» Deep Learn:
:':r' Day 11: RNNs #

CSCl 1470
Eric Ewing «

.
o~

Thursday,
10/9/25



Size of Feed Forward N-gram Model

Embedding lookup + Concatenation still requires only one
embedding matrix of size: (vocab sz, embedding sz)

inputs
“The” “at”
“dog” “the”
“barked” “cars”
“The” “all” "
“Cat” “the”
“meowed” “furniture”
\ Y J

(N-1) words

Embedding
Lookup +
Concat

(N-1) x embedding sz

\i

Concatenated embeddings of each
sequence of (N-1) words in the batch

batch sz



Lack of Flexibility with N-grams

We would like for our language model to be more aware of context when
deciding on how many words in the past to consider as “relevant”.

But when we look at other portions, common phrases and sequences of
words may make it impossible to have any idea what should come next.

“The dog barked at one of the cats.”

We want our model to recognize these patterns and dynamically adapt
how it makes a prediction based on context.
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Any questions?
2?2
©% no
& -
=

Limitations of the N-gram model

”Q

What problems do we run into using Feed Forward N-gram models?

1. As the size of N increases, the number of weights needed for the
linear layer becomes far too large.

2. Using a fixed N creates problems with the flexibility of our model.

We need a solution that is both computationally cheap and more
dynamic in terms of its memory of previously seen words.
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New Approach

Let’s revisit the bigram model and see several iterations of prediction

using a bigram model:

“dog”

A

Bigram
Model

“Th e ”

“was”

“barking”

A

Bigram
Model

Bigram
Model

”n

“dog

“w as ”
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New Approach

Ideally, we would like to be able to keep “memory” of what

words occurred in the past.

“dog”
A

Any ideas?

“was”

“barking”

Bigram
Model

4

1

Bigram
Model

Bigram
Model

“Th e ”

”

“dog

1 ”

was
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New Approach

What if we sequentially passed information from our previous

bigram block into our next block?

“dog”
A

Bigram
Model

+

“Th e ”

“was,?

Bigram
Model

”

“dog

“barking”

4

Bigram
Model

1 ”

was
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New Approach

If we follow the information flow, we see that when predicting

“barking”, we have some way of knowing that “dog” was
previously observed:

“dog”
A

Bigram
Model

“was”

“Th e ”

Bigram
Model

“barking”

A

”n

“dog

Bigram
Model

——————————

(13 ”n

was
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New Approach

In fact, we even have a way of knowing that “The” was

observed!

“dog”

|

“Th e ”

was

“barking”

“dog

”

was
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New Approach

We can represent this relationship using
only one bigram block and connection that
feeds from the output of the model back
into the input.

We call this connection a recurrent
connection.

We call the previous representation the
“unrolled” representation.

prediction

Bigram
Model

input




Recurrent Neural Network (RNN)

Recurrent Neural Networks are networks in the form of a directed
cyclic graph.

They pass previous state information from previous computations to
the next.

They can be used to process sequence data with relatively low model
complexity when compared to feed forward models.

The block of computation that feeds its own output into its input is
called the RNN cell.

Let’s see how we can build one!



. state for (“the”)
RNN Cell Architecture

RNN at time t

At each step of our RNN, we
will get an input word, and a
state vector from the previous
cell.

Previous State s_

Embedding of word x.

!

“dog
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state for (“the”)

RNN Cell Architecture

RNN at time t

At each step of our RNN, we
will get an input word, and a
state vector from the previous
cell.

We then concatenate the
embedding and state vectors.

Embedding of word x Previous State s_

” 28
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RNN Cell Architecture

RNN at time t
At each step of our RNN, we
will get an input word, and a Current State s,
state vector from the previous *
cell.

FC

We then concatenate the s
embedding and state vectors.
We use a fully connected layer
to compute the next state Embedding of word x, Previous State s_

”

“dog



RNN Cell Architecture

“wasﬂ

T RNN at time t

At each step of our RNN, we
will get an input word, and a
state vector from the previous
cell.

We then concatenate the
embedding and state vectors.

We use a fully connected layer
to compute the next state

Output o,

T

FC_

Current State S,

A

FC,

Embedding of word x

Previous State s_,

We use another connected
layer to get the output.

“dog

”




RNN Cell Architecture

T RNN at time t

We can represent the
RNN in with the
following equations:

St = p((et,st-l)m + b;)

O = cT(SI:I/VO + bo)

Output o,

T

FC_

Current State S,

A

FC,

Embedding of word x

Previous State s_,

T
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RNN Cell Architecture

T RNN at time t

We can represent the
RNN in with the
following equations:

St = p((et,st-l)m + b;)

0y = o(seW, + by,)

Any questions?

