

LSTM

R N N R e C a p Cell State (long short—Q‘ memory)

/

Hidden State (short -term memory)

Xt
word embedding

0,

Foreveryinput,
produce one output

Machine Translation

Software that translates one language to another

English « =" French «

Hello world * Bonjour le monde

0 ¢ O [C

Open in Google Translate Feedback

Why is this an interesting problem to solve?

eComplex: languages evolve rapidly and don’t have a clear
and well-defined structure

* Example of language change: “awful” originally meant “full of
awe”, but is now strictly negative

*Important: billions per year spent on translation services
*>CAS2.4 billion spent per year by Canadian government
*>£100 million spent per year by UK government

Parallel Corpora

*\We need pairs of equivalent sentences in two languages, called
parallel corpora

Canadian Hansards

* Hansards are transcripts of
parliamentary debates

e Canada’s official languages are
English and French, so
everything said in parliament is
transcribed in both languages

Canadian Hansards: Examples

English French

What a past to celebrate. Nous avons un beau passé a célébrer.

We are about to embark on a new era in Le Canada est sur le point d'entrer dans une

health research in this country. nouvelle ere en matiere de recherche sur la
santé.

Canadian Hansards

\We can use this as a dataset for MT!

*Not perfect:

* Translations aren’t literal: in the example, “this country” is
translated to “Le Canada”

* Biased in style: not everyone speaks like politicians in
parliamentary debate

* Biased in content: some topics are never discussed in parliament

Other parallel corpora

* Europarl, a parallel corpus of 21 languages used in the European
Parliament

* EUR-Lex, a parallel corpus of 24 languages used in EU law and public
documents

* Japanese-English Bilingual Corpus of Wikipedia's Kyoto Articles

Any questions?

2?2
©O 5o

&

<=

Problems with parallel corpora

* Expensive to produce

* Tend to be biased towards particular types of text — e.g. government
documents containing formal language

* Translations aren’t necessarily literal - e.g. “this country” -> “Le
Canada”

* Parallel corpora are necessary, but never perfect

LM approach

e Language modelling works on a word-by-word basis, taking only
previous words as input

P(Wei) = P(Wei | Ws i1, Wsimg, s Ws o)

* Where w,; is the i word in the target sentence, and w, ; is the i*"
word in the source sentence

I Will it work for MT task?

Why our LM approach doesn’t work for MT

« Language modelling works on a word-by-word basis, taking only
previous words as input

P(Wt,i) — P(Wt,i | Ws,i—li Ws,i—Z' ""WS,O)

* Where w,; is the i" word in the target sentence, and w; ; is the it"
word in the source sentence

* However, it is not a given that the information we need comes in the
preceding words

* The order and length of the source and target sentences are not
necessarily equal

Example from Hansards

* For example, take the first entry in Hansard’s:

edited hansard number 1

<

hansard révisé numéro 1

011 or
RNN | RNN
Se 1 cCell Cell

| |

What should we do?

Further examples

French: “Londres me manque”
Naive translation: “London | miss”

4

Correct translation: “I miss London’

French: “Je viens de partir”
Naive translation: “I| come of to go”
Correct translation: “I just left”

Sequence to Sequence (seq2seq)

Thus, we cannot simply use the previous words — we need to
summarize the source sentence first

This is called sequence to sequence to sequence learning, or seq2seq

Sequence to Sequence (seq2seq)

dnstead of:
P(wie) = P(Wie | Wic1s Wiizs0 s Woys)
Let’s do:
P(Wi,t) = P(Wi,t ‘ Eg,Wi_1,6:Wi—2t)) Wo 1)

Where E. is a summary, or embedding, of the sentence taken from the
source language, and w; is the " word of the sentence in the target
language

What will the neural net look like?

Sentence

embedding (E,)
Source

sentence

Target
sentence

Origin of the encoder/decoder terminology: information theory
* The encoder “compresses” the source sentence into a compact “code”
* The decoder recovers the sentence (but in the target language) from this code

What will the neural net look like?

Any ideas?

Sentence

embedding (E,)
Source — Encoder o
sentence

Encoder

* To generate the sentence embedding, we need an encoder
*Use an LSTM

* Feed in the source sentence
* Take the final LSTM state as the sentence embedding

* This will be a language-agnostic representation of the sentence

* i.e. it will represent the meaning of the sentence without being tied to any
particular language

Encoder architecture

Final LSTM state
as sentence
embedding

hansards révise numero 1 STOP

What will the neural net look like?

