
Deep Learning

Eric Ewing

CSCI 1470

Tuesday,
10/14/25

Day 12: Seq2Seq Modeling

RNN Recap

For every input,
produce one output

What if we don’t know how many outputs there are?

Machine Translation

Software that translates one language to another

Do you think the embedding from the
final RNN can encode enough

information about the beginning of the
sentence to accurately translate it?

Do you think the embedding from the
final RNN can encode enough

information about the beginning of the
sentence to accurately translate it?

What if the decoder “forgets” the
sentence embedding?

Issues with RNNs for Seq2Seq

• RNNs may “forget” the beginning of the sentence in the encoder
• RNNs (even LSTMs) may “forget” the embedding in the decoder

What about a sum of hidden
states instead of just using the

final state?

𝑐𝑡 = ෍

𝑖=1

𝑎𝑡,,𝑖ℎ𝑖

Context Vector for output 𝑦𝑡

𝑐𝑡 = ෍

𝑖=1

𝑎𝑡,,𝑖ℎ𝑖

Context Vector for output 𝑦𝑡

𝑎𝑡,𝑖 = 𝑎𝑙𝑖𝑔𝑛(𝑥𝑡, 𝑦𝑡)

How well two words are “aligned”

𝑐𝑡 = ෍

𝑖=1

𝑎𝑡,,𝑖ℎ𝑖

Context Vector for output 𝑦𝑡

𝑎𝑡,𝑖 = 𝑎𝑙𝑖𝑔𝑛(𝑥𝑡, 𝑦𝑡)

How well two words are “aligned”

𝑎𝑡,𝑖 =
exp 𝑠𝑐𝑜𝑟𝑒 𝑠𝑡−1, ℎ𝑖

σ𝑗=1 exp 𝑠𝑐𝑜𝑟𝑒 𝑠𝑡−1, ℎ𝑗

Softmax of some predefined scoring metric

Attention Alignment Score

• Need to determine how well output word 𝑦𝑡 aligns with each input
word 𝑥𝑖

• How can we determine the similarity between two words (or at
least the vectors that represent them)?

Attention Alignment Score

• Need to determine how well output word 𝑦𝑡 aligns with each input
word 𝑥𝑖

• How can we determine the similarity between two words (or at
least the vectors that represent them)?

Cosine Similarity(ℎ𝑖 , 𝑠𝑡−1) =
ℎ𝑖𝑠𝑡−1

ℎ𝑖 ∗| 𝑠𝑡−1 |

Attention Alignment Score

• Need to determine how well output word 𝑦𝑡 aligns with each input
word 𝑥𝑖

• How can we determine the similarity between two words (or at
least the vectors that represent them)?

Cosine Similarity(ℎ𝑖 , 𝑠𝑡−1) =
ℎ𝑖𝑠𝑡−1

ℎ𝑖 ∗| 𝑠𝑡−1 |

Dot product similarity(ℎ𝑖 , 𝑠𝑡−1) = ℎ𝑖𝑠𝑡−1

Attention Alignment Score

• Need to determine how well output word 𝑦𝑡 aligns with each input
word 𝑥𝑖

• How can we determine the similarity between two words (or at
least the vectors that represent them)?

Cosine Similarity(ℎ𝑖 , 𝑠𝑡−1) =
ℎ𝑖𝑠𝑡−1

ℎ𝑖 ∗| 𝑠𝑡−1 |

Dot product similarity(ℎ𝑖 , 𝑠𝑡−1) = ℎ𝑖𝑠𝑡−1

Generalized Similarity(ℎ𝑖 , 𝑠𝑡−1) = ℎ𝑖𝑊𝑎𝑠𝑡−1

Learned weight matrix
How much do we care about
each part of embedding?

There are many ways to measure similarity…

Source: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

The Transformer

Components

• Self-Attention
• Cross-Attention
• Position Encoding
• Norm

Key Vectors

Key Vectors

Query Vector

To determine how much

attention a word should

pay to each other other, we

compute a query vector for

the word and compare it to
a key vector for every

other word...