N?>

Output o,

T

FC_

Current State S,

A

FC,

Embedding of word x

Previous State s_,

€950
c .3
(3

TN

T
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RNN Cell Architecture

We can represent the
RNN in with the This brings up an immediate question: what is s ?

following equations:
Typically, we initialize sy to be a vector of zeros

St = p((et, St_1)VVr + b,) (i.e. “initially, there is no memory of any previous
words”)

oy = o(seW, + b,)
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Training RNNs

We can calculate the cross entropy loss just as before since for any
sequence of input words (X, X,,..., xt), we know the true next
word X, ,

0'1 of of: \
| RNN J/ RNN | | RNN Loss(o0., X
o Cell Cell **° Cell (00, Xy\)
X X X



Training RNNSs

But what happens when we differentiate the loss and backpropagate?

N

O

o)
S -0SS (0¢s Xeyn)
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Training RNNs

Not only do our gradients for o_depend on X, but also on all of the
previous inputs.
We call this backpropagation through time.

0[1 of (1: \
| RNN | RNN | RNN % loss(o.. X
Se Cell Cell ¢ o+ 4 Cell SW ( t) t+1)
X X )(t
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Tra i n i n g R N N S But at what point do we stop and calculate the loss/update?

With this architecture, we can run the RNN cell for as many steps as we
want, constantly accumulating memory in the state vector.

oll OIZ 0.0, 000
< __| RNN | RNN RNN
e Cell Cell Cell >

X X X

1 2 10,000
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Training RNNs

Solution: We define a new hyperparameter called window sz.
We now chop our corpus into sequences of words of size window_sz

The new shape of our data should be:
(batch sz, window sz, embedding sz)

Each example in our batch is a “window” of window sz many words.
Since each word is represented as an embedding sz, thatis the last
dimension of the data.



Training RNNs

Now that every example is a window or words, we can run the RNN till

the end of that window, and compute the loss for that specific window
and update our weights

o]1 of owindow_s z-1
< RNN | RNN L RNN
0 Cell Cell Cell

X X

1 2 window_sz-1



Any questions?

Does RNN fix the limitations of the N-gram 2?2

model?
1.  Number of of weights not dependent on N prediction
2. State gives flexibility to choose context |
from near or far
“The dog was barking at one of the cats.” SN |
“dog” “was” “barking”
RNN RNN RNN
cell | 7 cell | 7 cell
3 input

“The”

“dog”

“was”
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RNNs in Tensorflow

RNNs can be built from scratch using Python for loops:

prev_state = Zero vector

for 1 from @ to window sz:
state_and _input = concat(inputs[i], prev_state)
current_state = fc _state(state and input)
outputs[i] = fc_output(current_state)
prev_state = current_state

return outputs



RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)



RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

N\

The size of our output vectors



RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

b

The activation function to be used in the FC
layers inside of the RNN Cell



RNNs in Tensorflow

Any intuition why we would want
return_sequences to be TRUE?

RNNSs can be built from scratch using Python for loops.

There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

RNN
Cell

RNN
Cell

I

owindow_sz—l

|

RNN
Cell

Jnindow_sz-l

p,

If True: calling the RNN on an input sequence
returns the whole sequence of outputs + final
state output

If False: calling the RNN on an input sequence
returns just the final state output (Default)
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RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

Usage:
RNN = SimpleRNN(10) # RNN with 10-dimensional output vectors
Final output = RNN(inputs) # inputs: a [batch sz, seq length, embedding sz]| tensor
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RNN

“The dog that my family had when | was a child had a fluffy

Want: “tail”




RNN Weaknesses

But....RNNs are not very good at
remembering things far in the
past.

e
-

Issue #1: Vanishing Gradients
Issue #2: What should we remember?




RNN Weaknesses

“The dog that my family had when | was a child had a fluffy

« To predict “tail” RNN needs to remember the subject of the sentence
_ Hdogﬂ



RNN Weaknesses

“The dog that my family had when | was a child had a fluffy

« To predict “tail” RNN needs to remember the subject of the sentence
_ l(dogﬂ

- “dog” and predicted word are separated by 12 words
« On the outer limit of what a vanilla RNN would be able to remember.



An lllustrative Example:

dog that long ?

The dog a fFluFfy



An lllustrative Example:

long ?

a FluFfy

What happens to the information about
“dog” as we continue through the network?



An lllustrative Example:

RNN
Cell

dog



An lllustrative Example:

Can imagine that the information about is stored in some part of
the RNN’s hidden state vector

dog




An lllustrative Example:

Through all subsequent RNN steps, we want

dog

—_— . — —

RNN steps

dog

to stay the same



An lllustrative Example:

If we think of as just a few entries in the vector...