Sentence

embedding (E.)
Source o Encoder P I What now?
sentence

What will the neural net look like?

Any ideas?

Sentence
embedding (E,)
Decoder Target
sentence

Decoder

* We now have a sentence embedding representing the meaning of the
source sentence

* Now, let’s generate a sentence in the target language with the same
meaning

* Use an LSTM again, with the sentence embedding as its initial hidden
state

*The rest is just like language modeling:
* Input to the LSTM is the previous word from the target sentence
* Take each LSTM output and put it through a fully connected layer

* Softmax to convert to probability distribution over next word in target
language

Decoder architecture

revised hansards

Sentence
embedding

STOP revised hansards

number

number

STOP

Decoder LSTM

Any gquestions?
2?2

©9 5o

R

revised hansards number 1 STOP

[
, Dense layer
I

- . . . - - . - . . - - . - - . - - s - . - - el

Decoder LSTM

STOP revised hansards number 1

Encoder LSTM Final LSTM state

as sentence
embedding

hansards réviseé numero 1 STOP

Any gquestions?
revised hansards number 1 STOP

27?792 A A A A y

Do you think the embedding from the
final RNN can encode enough
information about the beginning of the

sentence to accurately translate it?

[
, Dense layer
I

- el

Decoder LSTM

STOP revised hansards number 1
Encoder LSTM Final LSTM state
as sentence
embedding

hansards réviseé numero 1 STOP

Any gquestions?

revised hansards number 1 STOP
EY¢. A
Do you think the embedding from the :
final RNN can encode enough I Dense Iayer
information about the beginning of the [
sentenceto accurately translateit? |~ —~°%4~ ~~~~~"% -~~~ ~"~~"q4 -~~~ -~
_______________________ |
I
: Decoder LSTM
B | i
S R EE SR
What if the decoder “forgets” the
STOP revised hansards number sentence embedding?

Encoder LSTM

Final LSTM state
as sentence
embedding

hansards réviseé numero 1 STOP

Issues with RNNs for Seqg2Seq

* RNNs may “forget” the beginning of the sentence in the encoder
* RNNs (even LSTMs) may “forget” the embedding in the decoder

New: revised hansards number STOP

Ec=sumoflLSTM 8- -——- A - _ A _____ A _____ -,

states , 'Dense layer
1

I— -_— s . . - _-— e e . . - _— O . . . - _-_— O . - - - ol

Sum of LSTM
states as
sentence
embeddingl ,_ _ A _ _ _ _ _A__ __ _ A A P

Decoder LSTM

STOP revised hansards number 1

What about a sum of hidden
states instead of just using the
final state?

Encoder LSTM

hansards révisé NUMEro 1 STOP

revised

What if we passed the sum , mial
of our encoder states to

every cellin the decoder? : Dense
—
| I
I l
| | Decoder
1 l
__f_ ___$_ _ 3
STOP revised hansards number 1
e e NN ——— == — = |

l
:Encoder
I
l

hansards révisé numMeéro 1

revised hansards number

What if we passed the sum Fr= - —-T- =g -~ = = =
of our encoder states to |
every cellin the decoder? '

was a weighted

sum instead?

 |dea: different "'f‘ "-f- ——+— f—- ___?__
words in the STOP revised hansards umber 1
input carry
different
importance

l
What if the sum :
|
|

Encoder

hansards révisé numMeéro 1 STOP

revised hansards number

What if we passed the sum e Sty mlntie i
of our encoder states to |
every cellin the decoder?

|
What if the sum :
was a weighted |
sum instead? I

hansards

revised

What if each decoder

cell received a different

weighted sum? :

* ldea: different words
in the input carry |
different importance !
foreachwordinthe '
output

Encoder

hansards révisé numeéro 1 STOP

revised hansards number

What if we passed the sum e Sty mlntie i
of our encoder states to |
every cellin the decoder?

|
What if the sum :
was a weighted |
sum instead? I

hansards

How do we achieve this? revised

What if each decoder

cell received a different

weighted sum? :

* ldea: different words
in the input carry |
different importance !
foreachwordinthe '
output

Encoder

hansards révisé numeéro 1 STOP

“Attention”

This idea of passing each cell of the decoder a weighted sum of the
encoder states is called attention.

