
Deep Learning
Day 13: Transformers
and Large Language

Models
Eric Ewing
CSCI 1470

Image generated by ChatGPT 5: Can you make me an image of Optimus
Prime fighting a large geologic entity

The Transformer

Components

• Self-Attention
• Cross-Attention
• Position Encoding
• Norm

Key Vectors

Key Vectors

Query Vector

To determine how much

attention a word should

pay to each other other, we

compute a query vector for

the word and compare it to
a key vector for every

other word...

Key Vectors

Query Vector

To determine how much

attention a word should

pay to each other other, we

compute a query vector for

the word and compare it to
a key vector for every

other word...

Which use use to compute
the alignment scores 𝑎𝑡,𝑖

To determine how much

attention a word should

pay to each other other, we

compute a query vector for

the word and compare it to
a key vector for every

other word...

Which use use to compute
the alignment scores 𝑎𝑡,𝑖

0.5

0.5

0.5

0.25

0.25

0.5

To determine how much

attention a word should

pay to each other other, we

compute a query vector for

the word and compare it to
a key vector for every

other word...

Which use use to compute
the alignment scores 𝑎𝑡,𝑖

0.5

0.5

0.5

0.25

0.25

0.5

Values

To determine how much

attention a word should pay to

each other other, we

compute a query vector for the

word and compare it to a key
vector for every other word...

Which use use to compute the
alignment scores 𝑎𝑡,𝑖

To produce the output vector,
we sum up the value vectors

for each word, weighted by the

score we computed in step 1

0.5

0.5

0.5

0.25

0.25

0.5

Values

𝑧𝑡

Scaled Dot Product Attention

Generate Q, K, V, by
multiplying word
embedding X by weight
matrix (i.e., pass through
a fully connected layer)

Attention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾T

𝑑𝑘

𝑉

Multi-Headed Attention
Similar to convolutional layers with multiple filters,
we can have “multi-headed attention”

MultiHead 𝑄, 𝐾, 𝑉 = Concat head1, … , headh 𝑊0

Where: ℎ𝑒𝑎𝑑𝑖 = Attention(QWi
q

, KWi
k, VWi

v)

Separate learned fully-
connected layer for each head i
and for each of (Q, K, V)

Projected Attention:
Project (Q, K, V) with
learned parameters
𝑊𝑞, 𝑊𝑘, 𝑊𝑣

Outputs of Encoder

1. What is this?

What does the encoder output?

2. What is this?

An embedding (vector) for each word in source sequence!

Cross Attention

• Self-Attention is how much each input “attends” to every other
input

• Cross-Attention is how much every output “attends” to every input
(i.e., our original motivation for attention)

Generating Tokens

Generating Tokens

How do we generate new output
sentences (English to French)?

Generating Tokens

How do we generate new output
sentences (French to English)?

1. Take in source sentence (in French)
and one initial token <Start> in target
sequence

Generating Tokens

How do we generate new output
sentences (French to English)?

1. Take in source sentence (in French)
and one initial token <Start> in target
sequence
2. Generate one output token (first
English word)

Generating Tokens

How do we generate new output
sentences (French to English)?

1. Take in source sentence (in French)
and one initial token <Start> in target
sequence
2. Generate one output token (first
English word)
3. Rerun model with target sequence
“<Start> + Robot”

(Masked) Self Attention

Robot

<Start>

Robot

<Start>

(Masked) Self Attention

Robot

<Start>

Robot

<Start>

Key Vectors

(Masked) Self Attention

Robot

<Start>

Robot

<Start>

Key Vectors Query Vectors

(Masked) Self Attention

Robot

<Start>

Robot

<Start>

Key Vectors Query Vectors
Compute Attention Scores

(Masked) Self Attention

Robot

<Start>

Robot

<Start>

Key Vectors Query Vectors
Compute Attention Scores

(Masked) Self Attention

Robot

<Start>

Robot

<Start>

Key Vectors Query Vectors
Compute Attention Scores

Wait… <Start> is paying attention to Robot?
<Start> was generated before Robot, why would it pay attention to Robot?