0.3 0.3

— ——> ——> —»
0.2 0.2

RNN steps



An lllustrative Example:

...to preserve , we need to compute the identity function over
the part of the vector that stores it il e i
| No
Why?
fx) = x | !

0.3 0.3

0.2

RNN steps



How does this affect the hidden state?

RNN update

he = p((e¢, he—1)W; + by)

The hidden state goes
through a fully connected
layer!




How does this affect the hidden state?

« What will happen to our dog after we multiply our weights by our
hidden state?

Weights Hidden State

x dog




How does this affect the hidden state?

« What will happen to our dog after we multiply our weights by our

hidden state?

Weights

Hidden State

X

dog

New Hidden State

.. + Wi-—l,j : hi-“l + Wi,j -dog + Wi+1,j E hi+1 + ...




How does this affect the hidden state?

Dog gets lost in all the other information!

Weights

Hidden State

X

dog

New Hidden State

.+ Wi-l,j - hi-l <+ wi,j -dog -+ Wi-l-l,j . hi+1 + ...




How does this affect the hidden state?

Dog gets lost in all the other information!

Weights

Hidden State

X

dog

New Hidden State

S Wi_1,j° hi-l o Wi j -dog o Wit1,j° hi+1 =




How does this affect the hidden state?

- “dog” in hidden state gets combined and mixed with rest of hidden
state

RNN forgets
about the dog
after a certain
L 0.7 time =

—_— . — —

0.2 0.5

RNN steps



RNNs cannot learn “long term” dependency £

dog that
RNN RNN
o Cell h Cell hy
The dog

RNN
Cell

long

ht—l

Any questions?

7?2

2

?

L

RNN
Cell

We need new way to update hidden state!

How?

FluFfy



An analogy to human (or computer) memory:

* RNN hidden state — “short term memory/RAM”
» Like how you lose contents of RAM if you shut down a computer...
e ...or how human short-term memory fades after time

dog that long ?

RNN | RNN ... | rNN . RNN
Cell Cell Cell t-1 Cell

The dog a Fluffy



An analogy to human (or computer) memory:

* RNN hidden state — “short term memory/RAM”
« Like how you lose contents of RAM if you shut down a computer...
s ...or how human short-term memory fades after time

- What we want — “long term memory/disk”
« Some state representing knowledge that persists
« Like how contents of disk persist across shut-downs...
» ...or how sleep consolidates human memory into long-term memory

* Long Short Term Memory (LSTM)
 “Short-term memory that persists over time”
- i.e. “hidden states that remember information for longer”



Vanilla RNN LSTM




LSTM

Cell State (long short-term memory)

™

/

Hidden State (short —term memory)

Xt

word embedding



How an LSTM works

« An LSTM consists of 3 major modules:
 Forget module
« Remember module
« Output module



The Complete LSTM

A
Remember module

@ ta
A
wbollwbo| wbh flwbo j
1




Forget Module

V4
&

Say we just predicted “tail” in “My dog has a fluffy

Next set of words: “/ love my dog”




Forget Module

« Model no longer needs to know about “dog”
« Ready to delete information about subject




whad = fully connected layer with

® iigm_oid _
Forget Module tiplicatior




Simon loves to sing”

Forget Module

* Filters out what gets allowed into the LSTM cell from the last state

« Example: If it’s remembering gender pronouns, and a new subject is seen, it
will forget the old gender pronouns

 Either lets parts of C_, pass through or not

32



I love my dog

Forgetting information

« Use pointwise multiplication by a mask vector to forget information
« What do we want to forget from last cell state?

t-1

o” ” 0.3
dog m 0.2

33



I love my dog

Forgetting information

« Use pointwise multiplication by a mask vector to forget information
« What do we want to forget from last cell state?
« Output of fully connected + sigmoid is what we want to forget

C., a(W[x, h,_,]+ b)

o ” 0.3 0.0
dog W 0.2 ® ‘ 0.0
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I love my dog

Forgetting information

« Use pointwise multiplication by a mask vector to forget information
« What do we want to forget from last cell state?
« Output of fully connected + sigmoid is what we want to forget
« “Zeros out” a part of the cell state
 Pointwise multiplication by a learned mask vector is known as gating

C., o(W(x; hy_,]+ b) Unforgotten C_,

ee
oo

o ” 0.3 0.0 _
dog m 0.2 ® | 0.0 —
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whad = fully connected layer with