* Different words in the output “pay attention” to different words in the input

“Attention” - intuition

(4 CP ark) b

How about we
let model learn
what is relevant
for a particular

output

| Dense

decoder

Z

!

hansards révisé numeéro

.—b. Encoder
[,

Attention - implementation

Decoder

hansards révisé numéro 1 STOP

Attention - implementation

Decoder

Encoder

hansards révisé numMero 1

x1 xz X3 X4, X

Attention - implementation

hansards révisé numeéro 1 STOP

X1 X2 X3 X4 X

Attention - implementation

Context Vector for output y;

Ct = § at,,ihi

]
1
=1]
]
]

Encoder

numeéro 1 STOP
X1 X2 X3 X4 Xc

hansards révisé

Attention - implementation

Context Vector for output y;

Ct = § at,,ihi

]
1
=1]
]
]

How well two words are “aligned”

a; = align(xt, ye)

Encoder

hansards révisé nuMéro 1 STOP

X1 X2 X3 X4 X5

Attention - implementation

Context Vector for output y;

Ct = § at,,ihi

l
l
i=1 I
l
l

How well two words are “aligned”

a; = align(xt, ye)

Softmax of some predefined scoringmetric _ _ A A A
exp(score(s;_q, hy)) | .
)ansards révisé

ap; = numéro 1 STOP

ijl exp (score(st_l, hj)) X1 X X3 X4 X5

Attention Alignment Score

* Need to determine how well output word y, alignhs with each input
word X;

* How can we determine the similarity between two words (or at
least the vectors that represent them)?

Attention Alignment Score

* Need to determine how well output word y, alignhs with each input
word X;

* How can we determine the similarity between two words (or at
least the vectors that represent them)?

hiSe—1
1Rl *]1s¢—1]

Cosine Similarity(h;, s¢—1) =

Attention Alignment Score

* Need to determine how well output word y, alignhs with each input
word X;

* How can we determine the similarity between two words (or at
least the vectors that represent them)?

hiSt—1
|1l *Is¢—1]
Dot product similarity(h;, S¢—1) = h;S¢_1

Cosine Similarity(h;, s¢—1) =

Attention Alignment Score

* Need to determine how well output word y, alignhs with each input
word X;

* How can we determine the similarity between two words (or at
least the vectors that represent them)?

hiSt—1
|1l *Is¢—1]
Dot product similarity(h;, S¢—1) = h;S¢_1

Generalized Similarity(h;, sq_1) = hjW,s;_4

Cosine Similarity(h;, s¢—1) =

How much do we care about

Learned weight matrix
each part of embedding?

There are many ways to measure similarity...

Name Alignment score function Citation
Content-base score(s;, h;) = cosine[s;, h;] Graves2014
attention
Additive(*) score(s;, h;) = v, tanh(W,[s;; h;]) Bahdanau2015
Location-Base a;; = softmax(W,s;) Luong2015

Note: This simplifies the softmax alignment to only depend on the
target position.

General score(s;, h;) = s/ W, h; Luong2015
where W, is a trainable weight matrix in the attention layer.
Dot-Product score(s;, h;) = s, h; Luong2015
Scaled Dot- Score(st,hl.) — s;\r/,:i Vaswani2017
n
Product(?)

Note: very similar to the dot-product attention except for a scaling
factor; where n is the dimension of the source hidden state.

Source: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

revised hansards number

What if we passed the sum Fr= - —-T- =g -~ = = =
of our encoder states to |
every cellin the decoder? '

was a weighted

sum instead?

 |dea: different "'f‘ "-f- ——+— f—- ___?__
words in the STOP revised hansards umber 1
input carry
different
importance

l
What if the sum :
|
|

Encoder

hansards révisé numMeéro 1 STOP

Attention Example

We can represent the attention weights as a matrix:

Columns: words in the input

hansards révisé numéro 1 STOP
aj’i
revised
hansards

RhOWS: words in What do the values in this

the output number particular matrix imply
about the attention

1 relationship between

input/output words?

STOP

Attention Example

Target: “Der Hund bellte mich an.”