(Masked) Self Attention

Robot

<Start>

Robot

<Start>

Key Vectors Query Vectors
Compute Attention Scores

Masked Self-Attention: Words in the (Target) sequence should not pay attention to words that come after them

Maintain “causality”: later words should not have an effect on the outputs of earlier words

Masked Self-Attention

Source: https://www.youtube.com/watch?v=oUhGZMCTHtI&themeRefresh=1

https://www.youtube.com/watch?v=oUhGZMCTHtI&themeRefresh=1

Transformer

Self Attention

Cross-Attention

Transformer

Self Attention

Cross-Attention
What’s left?
1. Position Encoding
2. Norm

Transformer

Self Attention

Cross-Attention
What’s left?
1. Position Encoding
2. Norm

Transformer

Self Attention

Cross-Attention
What’s left?
1. Position Encoding
2. Norm

Position Encoding

• Part of the original motivation behind using RNNs for sequence
data was to incorporate the structure of the problem (i.e., that
order matters in the sequence)

• Attention (so far) does not care about the order that inputs arrive,
all the operations are symmetric

• How can we get our networks to realize that there is an ordering to
our inputs without using RNNs?

Position Encoding

• Part of the original motivation behind using RNNs for sequence
data was to incorporate the structure of the problem (i.e., that
order matters in the sequence)

• Attention (so far) does not care about the order that inputs arrive,
all the operations are symmetric

• How can we get our networks to realize that there is an ordering to
our inputs without using RNNs?

What’s the difference between:
1. The cow jumped over the moon
2. Over the jumped cow moon the
Word order matters!

Positional Encoding

Option 1:
 Make this a learnable parameter.
 Learn an embedding for every position a word can be in (i.e.,
1, 2, 3,… max_length)

Want: a unique encoding
(vector) for every value of
position

Positional Encoding

Option 1:
 Make this a learnable parameter.
 Learn an embedding for every position a word can be in (i.e.,
1, 2, 3,… max_length)
Option 2:
 Do what “Attention is All you Need” did

 𝑃𝐸 pos, 2𝑖 = sin(pos/10000
2𝑖

𝑑)

 𝑃𝐸 pos, 2𝑖 + 1 = cos(pos/10000
2𝑖

𝑑)

Want: a unique encoding
(vector) for every value of
position

Positional Encoding

Option 1:
 Make this a learnable parameter.
 Learn an embedding for every position a word can be in (i.e.,
1, 2, 3,… max_length)
Option 2:
 Do what “Attention is All you Need” did

 𝑃𝐸 pos, 2𝑖 = sin(pos/10000
2𝑖

𝑑)

 𝑃𝐸 pos, 2𝑖 + 1 = cos(pos/10000
2𝑖

𝑑)

1. Fix a size for the output of your
Position embedding d (has to match
size of embeddings/projections)

Positional Encoding

Option 1:
 Make this a learnable parameter.
 Learn an embedding for every position a word can be in (i.e.,
1, 2, 3,… max_length)
Option 2:
 Do what “Attention is All you Need” did

 𝑃𝐸 pos, 2𝑖 = sin(pos/10000
2𝑖

𝑑)

 𝑃𝐸 pos, 2𝑖 + 1 = cos(pos/10000
2𝑖

𝑑)

1. Fix a size for the output of your
Position embedding d (has to match
size of embeddings/projections)

2. At each index of the encoding,
evaluate the proper formula (i.e., even
positions use sin, odd positions use
cos)

Positional Encoding

“We chose this function because we hypothesized it would allow the
model to easily learn to attend by relative positions, since for any fixed
offset k, PE(pos+k) can be represented as a linear function of PE(pos).”

-- Vaswani et al. 2017, Attention is All You Need

Positional Encoding

“We chose this function because we hypothesized it would allow the
model to easily learn to attend by relative positions, since for any fixed
offset k, PE(pos+k) can be represented as a linear function of PE(pos).”

-- Vaswani et al. 2017, Attention is All You Need

𝑃𝐸 𝑝𝑜𝑠 + 𝑘 = 𝐴 ⋅ 𝑃𝐸(𝑝𝑜𝑠)

Any Linear function
can be represented as
a matrix multiplication

Positional Encoding

For every pair of adjacent values in the position encoding

𝐴 ⋅
sin 𝑐 ⋅ 𝑝𝑜𝑠

cos 𝑐 ⋅ 𝑝𝑜𝑠
=

sin 𝑐 ⋅ (𝑝𝑜𝑠 + 𝑘)

cos 𝑐 ⋅ (𝑝𝑜𝑠 + 𝑘)