® iigm_oid _
Forget Module tiplicatior




= fully connected layer with

= pointwise

What’s next? ® sigmoid

multiplication

A




m = fully connected layer with sigmoid

w b h = fully connected layer with tanh

Re m e m be I M Od u I e ® = pointwise multiplication

» We can save information that we want to ®= ©ointwise addition
remember by adding it into “empty” slots
in the cell state

38



= fully connected layer with sigmoid
w b h = fully connected layer with tanh

Re m e m be r M Od u I e ® = pointwise multiplication
. . . @ = pointwise addition
« First: use gating to decide what to
remember

R

39



I love my dog

Gating for ‘selective memory’

« A fully-connected + tanh on [input, memory] computes some new
memory

tanh(Wy[x; he_q] + by)
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Gating for ‘selective memory’

I love my dog

« A fully-connected + tanh on [input, memory] computes some new

memory

« We gate this memory to decide what bits of it we want to remember
long-term in the cell state

tanh(Wy[x; hi—1] + by)

X

o(Wa[x: he—q] + by)

1.0
1.0




I love my dog

Gating for ‘selective memory’

* A fully-connected + tanh on [input, memory] computes some new
memory

« We gate this memory to decide what bits of it we want to remember
long-term in the cell state

tanh(Wy[x; he_q1] + by) o(Wa[x; hi—q1]+ b3) Selected Memory

ee
w o

“uyn 0.9 1.0 —
’ 0.3 1.0 -
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m = fully connected layer with sigmoid
w b h = fully connected layer with tanh

Re mem be I M Od U I e ® = pointwise multiplication

. . . = pointwise addition
« Then: we add this selective memory into @

the cell state




I love my dog

Remembering information

- Add what we didn’t forget to what we did remember

Unforgotten C__ Selected Memory C

oo

0.0
[ oo + |

W O
Il

(==
W o
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Why does this solve our problem?

« Cell state never goes through a fully connected layer!

« Never has to mix up its own information E
E
A
K
lWhbo w b h /
t—1 ( I » h,
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@ = fully connected layer with sigmoic

O Ut p ut M Od u I e w b h = fully connected layer with tanh

® = pointwise multiplication
@ = pointwise addition

47



= fully connected layer with sigmoic

O Ut p Ut M Od u I e w b h = fully connected layer with tanh

® = pointwise multiplication

« Same structure as the remember module @ = pointwise addition
* Provides path for short-term memory h, to temporarily A

acquire info from the longer-term cell state.
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Any questions?

??>

The Complete LSTM

il = (7(”',}?, e ("l.r’ + bl)
Jt = (T(H’jh,_l : 3 ('f_r, + l)f) w ®_® |
O = (T(”'“h[ | -+ lr‘,.l'f + 1),,) tanh

)

¢ = tanh(Whiy_y + Uz + b

Ct = ff OCt-1 + i( O (¢

hy = 040 tanh(c;) whbol[wba] whh [wha j
Yy = hy 1 (




Overview of RNN Seqguence Prediction

The dog barked at

The —

Embedding Matrix

Initial Hidden State

|

dog —

Embedding Matrix

" Embedding for “The”

RNN

Predicted word

Output

\ 4

Embedding for “dog”

RNN

\ 4

(onehot
vector)

Predicted word

Output

* (onehot
vector)




When to compute loss

We have predictions and ground truths at every step, why not
compute the loss after every word and backprop?

Should your model be penalized equally for incorrect predictions?
1) The ___

2) The dog barked at ____

Well... What task are you
actually training it for?




Recap of LSTMs

Two “Outputs”: Cell and Hidden states

* Hidden state h; is used for output (and short
term memory)

* Cell State used for long term memory

Forget Module:
* Multiply cell state by numbers between 0 and
1 (0 forgets information, 1 keeps it)

Remember Module:
e Adds information from shortterm
memory/input to long term memory

Output Module:

 Combines input (x;), shortterm memory (h;),
and long term memory (c;).

* Produces output

* Qutputis passed along as short term memory

Remember module

&

A

q

wbo

—D

wbao




GRU

e Gated Recurrent Unit
* In practice, similar performance and may train faster

 Removes cell state, computationally more efficient and less complex

- In theory, weaker than LSTMs since it cannot unboundedly countl

Ly

- Counting: track increment or decrement of variable
hi—1

- e.g. Validate brackets in code

[...(...{..}... )]

Requires counting brackets & nesting levels




GRU vs LSTM

Forget module

-

Iwb al bo |




GRU vs LSTM

Remember module
v =

tanh




GRU vs LSTM

"No direct analogue in LSTM

/ “Select the part of the memory that is

relevant for the current prediction step”

tanh
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