We see that when we apply the
attention to our inputs, we will
pay attention to relatively
important words For translation
when predicting “bellte”.

it «The dog barked atne.”
[0, 1/4, 12, 1/4,0]

Attention is great!

e Attention significantly improves MT performance
* It’s very useful to allow decoder to focus on certain parts of the source

* Attention solves the bottleneck problem
« Attention allows decoder to look directly at source; bypass bottleneck

e Attention helps with vanishing gradient problem
* Provides shortcut to faraway states

e Attention provides some interpretability
* By inspecting attention distribution, we can see what the decoder was focusing on
* We get (soft) alignment for free!
* This is cool because we never explicitly trained an alignment system
* The network just learned alignment by itself

Attention is a general deep learning technique

More general definition of attention:

Given a set of vector values, and a vector guery, attention is a
technique to compute a weighted sum of the values, dependent on

the query.

Intuition:

* The weighted sum is a selective summary of the information
contained in the values, where the query determines which
values to focus on.

* Attention is a way to obtain a fixed-size representation of an
arbitrary set of representations (the values), dependent on
some other representation (the query).

Attention in Language Translation

agreement
on
European
Economic
signed

in

August
1992
<end>

Area
was

()
e
-

the

accord

sur

la

zone
économique
européenne
a

été

signé

en

ao(t

1992

<end>

Courtesy: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

S
T
.-,\L

A dog is standing on a hardwood floor.

A stop sign is on a road with a
mountain in the background.

A group of people sitting on a boat A giraffe standing in a forest with
in the water. trees in the background.

Image captioning with CNNs, RNNs, and Attention

Think-pair-share:

How would you design
this architecture with
attention?

Image captioning with CNNs, RNNs, and Attention

A |
bird |

flying
over

14x14 Feature Map

a
body
of
water
1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image Feature Extraction over the image word

generation
\. J

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Image captioning with CNNs, RNNs, and Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.
e ,

A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone

with a surfboard. with a large pizza. while another man watches.

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Do we still need the RNNSs?

After all, we always compute the weighted sum of all
encoder states.

“Attention Is All You Need”

A 2017 paper that introduced the Transformer model for machine translation
* Has no recurrent networks!

* Only uses attention

Motivation: o

* RNN training is hard to parallelize since the previous word must be processed before next word
* Transformers are trivially parallelizable
* Even with LSTMs / GRUs, preserving important linguistic context over very long sequences is
difficult

* Transformers don’t even try to remember things (every step looks at a weighted combination of all
words in the input sentence)

Transformer Model Overview

 The Transformer model breaks
down into Encoder and Decoder
blocks.

« At a high level, similar to the
seq2seq architecture we've seen
already...

« ..butthere are no recurrent nets
inside the Encoder and Decoder
blocks!

ff

\S

ENCODERS

DECODERS

/J

40

Transformer Model Overview

The Transformer model breaks
down into Encoder and Decoder
blocks.

At a high level, similar to the
seq2seq architecture we've seen
already...

...but there are no recurrent nets
inside the Encoder and Decoder

blocks!

For better performance, often
stack multiple Encoder and
Decoder blocks (deeper network)

am a student

(f ' \
ENCODER DECODER
\ _ J
4 4
s e ~
ENCODER DECODER
\ _ J
4 4
s 3 ~
ENCODER DECODER
_ _ J
4+ 4
r G ~
ENCODER DECODER
. \ J
4 4
e ~)
ENCODER DECODER
4 : J
4 &
' r =)
ENCODER DECODER
" \ J
k. 7Y ¥

suis eétudiant

41

Transformer Model Overview

* Let's look at what goes on inside

one of these Encoder blocks

'y

[ENCODER J
Y

Encoder Block Map
A

These per-word output I
vectors are analogoustothe EEFD
LSTM hidden states from the

seg2seq2 model

* They should capture “what
information about the input
sentence is relevant to
translating this word?”

Words in input sentence —

|

|

|

Encoder Block Map

= =2
1

 Encoder block breaks down into r. [T
A

two main parts: Self-Attention, and S
P - :

Feed Forward layers.
Feed Forward Feed Forward
Neural Network Neural Network

Z4 [:]:[:Ij Z2D:]:I:J
: 1 1

Self-Attention

e ®) "/

X1 [:':I:D X2DII:|

Thinking Machines

10
Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Encoder Block Map

\S

Encoder block breaks down into
two main parts: Self-Attention, and
Feed Forward layers.

