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RNN Recap

For every input, 
produce one output

What if we don’t know how many outputs there are?



Machine Translation

Software that translates one language to another















































Do you think the embedding from the 
final RNN can encode enough 

information about the beginning of the 
sentence to accurately translate it?



Do you think the embedding from the 
final RNN can encode enough 

information about the beginning of the 
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What if the decoder “forgets” the 
sentence embedding?



Issues with RNNs for Seq2Seq

• RNNs may “forget” the beginning of the sentence in the encoder
• RNNs (even LSTMs) may “forget” the embedding in the decoder



What about a sum of hidden 
states instead of just using the 

final state?
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Context Vector for output 𝑦𝑡

𝑎𝑡,𝑖 = 𝑎𝑙𝑖𝑔𝑛(𝑥𝑡, 𝑦𝑡)

How well two words are “aligned”

𝑎𝑡,𝑖 =
exp 𝑠𝑐𝑜𝑟𝑒 𝑠𝑡−1, ℎ𝑖

σ𝑗=1 exp 𝑠𝑐𝑜𝑟𝑒 𝑠𝑡−1, ℎ𝑗

Softmax of some predefined scoring metric



Attention Alignment Score

• Need to determine how well output word 𝑦𝑡  aligns with each input 
word 𝑥𝑖

• How can we determine the similarity between two words (or at 
least the vectors that represent them)?
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Attention Alignment Score

• Need to determine how well output word 𝑦𝑡  aligns with each input 
word 𝑥𝑖

• How can we determine the similarity between two words (or at 
least the vectors that represent them)?

Cosine Similarity(ℎ𝑖 , 𝑠𝑡−1) =
ℎ𝑖𝑠𝑡−1

ℎ𝑖 ∗| 𝑠𝑡−1 |

Dot product similarity(ℎ𝑖 , 𝑠𝑡−1) = ℎ𝑖𝑠𝑡−1

Generalized Similarity(ℎ𝑖 , 𝑠𝑡−1) = ℎ𝑖𝑊𝑎𝑠𝑡−1

Learned weight matrix
How much do we care about 
each part of embedding?



There are many ways to measure similarity…

Source: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html





































The Transformer



Components

• Self-Attention
• Cross-Attention
• Position Encoding
• Norm
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To determine how much 

attention a word should pay to 

each other other, we

compute a query vector for the 

word and compare it to a key 
vector for every other word...

Which use use to compute the 
alignment scores 𝑎𝑡,𝑖

To produce the output vector, 
we sum up the value vectors 

for each word, weighted by the 

score we computed in step 1
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Scaled Dot Product Attention

Generate Q, K, V, by 
multiplying word 
embedding X by weight 
matrix (i.e., pass through 
a fully connected layer)

Attention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾

𝑑𝑘

𝑉



Multi-Headed Attention
Similar to convolutional layers with multiple filters, 
we can have “multi-headed attention”

MultiHead 𝑄, 𝐾, 𝑉 = Concat head1, … , headh 𝑊0

Where: ℎ𝑒𝑎𝑑𝑖 = Attention(QWi
q

, KWi
k, VWi

v)

Separate learned fully-
connected layer for each head i 
and for each of (Q, K, V)

Projected Attention: 
Project (Q, K, V) with 
learned parameters 
𝑊𝑞, 𝑊𝑘, 𝑊𝑣



Cross Attention

• Self-Attention is how much each input “attends” to every other 
input

• Cross-Attention is how much every output “attends” to every input 
(i.e., our original motivation for attention)



Transformer

Self Attention

Cross-Attention
What’s left?
1. Position Encoding
2. Norm



Position Encoding

• Part of the original motivation behind using RNNs for sequence 
data was to incorporate the structure of the problem (i.e., that 
order matters in the sequence)

• Attention (so far) does not care about the order that inputs arrive, 
all the operations are symmetric

• How can we get our networks to realize that there is an ordering to 
our inputs without using RNNs?

What’s the difference between:
1. The cow jumped over the moon
2. Over the jumped cow moon the
Word order matters!



