Quiz is up!

https://forms.gle/o1iBzmebcF98xdxTA


I’m tired of pretending to speak French. Let’s 
go back to language modeling



Decoder Only Transformer

Language modeling does not have a separate 
input-output  sequence, they are one and the 
same (unlike machine translation)

We don’t need a separate encoder and decoder in 
the transformer

A decoder-only-transformer is just the decoder of 
a transformer and is the primary building block of 
LLMs



Source: Cameron Wolfe, https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse 

#tokens in input is the context length

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse


Language Modeling Assignment

Pipeline Overview:
1. Tokenize data and split data into sequences
2. Implement RNN and LSTM
3. Implement Sampling techniques for token generation
4. Implement Decoder Only Transformer
5. Implement Training Loop



Sampling Techniques

Our outputs will be a probability 
distribution over tokens.

How can select the next token?
1. Choose the token with highest 

probability
2. Sample token from probability 

distribution



Top-K Sampling

Select K tokens with highest probabilities, throw out the rest.

Renormalize probabilities so that they sum to 1 on for the K tokens.

Sample from distribution



Top-K Sampling

Select K tokens with highest probabilities, throw out the rest.

Renormalize probabilities so that they sum to 1 on for the K tokens.

Sample from distribution

Why might this work better than sampling from the original distribution



Top-P Sampling (Nucleus Sampling)

Given P, a value in (0, 1], select the smallest set of tokens such that 
their cumulative probability is greater than p.

That is, sort tokens in decreasing order by probability, iterate 
through the tokens keeping track of the total probability until it is 
greater than p.



Top-P Sampling (Nucleus Sampling)

Given P, a value in (0, 1], select the smallest set of tokens such that 
their cumulative probability is greater than p.

That is, sort tokens in decreasing order by probability, iterate 
through the tokens keeping track of the total probability until it is 
greater than p.

How is this different than Top-K? When might it be better? When might it be worse?



The Training Loop
You’ve probably written this exact loop many times…

But we there are plenty of problems that we’ll face as we start to scale up:

1. How do we track performance of our model? How can we tell if it’s working well enough to keep running it?
2. What if our computer crashes after 30 minutes of training? It would be a shame to lose all that work…



Experiment Tracking

There are a number of tools made for 
tracking experiments and model 
performance (other than print 
statements)

Tensorboard: Comes with tensorflow, 
publishes data and graphs to a port, 
can open with a local browser or 
through ssh.

Weights and Biases: Online platform 
for visualizing performance, data, 
and other information.



Checkpointing

A checkpoint saves model weights at a specific point of training (i.e., every epoch, every 10 minutes, etc.)

Tensorflow provides a CheckPoint Manager that can handle a number of useful cases:
1. Save a checkpoint if it performs better on a given metric (i.e., validation loss)
2. Save a checkpoint every X amount of time
3. Overwrite other checkpoints
4. Load from checkpoints



Large Language Model Scaling “Laws”

The bigger the better

Kaplan et al. “Scaling Laws for Neural Language Models”



Open AI, Gpt-4 technical report, 2023



Open AI, Gpt-4 technical report, 2023

We can predict, with high 
accuracy, how well a model 
will do after a certain amount 
of training just from 
extrapolating historical 
patterns



Generative Pre-Training

Many diverse tasks involve understanding natural language
• Machine Translation
• Text Generation
• Sentiment Analysis
• Multiple-choice questions
• Entailment/Proofs
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Generative Pre-Training

Many diverse tasks involve understanding natural language
• Machine Translation
• Text Generation
• Sentiment Analysis
• Multiple-choice questions
• Entailment/Proofs

Do we really need to start 
from scratch each time?

GPT: Generative Pre-Trained 
Transformer



Generative Pre-Training

Pre-Training: train a model to perform language modeling on a large 
corpus of unlabeled text data.