Self-Attention layer is applied to
each word individually. —

)

Feed Forward Feed Forward
Neural Network Neural Network

Self-Attention

- F F
X1 | | | . X2
Thinking Machines

Alammar, Jay (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

11

Predictions

f

[Linear]

[]
The Transformer e

1

1

1

| | Feed-Forward
1 Network
1
1
1
1
]

OUTPUT | am a student —_—

— [Norm]
A A
(7 \ - 3) O @ " SN
ENCODER g DECODER ! I
\. J \ J ' '
4 4 | | Feed-Forward !
[¢ h f 3 ' Network '
ENCODER DECODER 1)
- > & = X !
4 * ! 1
-) 5) 1 1
ENCODER DECODER Nx Nx
L) | S "Layers" "Layers"
r] R 7 4 5
ENCODER DECODER : Ml e e
Multi-Headed A
~ 7y / ~ 7y / Self-Attention Self-Attention
4 ™ G)
ENCODER DECODER
- J Nz J
4 4
g~ ~\ (~\
ENCODER DECODER
- J . J
L i Positional + + Positional
Encoding Encoding
INPUT Je suis étudiant Embeddings/ Embeddings/
|) Projections Projections
T
Source Sequence Shifted

Target Sequence

Components

Self-Attention

* Cross-Attention

* Position Encoding
* Norm

Nx
"Layers"

Positional
Encoding

Feed-Forward
Network

Multi-Headed
Self-Attention
A A A
v K Q

Embeddings/
Projections

Source Sequence

Predictions

f

Linear

T

Norm

Feed-Forward
Network

Multi-Headed
Cross-Attention

O

Masked

Multi-Headed
Self-Attention

Embeddings/
Projections

Shifted
Target Sequence

v Nx
"Layers"

Positional
Encoding

Self-Attention:

Input’s attention on itself

The_ The_
animal_ animal_
didn_ didn_
- k.
Cross_ Cross_
the_ the_
street_ street_
because_ because_
it_ it_
was_ was_
too_ too_
tire tire

d d

Self-Attention: Overview

The big idea:

Self-attention computes the output vector z;
for each word via a weighted sum of vectors
extracted from each word in the input
sentence

Here, self-attention learns that “it” should
pay attention to “the animal” (i.e. the entity
that “it” refers to)

Why the name self-attention?
This describes attention that the input
sentence pays to itself

street_
because_
it_
was_

too

tire

The_
animal_
didn_

t
Cross_
the_
street_

because

was_
too_
tire

Key Vectors i:

The
animal
didn

t

Cross
the
street_
because_
it_

was_

too

tire
d

Self-Attention: Input’s attention on itself

The_
animal_
didn_

8
Cross_
the_
street_

because
was_

too_
tire

15

Self-Attention: Input’s attention on itself

Key Vectors i:

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

The_
animal_
didn_
K
Cross_
the_
street_
because_
it_
was_
too_
tire

d

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_

was_
too_

tire

d

Query Vector

15

Self-Attention: Input’s attention on itself

Key Vectors i:

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

Which use use to compute
the alignment scores a; ;

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_
was_
too_
tire

d

The_
animal_
didn_

8

Cross_
the_
street_
because_
it_

was_
too_

tire

d

Query Vector

15

Self-Attention: Input’s attention on itself

To determine how much
attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

Which use use to compute
the alignment scores a; ;

0.5

0.5

0.25

0.25

0.5

0.5

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_
was_
too_
tire

d

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_

was_
too_

tire

d

15

Self-Attention: Input’s attention on itself

0.5

| 2
To deter What (LO we do next”

attention a word should
pay to each other other, we

compute a for
the word and compare it to
a for every
other word...

Which use use to compute
the alignment scores a; ;

0.5

0.25

0.25

0.5

0.5

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_
was_
too_
tire

d

The_
animal_
didn_

t

Cross_
the_
street_
because_

it

was_
too_
tire
d

15

Self-Attention: Input’s attention on itself

To determine how much

attention a word should pay to

each other other, we
compute a

for the

word and compare itto a
for every other word...

Which use use to compute the

alignment scores a; ;

To produce the output vector,

we sum up the
for each word, weighted

by the

score we computed in step 1

0.5

0.5

0.25

0.25

0.5

0.5

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_
was_
too_
tire

d

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_

was_
too_

tire

d

-

15

Self-Attention: Details

Input Thinking
Embedding X+ (B
Queries g1 LJ_]_}

Extract 3 /

vectors from
K
each word o [

embedding

Values vil []

Machines

X, (S|

HAEEE

[l

24

Self-Attention: Details

Input Machines

Embedding X,/ [| | |

Queries o =
Extract 3
vectors from -
each word Keys E=E =
embedding

Values { =

Each vector is obtained
by multiplying the
embedding with the
respective weight
matrix.