Key Vectors

Query Vector

To determine how much

attention a word should

pay to each other other, we

compute a query vector for

the word and compare it to
a key vector for every

other word...

Which use use to compute
the alignment scores 𝑎𝑡,𝑖

To determine how much

attention a word should

pay to each other other, we

compute a query vector for

the word and compare it to
a key vector for every

other word...

Which use use to compute
the alignment scores 𝑎𝑡,𝑖

0.5

0.5

0.5

0.25

0.25

0.5

To determine how much

attention a word should

pay to each other other, we

compute a query vector for

the word and compare it to
a key vector for every

other word...

Which use use to compute
the alignment scores 𝑎𝑡,𝑖

0.5

0.5

0.5

0.25

0.25

0.5

Values

To determine how much

attention a word should pay to

each other other, we

compute a query vector for the

word and compare it to a key
vector for every other word...

Which use use to compute the
alignment scores 𝑎𝑡,𝑖

To produce the output vector,
we sum up the value vectors

for each word, weighted by the

score we computed in step 1

0.5

0.5

0.5

0.25

0.25

0.5

Values

𝑧𝑡

Scaled Dot Product Attention

Generate Q, K, V, by
multiplying word
embedding X by weight
matrix (i.e., pass through
a fully connected layer)

Attention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾

𝑑𝑘

𝑉

Multi-Headed Attention
Similar to convolutional layers with multiple filters,
we can have “multi-headed attention”

MultiHead 𝑄, 𝐾, 𝑉 = Concat head1, … , headh 𝑊0

Where: ℎ𝑒𝑎𝑑𝑖 = Attention(QWi
q

, KWi
k, VWi

v)

Separate learned fully-
connected layer for each head i
and for each of (Q, K, V)

Projected Attention:
Project (Q, K, V) with
learned parameters
𝑊𝑞, 𝑊𝑘, 𝑊𝑣

Cross Attention

• Self-Attention is how much each input “attends” to every other
input

• Cross-Attention is how much every output “attends” to every input
(i.e., our original motivation for attention)

Transformer

Self Attention

Cross-Attention
What’s left?
1. Position Encoding
2. Norm

Position Encoding

• Part of the original motivation behind using RNNs for sequence
data was to incorporate the structure of the problem (i.e., that
order matters in the sequence)

• Attention (so far) does not care about the order that inputs arrive,
all the operations are symmetric

• How can we get our networks to realize that there is an ordering to
our inputs without using RNNs?

What’s the difference between:
1. The cow jumped over the moon
2. Over the jumped cow moon the
Word order matters!

Positional Encoding

Option 1:
 Make this a learnable parameter.
 Learn an embedding for every position a word can be in (i.e.,
1, 2, 3,… max_length)
Option 2:
 Do what “Attention is All you Need” did

 𝑃𝐸 pos, 2𝑖 = sin(pos/10000
2𝑖

𝑑)

 𝑃𝐸 pos, 2𝑖 + 1 = cos(pos/10000
2𝑖

𝑑)

Want: a unique encoding
(vector) for every value of
position

Positional Encoding

Option 1:
 Make this a learnable parameter.
 Learn an embedding for every position a word can be in (i.e.,
1, 2, 3,… max_length)
Option 2:
 Do what “Attention is All you Need” did

 𝑃𝐸 pos, 2𝑖 = sin(pos/10000
2𝑖

𝑑)

 𝑃𝐸 pos, 2𝑖 + 1 = cos(pos/10000
2𝑖

𝑑)

1. Fix a size for the output of your
Position embedding d (has to match
size of embeddings/projections)

Positional Encoding

Option 1:
 Make this a learnable parameter.
 Learn an embedding for every position a word can be in (i.e.,
1, 2, 3,… max_length)
Option 2:
 Do what “Attention is All you Need” did

 𝑃𝐸 pos, 2𝑖 = sin(pos/10000
2𝑖

𝑑)

 𝑃𝐸 pos, 2𝑖 + 1 = cos(pos/10000
2𝑖

𝑑)

1. Fix a size for the output of your
Position embedding d (has to match
size of embeddings/projections)

2. At each index of the encoding,
evaluate the proper formula (i.e., even
positions use sin, odd positions use
cos)

Positional Encoding

“We chose this function because we hypothesized it would allow the
model to easily learn to attend by relative positions, since for any fixed
offset k, PE(pos+k) can be represented as a linear function of PE(pos).”