Fine-Tuning: take that pre-trained model and continue training on 
the specific task of interest (i.e., change the loss function, dataset, 
and some parts of the model if needed)



Alec Radford et al., Improving Language Understanding by Generative Pre-Training, 2018



Alec Radford et al., Improving Language Understanding by Generative Pre-Training, 2018

Starting with language modeling and fine tuning to a 
specific task improves performance over just 

training on the desired task



Foundation Models: Beyond Language

• Foundation Model: An AI model that is trained on broad data; 
generally uses self-supervision; contains at least tens of billions of 
parameters; is applicable across a wide range of contexts.
• Definition from executive order on AI Safety passed on May 4th 2023

• (Rescinded on January 20th, 2025)

https://en.wikipedia.org/wiki/Self-supervised_learning
https://en.wikipedia.org/wiki/Self-supervised_learning
https://en.wikipedia.org/wiki/Self-supervised_learning


Foundation Models
AI Foundation Models: Transforming Big Business

(Foundation models will not replace deep learning, 
this is just helpful for contextualizing the process) 

https://dataforest.ai/blog/ai-foundation-models-for-big-business-innovation

https://www.google.com/url?sa=i&url=https%3A%2F%2Fdataforest.ai%2Fblog%2Fai-foundation-models-for-big-business-innovation&psig=AOvVaw3J4ieSoUq5Q3FVGj-deVzN&ust=1742610460084000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqGAoTCMjyqf2PmowDFQAAAAAdAAAAABCQAg


Foundation Models

Key Question: What is the equivalent of language modeling for other modalities?



Turning GPT to Chat-GPT

Source: OpenAI

Step 0: Train GPT
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Turning GPT to Chat-GPT

Source: OpenAI

Step 0: Train GPT

Computationally expensive

Smaller dataset, less computationally expensive



Supervised Fine Tuning (SFT)

• The LLM after Pre-Training may have some problems
• Outputs may be repetitive
• May be rude, racist, or otherwise not a good “chatter”

• Need to align the LLMs behavior with desired behavior
• Collect data on “good” responses to questions
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Supervised Fine Tuning (SFT)

• The LLM after Pre-Training may have some problems
• Outputs may be repetitive
• May be rude, racist, or otherwise not a good “chatter”

• Need to align the LLMs behavior with desired behavior
• Collect data on “good” responses to questions

*I do not guarantee this is not a scam job*



Supervised Fine Tuning (SFT)

SFT is where LLMs “learn to answer questions”



Reinforcement Learning with Human 
Feedback
• Train a model to rank possible outputs from an LLM
• Turn these rankings into rewards
• Use these rewards for reinforcement learning (next topic, after 

break)



Hallucinations

• Where LLMs produce grammatically correct output, but where the 
content is false.
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Hallucinations

• Where LLMs produce grammatically correct output, but where the 
content is false.

But isn’t this the same as the errors 
we always had with neural networks? 
Why the need to now call them 
“hallucinations”



Retrieval Augmented Generation (RAG)

• Build large database of reference 
materials (sources)

• Allow the LLM retrieve 
documents from this source and 
add it to the context

• Make predictions from the 
original query and the augmented 
context



Optimizers

• Adam is pretty good for everything we do 
in this class, but there are better 
optimizers for LLMs

• Better optimizers == better/faster results

https://kellerjordan.github.io/posts/muon/



Reducing Climate Impact

• These models take a lot of electricity to train and 
run inference (make responses)

• This can have costly environmental impacts
• Concerns for both the amount of CO2 generated 

and the amount of water required for cooling data 
centers.



Reducing Climate Impact

Can we achieve similar results with smaller models?



Quantization

Can we use smaller 
representation of 
parameters? 

DeepSeek was able to 
create distilled and 
quantized models that 
only used 4 bits per 
parameter
https://huggingface.co/neuralmagic/DeepSeek-
R1-Distill-Llama-8B-quantized.w4a16



Memorization or Generalization?

Do LLMs “just memorize the training data”?

Grokking: The network suddenly generalizes well after initially overfitting the training data

https://pair.withgoogle.com/explorables/grokking/



Memorization or Generalization?

Do LLMs “just memorize the training data”?

Why this really matters:
• If a language model is memorizing its inputs, it should not fall under fair use
• If a language model uses its training data to train and generalize, it probably falls under fair use

Fair use: under certain circumstances, the use of copyrighted materials without permission is allowed

One key consideration: The use must be transformative



Chain of Thought (CoT)
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