How do we get these
weight matrices?

These matrices are the
trainable parameters
of the network

25

Scaled Dot Product Attention

| Mathdul I

_.l. &
| Softhax |
x - i
[Mask [opt.)]
Generate Q, K, V, by 4
multiplying word [Soake]

embedding X by weight
matrix (i.e., pass through X = |_1_|
a fully connected layer) Mathul

bt
. . W

. QK
Attention(Q, K,V) = softmax| — |V

/.

Multi-Headed Attention

Similar to convolutional layers with multiple filters,
we can have “multi-headed attention”

MultiHead(Q, K,V) = Concat(heady, ..., heady)W?
Where: head; = Attention(QW.}, KW, VW,")

Projected Attention:
Project (Q, K, V) with
learned parameters
wa,wk wv

Separate learned fully-
connected layer for each head i
and for each of (Q, K, V)

|

Linear

1

Concat

AA

r~

Scaled Dot-Product I \Z s

Attention
1l t 1
Linear J Linear J Linear ,]
V K Q

Cross Attention

e Self-Attention is how much each input “attends” to every other
Input

* Cross-Attention is how much every output “attends” to every input
(i.e., our original motivation for attention)

1
| 1 Dense
1

decoder

Transformer

What’s left?
1. Position Encoding
2. Norm

Cross-Attention

Self Attention

Predictions

f

[Linear]

T

Norm

Feed-Forward
Network

Nx Nx
"Layers" "Layers"
Masked
Multi-Headed
> Self-Attention
Positional Positional
Encoding Encoding

Embeddings/
Projections

Embeddings/
Projections

Source Sequence Shifted
Target Sequence

Position Encoding

* Part of the original motivation behind using RNNs for sequence
data was to incorporate the structure of the problem (i.e., that
order matters in the sequence)

* Attention (so far) does not care about the order that inputs arrive,
all the operations are symmetric

* How can we get our networks to realize that there is an ordering to
our inputs without using RNNs?

What’s the difference between:

1. The cow jumped over the moon
2. Overthe jumped cow moon the
Word order matters!

Want: a unique encoding
(vector) for every value of
position

Positional Encoding

Option 1:
Make this a learnable parameter.

Learn an embedding for every position a word can be in (i.e.,
1, 2, 3,... max_length)

Option 2:
Do what “Attention is All you Need” did

21

PE (pos, 2i) = sin(pos/100004)
21
PE(pos, 2i + 1) = cos(pos/100004)

Positional Encoding

Option 1:
Make this a learnable parameter.
Learn an embedding for every position a word can be in (i.e.,

1, 2, 3,... max_length) 1. Fix a size for the output of your
. Position embedding d (has to match
OptIO n2: size of embeddings/projections)

Do what “Attention is All you Need” did
21
PE (pos, 2i) = sin(pos/100004)
21
PE(pos,2i + 1) = cos(pos/100004)

Positional Encoding

Option 1:
Make this a learnable parameter.
Learn an embedding for every position a word can be in (i.e.,

1, 2, 3,... max_length) 1. Fix a size for the output of your
) . Position embedding d (has to match
OptIO n2: size of embeddings/projections)

Do what “Attention is All you Need” did |3, ateach index of the encoding,

evaluate the properformula (i.e., even

2i
PE (pOS, 2 i) = Sln (pos/l OOOOE) positions use sin, odd positions use

cos)

21
PE(pos, 2i + 1) = cos(pos/100004)

Positional Encoding

“We chose this function because we hypothesized it would allow the
model to easily learn to attend by relative positions, since for any fixed
offset k, PE(pos+k) can be represented as a linear function of PE(pos).”