𝐴 = cos c⋅𝑘 , sin 𝑐⋅𝑘
−sin c⋅𝑘 , cos 𝑐⋅𝑘

Normalization

Normalization

BatchNorm: Normalize outputs of neurons based on mean and
standard deviation of the values for a batch of inputs

Normalization

BatchNorm: Normalize outputs of neurons based on mean and
standard deviation of the values for a batch of inputs
Issues:

Normalization

BatchNorm: Normalize outputs of neurons based on mean and
standard deviation of the values for a batch of inputs
Issues:
1. RNNs don’t batch well (LayerNorm came before Transformers)

Normalization

BatchNorm: Normalize outputs of neurons based on mean and
standard deviation of the values for a batch of inputs
Issues:
1. RNNs don’t batch well (LayerNorm came before Transformers)
2. When batches are small, mean and standard deviation can vary

highly

Normalization

BatchNorm: Normalize outputs of neurons based on mean and
standard deviation of the values for a batch of inputs
Issues:
1. RNNs don’t batch well (LayerNorm came before Transformers)
2. When batches are small, mean and standard deviation can vary

highly

LayerNorm: Instead of normalizing based on the batch dimension,
normalize the outputs of a layer based on the mean and standard
deviation of the outputs of that layer.

LayerNorm

𝑦 =
𝑥 − 𝐸 𝑥

𝑠𝑡𝑑 𝑥
∗ 𝛾 + 𝛽

LayerNorm

𝑦 =
𝑥 − 𝐸 𝑥

𝑠𝑡𝑑 𝑥
∗ 𝛾 + 𝛽

Outputs before normalization
(i.e., inputs to LayerNorm layer)

LayerNorm

𝑦 =
𝑥 − 𝐸 𝑥

𝑠𝑡𝑑 𝑥
∗ 𝛾 + 𝛽

Outputs before normalization
(i.e., inputs to LayerNorm layer)

Normalization

LayerNorm

𝑦 =
𝑥 − 𝐸 𝑥

𝑠𝑡𝑑 𝑥
∗ 𝛾 + 𝛽

Outputs before normalization
(i.e., inputs to LayerNorm layer)

Normalization

Two learnable
parameters,
because… why not,
it’s deep learning…

Transformer

All intermediate outputs have same
dimension, only one hyperparameter for
dimension (many more for number of heads,
number of encoder/decoders)

Transformer

Transformer

Transformers are… complicated
They have many unique components, unlike networks we’ve covered so far
• CNNs can be large, but they only really have 2 components:

Convolutions and linear layers
• The internals of an RNN can be complicated, but it’s 3 or 4 operations

Transformer

Transformers are… complicated
They have many unique components, unlike networks we’ve covered so far
• CNNs can be large, but they only really have 2 components:

Convolutions and linear layers
• The internals of an RNN can be complicated, but it’s 3 or 4 operations

Why do they work so well?

Is Attention All We Need?

≈

https://arxiv.org/pdf/1703.10724

Is Attention All We Need?

LSTMs and RNNs have some nice theoretical properties…

≈

https://arxiv.org/pdf/1703.10724

Is Attention All We Need?

LSTMs and RNNs have some nice theoretical properties…

They can take in an infinite length sequence!

≈

https://arxiv.org/pdf/1703.10724

Is Attention All We Need?

LSTMs and RNNs have some nice theoretical properties…

They can take in an infinite length sequence!

An N-Gram LSTM model with n=13 is as good as an LSTM with
arbitrarily large context size. Google Report

≈

https://arxiv.org/pdf/1703.10724

Is Attention All We Need?

LSTMs and RNNs have some nice theoretical properties…

They can take in an infinite length sequence!

An N-Gram LSTM model with n=13 is as good as an LSTM with
arbitrarily large context size. Google Report

Just because RNNs can take in large contexts, doesn’t mean they
will work as well as we want them to.

≈

https://arxiv.org/pdf/1703.10724

Transformer Strengths

1. Attention is faster than RNNs (𝑛 ≪ 𝑑)
2. Don’t require sequential operations, like RNNs
3. Have a lower path length (how many operations does it take for information about words n

distance apart to spread to each other)

Transformer Strengths

LLaMA: Open and Efficient Foundation Language Models

Deep Networks do better. More parameters are better.
Transformers have many learnable parameters.