Positional Encoding

Option 1:
 Make this a learnable parameter.
 Learn an embedding for every position a word can be in (i.e., 
1, 2, 3,… max_length)
Option 2:
 Do what “Attention is All you Need” did

 𝑃𝐸 pos, 2𝑖 = sin(pos/10000
2𝑖

𝑑 )

 𝑃𝐸 pos, 2𝑖 + 1 = cos(pos/10000
2𝑖

𝑑 )

Want: a unique encoding 
(vector) for every value of 
position
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Positional Encoding

Option 1:
 Make this a learnable parameter.
 Learn an embedding for every position a word can be in (i.e., 
1, 2, 3,… max_length)
Option 2:
 Do what “Attention is All you Need” did

 𝑃𝐸 pos, 2𝑖 = sin(pos/10000
2𝑖

𝑑 )

 𝑃𝐸 pos, 2𝑖 + 1 = cos(pos/10000
2𝑖

𝑑 )

1. Fix a size for the output of your 
Position embedding d (has to match 
size of embeddings/projections)

2. At each index of the encoding, 
evaluate the proper formula (i.e., even 
positions use sin, odd positions use 
cos)



Positional Encoding

“We chose this function because we hypothesized it would allow the 
model to easily learn to attend by relative positions, since for any fixed 
offset k, PE(pos+k) can be represented as a linear function of PE(pos).”

-- Vaswani et al. 2017, Attention is All You Need

𝑃𝐸 𝑝𝑜𝑠 + 𝑘 = 𝐴 ⋅ 𝑃𝐸(𝑝𝑜𝑠)

Any Linear function 
can be represented as 
a matrix multiplication



Positional Encoding

For every pair of adjacent values in the position encoding

𝐴 ⋅
sin 𝑐 ⋅ 𝑝𝑜𝑠

cos 𝑐 ⋅ 𝑝𝑜𝑠
=

sin 𝑐 ⋅ (𝑝𝑜𝑠 + 𝑘)

cos 𝑐 ⋅ (𝑝𝑜𝑠 + 𝑘)

𝐴 = cos c⋅𝑘 , sin 𝑐⋅𝑘
−sin c⋅𝑘 , cos 𝑐⋅𝑘



Normalization

BatchNorm: Normalize outputs of neurons based on mean and 
standard deviation of the values for a batch of inputs
Issues:
1. RNNs don’t batch well (LayerNorm came before Transformers)
2. When batches are small, mean and standard deviation can vary 

highly

LayerNorm: Instead of normalizing based on the batch dimension, 
normalize the outputs of a layer based on the mean and standard 
deviation of the outputs of that layer.



LayerNorm

𝑦 =
𝑥 − 𝐸 𝑥

𝑠𝑡𝑑 𝑥
∗ 𝛾 + 𝛽

Outputs before normalization 
(i.e., inputs to LayerNorm layer)

Normalization

Two learnable 
parameters, 
because… why not, 
it’s deep learning…



Transformer

All intermediate outputs have same 
dimension, only one hyperparameter for 
dimension (many more for number of heads, 
number of encoder/decoders Nx)



Transformer

Transformers are… complicated
They have many unique components, unlike networks we’ve covered so far
• CNNs can be large, but they only really have 2 components: 

Convolutions and linear layers
• The internals of an RNN can be complicated, but it’s 3 or 4 operations

Why do they work so well?



Transformer Strengths

1. Attention is faster than RNNs (𝑛 ≪ 𝑑)
2. Don’t require sequential operations, like RNNs
3. Have a lower path length (how many operations does it take for information about words n 

distance apart to spread to each other)



Transformer Strengths

LLaMA: Open and Efficient Foundation Language Models

Deep Networks do better. More parameters are better. 
Transformers have many learnable parameters.



Transformer Weaknesses

• Transformers are not good at small scale tasks, they have many 
parameters and tend to overfit easily.

• There are really not that many hyperparameters in transformers, 
just the number of attention heads, number of layers, and 
embedding size.
• Hard to get them to not overfit

Why is this weakness not actually a problem?
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