-- Vaswani et al. 2017, Attention is All You Need

PE(pos + k) = A - PE(pos)

Any Linear function
can berepresented as
a matrix multiplication

Positional Encoding

For every pair of adjacent values in the position encoding

A sin(c - pos) B sin(c - (pos + k))
| (cos(c - pos)) B (cos(c - (pos + k)))

__ [cos(c'k), sin(c-k)
A= (—sin(c-k), Cos(c-k))

Normalization

BatchNorm: Normalize outputs of neurons based on mean and
standard deviation of the values for a batch of inputs

Issues:
1. RNNs don’t batch well (LayerNorm came before Transformers)

2. When batches are small, mean and standard deviation can vary
highly

LayerNorm: Instead of normalizing based on the batch dimension,
normalize the outputs of a layer based on the mean and standard
deviation of the outputs of that layer.

Two learnable
parameters,

Laye rNorm because... why not,

it’s deep learning...

x — E|x] /\

Y= std(x *Y+p

Normalization L.
Outputs before normalization

(i.e., inputs to LayerNorm layer)

Predictions

f

[Linear]

Transformer —

Feed-Forward
Network

-

Feed-Forward
Network

N oo

----------- < Y
Allintermediate outputs have same — E
dimension, only one hyperparameter for | | seit-aention | | !
dimension (many more for number of heads, i
number of encoder/decoders Nx) 5
i ing

Embeddings/ Embeddings/
Projections Projections

Source Sequence Shifted
Target Sequence

Predictions

f

[Linear]

Transformer —

Feed-Forward
Network

Transformers are... complicated — ,
They have many unique components, unlike networks we’ve covered so far Norm \
« CNNs can be large, but they only really have 2 components: CELEE i ------ S :
Convolutions and linear layers
Network .

 Theinternals of an RNN can be complicated, but it’s 3 or 4 operations feed o

Nx . v Nx
Why do they work so well? "Layers” : | "Layers"
E Masked :
1 | Multi-Headed !
: Self-Attention 1
Positional Positional
Encoding Encoding

Embeddings/ Embeddings/
Projections Projections

Source Sequence Shifted
Target Sequence

Transformer Strengths

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, & is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n® - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional Ok -n-d?) 0(1) O(logx(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

1. Attentionisfasterthan RNNs (n < d)
2. Don’trequire sequential operations, like RNNs

3. Have a lower path length (how many operations does it take for information about words n
distance apartto spread to each other)

Transformer Strengths

params dimension n heads nlayers learningrate batchsize n tokens 2.2 —T
2.11
6.7B 4096 32 32 3.0e4 4M 1.0T a o B g
13.0B 5120 40 40 3.0e74 Y 1.0T - — LLaMA65B
32.5B 6656 52 60 1.5e~4 4M 1.4T 2
65.2B 8192 64 80 1.5¢~* 4M 1.4T £ 189
= 1.7
Table 2: Model sizes, architectures, and optimization hyper-parameters. 1.6-
125 200 400 600 800 1000 1200 1400
Billion of tokens
Figure 1: Training loss over train tokens for the 7B,
Deep Networks do better. More parameters are better. 13B, 33B, and 65 models. LLaMA-33B and LLaMA-
65B were trained on 1.4T tokens. The smaller models
Transformers have many learnable parameters. were trained on 1.0T tokens. All models are trained

with a batch size of 4M tokens.

LLaMA: Open and Efficient Foundation Language Models

Transformer Weaknesses

* Transformers are not good at small scale tasks, they have many
parameters and tend to overfit easily.

* There are really not that many hyperparameters in transformers,
just the number of attention heads, number of layers, and
embedding size.

* Hard to get them to not overfit

Why is this weakness not actually a problem?

	Slide 1
	Slide 2: RNN Recap
	Slide 3: Machine Translation
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Issues with RNNs for Seq2Seq
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Attention Alignment Score
	Slide 44: Attention Alignment Score
	Slide 45: Attention Alignment Score
	Slide 46: Attention Alignment Score
	Slide 47: There are many ways to measure similarity…
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65: The Transformer
	Slide 66: Components
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77: Scaled Dot Product Attention
	Slide 78: Multi-Headed Attention
	Slide 79: Cross Attention
	Slide 80: Transformer
	Slide 81: Position Encoding
	Slide 82: Positional Encoding
	Slide 83: Positional Encoding
	Slide 84: Positional Encoding
	Slide 85: Positional Encoding
	Slide 86: Positional Encoding
	Slide 87: Normalization
	Slide 88: LayerNorm
	Slide 89: Transformer
	Slide 90: Transformer
	Slide 91: Transformer Strengths
	Slide 92: Transformer Strengths
	Slide 93: Transformer Weaknesses