Logistics

Final Project:
Group formation Survey: https://forms.gle/o1iBzmebcF98xdxTA

Weekly Quiz is up!

https://forms.gle/o1iBzmebcF98xdxTA

I’m tired of pretending to speak French. Let’s
go back to language modeling

Decoder Only Transformer

Language modeling does not have a separate
input-output sequence, they are one and the
same (unlike machine translation)

We don’t need a separate encoder and decoder in
the transformer

A decoder-only-transformer is just the decoder of
a transformer and is the primary building block of
LLMs

Source: Cameron Wolfe, https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

#tokens in input is the context length

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

Language Modeling Assignment

Pipeline Overview:
1. Tokenize data and split data into sequences
2. Implement RNN and LSTM
3. Implement Sampling techniques for token generation
4. Implement Decoder Only Transformer
5. Implement Training Loop

Sampling Techniques

Our outputs will be a probability
distribution over tokens.

How can select the next token?
1. Choose the token with highest

probability
2. Sample token from probability

distribution

Top-K Sampling

Select K tokens with highest probabilities, throw out the rest.

Renormalize probabilities so that they sum to 1 on for the K tokens.

Sample from distribution

Top-K Sampling

Select K tokens with highest probabilities, throw out the rest.

Renormalize probabilities so that they sum to 1 on for the K tokens.

Sample from distribution

Why might this work better than sampling from the original distribution

Top-P Sampling (Nucleus Sampling)

Given P, a value in (0, 1], select the smallest set of tokens such that
their cumulative probability is greater than p.

That is, sort tokens in decreasing order by probability, iterate
through the tokens keeping track of the total probability until it is
greater than p.

Top-P Sampling (Nucleus Sampling)

Given P, a value in (0, 1], select the smallest set of tokens such that
their cumulative probability is greater than p.

That is, sort tokens in decreasing order by probability, iterate
through the tokens keeping track of the total probability until it is
greater than p.

How is this different than Top-K? When might it be better? When might it be worse?

The Training Loop
You’ve probably written this exact loop many times…

But we there are plenty of problems that we’ll face as we start to scale up:

1. How do we track performance of our model? How can we tell if it’s working well enough to keep running it?
2. What if our computer crashes after 30 minutes of training? It would be a shame to lose all that work…

Experiment Tracking

There are a number of tools made for
tracking experiments and model
performance (other than print
statements)

Tensorboard: Comes with tensorflow,
publishes data and graphs to a port,
can open with a local browser or
through ssh.

Weights and Biases: Online platform
for visualizing performance, data,
and other information.

Checkpointing

A checkpoint saves model weights at a specific point of training (i.e., every epoch, every 10 minutes, etc.)

Tensorflow provides a CheckPoint Manager that can handle a number of useful cases:
1. Save a checkpoint if it performs better on a given metric (i.e., validation loss)
2. Save a checkpoint every X amount of time
3. Overwrite other checkpoints
4. Load from checkpoints

Large Language Model Scaling “Laws”

The bigger the better

Kaplan et al. “Scaling Laws for Neural Language Models”

Open AI, Gpt-4 technical report, 2023

Open AI, Gpt-4 technical report, 2023

We can predict, with high
accuracy, how well a model
will do after a certain amount
of training just from
extrapolating historical
patterns

Generative Pre-Training

Many diverse tasks involve understanding natural language
• Machine Translation
• Text Generation
• Sentiment Analysis
• Multiple-choice questions
• Entailment/Proofs

Generative Pre-Training

Many diverse tasks involve understanding natural language
• Machine Translation
• Text Generation
• Sentiment Analysis
• Multiple-choice questions
• Entailment/Proofs

Do we really need to start
from scratch each time?

Generative Pre-Training

Many diverse tasks involve understanding natural language
• Machine Translation
• Text Generation
• Sentiment Analysis
• Multiple-choice questions
• Entailment/Proofs

Do we really need to start
from scratch each time?

GPT: Generative Pre-Trained
Transformer

Generative Pre-Training

Pre-Training: train a model to perform language modeling on a large
corpus of unlabeled text data.