-- Vaswani et al. 2017, Attention is All You Need

𝑃𝐸 𝑝𝑜𝑠 + 𝑘 = 𝐴 ⋅ 𝑃𝐸(𝑝𝑜𝑠)

Any Linear function
can be represented as
a matrix multiplication

Positional Encoding

For every pair of adjacent values in the position encoding

𝐴 ⋅
sin 𝑐 ⋅ 𝑝𝑜𝑠

cos 𝑐 ⋅ 𝑝𝑜𝑠
=

sin 𝑐 ⋅ (𝑝𝑜𝑠 + 𝑘)

cos 𝑐 ⋅ (𝑝𝑜𝑠 + 𝑘)

𝐴 = cos c⋅𝑘 , sin 𝑐⋅𝑘
−sin c⋅𝑘 , cos 𝑐⋅𝑘

Normalization

BatchNorm: Normalize outputs of neurons based on mean and
standard deviation of the values for a batch of inputs
Issues:
1. RNNs don’t batch well (LayerNorm came before Transformers)
2. When batches are small, mean and standard deviation can vary

highly

LayerNorm: Instead of normalizing based on the batch dimension,
normalize the outputs of a layer based on the mean and standard
deviation of the outputs of that layer.

LayerNorm

𝑦 =
𝑥 − 𝐸 𝑥

𝑠𝑡𝑑 𝑥
∗ 𝛾 + 𝛽

Outputs before normalization
(i.e., inputs to LayerNorm layer)

Normalization

Two learnable
parameters,
because… why not,
it’s deep learning…

Transformer

All intermediate outputs have same
dimension, only one hyperparameter for
dimension (many more for number of heads,
number of encoder/decoders Nx)

Transformer

Transformers are… complicated
They have many unique components, unlike networks we’ve covered so far
• CNNs can be large, but they only really have 2 components:

Convolutions and linear layers
• The internals of an RNN can be complicated, but it’s 3 or 4 operations

Why do they work so well?

Transformer Strengths

1. Attention is faster than RNNs (𝑛 ≪ 𝑑)
2. Don’t require sequential operations, like RNNs
3. Have a lower path length (how many operations does it take for information about words n

distance apart to spread to each other)

Transformer Strengths

LLaMA: Open and Efficient Foundation Language Models

Deep Networks do better. More parameters are better.
Transformers have many learnable parameters.

Transformer Weaknesses

• Transformers are not good at small scale tasks, they have many
parameters and tend to overfit easily.

• There are really not that many hyperparameters in transformers,
just the number of attention heads, number of layers, and
embedding size.
• Hard to get them to not overfit

Why is this weakness not actually a problem?

	Slide 1
	Slide 2: RNN Recap
	Slide 3: Machine Translation
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Issues with RNNs for Seq2Seq
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Attention Alignment Score
	Slide 44: Attention Alignment Score
	Slide 45: Attention Alignment Score
	Slide 46: Attention Alignment Score
	Slide 47: There are many ways to measure similarity…
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65: The Transformer
	Slide 66: Components
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77: Scaled Dot Product Attention
	Slide 78: Multi-Headed Attention
	Slide 79: Cross Attention
	Slide 80: Transformer
	Slide 81: Position Encoding
	Slide 82: Positional Encoding
	Slide 83: Positional Encoding
	Slide 84: Positional Encoding
	Slide 85: Positional Encoding
	Slide 86: Positional Encoding
	Slide 87: Normalization
	Slide 88: LayerNorm
	Slide 89: Transformer
	Slide 90: Transformer
	Slide 91: Transformer Strengths
	Slide 92: Transformer Strengths
	Slide 93: Transformer Weaknesses