Fine-Tuning: take that pre-trained model and continue training on
the specific task of interest (i.e., change the loss function, dataset,
and some parts of the model if needed)

Alec Radford et al., Improving Language Understanding by Generative Pre-Training, 2018

Alec Radford et al., Improving Language Understanding by Generative Pre-Training, 2018

Starting with language modeling and fine tuning to a
specific task improves performance over just

training on the desired task

Foundation Models: Beyond Language

• Foundation Model: An AI model that is trained on broad data;
generally uses self-supervision; contains at least tens of billions of
parameters; is applicable across a wide range of contexts.
• Definition from executive order on AI Safety passed on May 4th 2023

• (Rescinded on January 20th, 2025)

https://en.wikipedia.org/wiki/Self-supervised_learning
https://en.wikipedia.org/wiki/Self-supervised_learning
https://en.wikipedia.org/wiki/Self-supervised_learning

Foundation Models
AI Foundation Models: Transforming Big Business

(Foundation models will not replace deep learning,
this is just helpful for contextualizing the process)

https://dataforest.ai/blog/ai-foundation-models-for-big-business-innovation

https://www.google.com/url?sa=i&url=https%3A%2F%2Fdataforest.ai%2Fblog%2Fai-foundation-models-for-big-business-innovation&psig=AOvVaw3J4ieSoUq5Q3FVGj-deVzN&ust=1742610460084000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqGAoTCMjyqf2PmowDFQAAAAAdAAAAABCQAg

Foundation Models

Key Question: What is the equivalent of language modeling for other modalities?

Turning GPT to Chat-GPT

Source: OpenAI

Step 0: Train GPT

Turning GPT to Chat-GPT

Source: OpenAI

Step 0: Train GPT

Computationally expensive

Turning GPT to Chat-GPT

Source: OpenAI

Step 0: Train GPT

Computationally expensive

Smaller dataset, less computationally expensive

Supervised Fine Tuning (SFT)

• The LLM after Pre-Training may have some problems
• Outputs may be repetitive
• May be rude, racist, or otherwise not a good “chatter”

• Need to align the LLMs behavior with desired behavior
• Collect data on “good” responses to questions

Supervised Fine Tuning (SFT)

• The LLM after Pre-Training may have some problems
• Outputs may be repetitive
• May be rude, racist, or otherwise not a good “chatter”

• Need to align the LLMs behavior with desired behavior
• Collect data on “good” responses to questions

Supervised Fine Tuning (SFT)

• The LLM after Pre-Training may have some problems
• Outputs may be repetitive
• May be rude, racist, or otherwise not a good “chatter”

• Need to align the LLMs behavior with desired behavior
• Collect data on “good” responses to questions

I do not guarantee this is not a scam job

Supervised Fine Tuning (SFT)

SFT is where LLMs “learn to answer questions”

Reinforcement Learning with Human
Feedback
• Train a model to rank possible outputs from an LLM
• Turn these rankings into rewards
• Use these rewards for reinforcement learning (next topic, after

break)

Hallucinations

• Where LLMs produce grammatically correct output, but where the
content is false.

Hallucinations

• Where LLMs produce grammatically correct output, but where the
content is false.

Hallucinations

• Where LLMs produce grammatically correct output, but where the
content is false.

Hallucinations

• Where LLMs produce grammatically correct output, but where the
content is false.

But isn’t this the same as the errors
we always had with neural networks?
Why the need to now call them
“hallucinations”

Retrieval Augmented Generation (RAG)

• Build large database of reference
materials (sources)

• Allow the LLM retrieve
documents from this source and
add it to the context

• Make predictions from the
original query and the augmented
context

Optimizers

• Adam is pretty good for everything we do
in this class, but there are better
optimizers for LLMs

• Better optimizers == better/faster results

https://kellerjordan.github.io/posts/muon/

Reducing Climate Impact

• These models take a lot of electricity to train and
run inference (make responses)

• This can have costly environmental impacts
• Concerns for both the amount of CO2 generated

and the amount of water required for cooling data
centers.

Reducing Climate Impact

Can we achieve similar results with smaller models?

Quantization

Can we use smaller
representation of
parameters?

DeepSeek was able to
create distilled and
quantized models that
only used 4 bits per
parameter
https://huggingface.co/neuralmagic/DeepSeek-
R1-Distill-Llama-8B-quantized.w4a16

Memorization or Generalization?

Do LLMs “just memorize the training data”?

Grokking: The network suddenly generalizes well after initially overfitting the training data

https://pair.withgoogle.com/explorables/grokking/

Memorization or Generalization?

Do LLMs “just memorize the training data”?

Why this really matters:
• If a language model is memorizing its inputs, it should not fall under fair use
• If a language model uses its training data to train and generalize, it probably falls under fair use

Fair use: under certain circumstances, the use of copyrighted materials without permission is allowed

One key consideration: The use must be transformative

Chain of Thought (CoT)

	Slide 1: Deep Learning Day 13: Transformers and Large Language Models
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: The Transformer
	Slide 9: Components
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Scaled Dot Product Attention
	Slide 21: Multi-Headed Attention
	Slide 22: Outputs of Encoder
	Slide 23: Cross Attention
	Slide 24: Generating Tokens
	Slide 25: Generating Tokens
	Slide 26: Generating Tokens
	Slide 27: Generating Tokens
	Slide 28: Generating Tokens
	Slide 29: (Masked) Self Attention
	Slide 30: (Masked) Self Attention
	Slide 31: (Masked) Self Attention
	Slide 32: (Masked) Self Attention
	Slide 33: (Masked) Self Attention
	Slide 34: (Masked) Self Attention
	Slide 35: (Masked) Self Attention
	Slide 36: Masked Self-Attention
	Slide 37: Transformer
	Slide 38: Transformer
	Slide 39: Transformer
	Slide 40: Transformer
	Slide 41: Position Encoding
	Slide 42: Position Encoding
	Slide 43: Positional Encoding
	Slide 44: Positional Encoding
	Slide 45: Positional Encoding
	Slide 46: Positional Encoding
	Slide 47: Positional Encoding
	Slide 48: Positional Encoding
	Slide 49: Positional Encoding
	Slide 50: Normalization
	Slide 51: Normalization
	Slide 52: Normalization
	Slide 53: Normalization
	Slide 54: Normalization
	Slide 55: Normalization
	Slide 56: LayerNorm
	Slide 57: LayerNorm
	Slide 58: LayerNorm
	Slide 59: LayerNorm
	Slide 60: Transformer
	Slide 61: Transformer
	Slide 62: Transformer
	Slide 63: Transformer
	Slide 64: Is Attention All We Need?
	Slide 65: Is Attention All We Need?
	Slide 66: Is Attention All We Need?
	Slide 67: Is Attention All We Need?
	Slide 68: Is Attention All We Need?
	Slide 69: Transformer Strengths
	Slide 70: Transformer Strengths
	Slide 71: Logistics
	Slide 72: I’m tired of pretending to speak French. Let’s go back to language modeling
	Slide 73: Decoder Only Transformer
	Slide 74
	Slide 75: Language Modeling Assignment
	Slide 76: Sampling Techniques
	Slide 77: Top-K Sampling
	Slide 78: Top-K Sampling
	Slide 79: Top-P Sampling (Nucleus Sampling)
	Slide 80: Top-P Sampling (Nucleus Sampling)
	Slide 81: The Training Loop
	Slide 82: Experiment Tracking
	Slide 83: Checkpointing
	Slide 84: Large Language Model Scaling “Laws”
	Slide 85
	Slide 86
	Slide 87: Generative Pre-Training
	Slide 88: Generative Pre-Training
	Slide 89: Generative Pre-Training
	Slide 90: Generative Pre-Training
	Slide 91
	Slide 92
	Slide 93: Foundation Models: Beyond Language
	Slide 94: Foundation Models
	Slide 95: Foundation Models
	Slide 96: Turning GPT to Chat-GPT
	Slide 97: Turning GPT to Chat-GPT
	Slide 98: Turning GPT to Chat-GPT
	Slide 99: Supervised Fine Tuning (SFT)
	Slide 100: Supervised Fine Tuning (SFT)
	Slide 101: Supervised Fine Tuning (SFT)
	Slide 102: Supervised Fine Tuning (SFT)
	Slide 103: Reinforcement Learning with Human Feedback
	Slide 104: Hallucinations
	Slide 105: Hallucinations
	Slide 106: Hallucinations
	Slide 107: Hallucinations
	Slide 108: Retrieval Augmented Generation (RAG)
	Slide 109: Optimizers
	Slide 110: Reducing Climate Impact
	Slide 111: Reducing Climate Impact
	Slide 112: Quantization
	Slide 113: Memorization or Generalization?
	Slide 114: Memorization or Generalization?
	Slide 115: Chain of Thought (CoT)

