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Final Project Logistics

DL Day (Poster Session) will take place on Thursday, Dec 11th

If you’re capstoning, you don’t need to fill out a form (for me)

Groups of 3-4 students, assigned to a mentor



Project Options

Core to all: You need to train a neural network (i.e., using an LLMfor 
something new does not count if no training occurs)
1. Re-implement a paper, extend to different dataset, run new 

experiments, etc.
2. Try something new (i.e., ask a research question)
3. AI enabled: Use LLM coding tools to create a DL project. (higher 

expectations in terms of production and scope of project)
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Core to all: You need to train a neural network (i.e., using an LLMfor 
something new does not count if no training occurs)
1. Re-implement a paper, extend to different dataset, run new 

experiments, etc.
2. Try something new (i.e., ask a research question)
3. AI enabled: Use LLM coding tools to create a DL project. (higher 

expectations in terms of production and scope of project)

Written details will come soon! 
Step 1: what interests you?



Recap

Convolutions provide spatial 
reasoning capabilities by 
breaking symmetries between 
inputs (not all pixels are 
connected to all hidden units). 

This means that the spatial 
layout of the original image 
matters for convolutional neural 
networks



Recap

Convolutions provide spatial 
reasoning capabilities by 
breaking symmetries between 
inputs (not all pixels are 
connected to all hidden units). 

This means that the spatial 
layout of the original image 
matters for convolutional neural 
networks

For a new data type (images), we 
introduced a new network architecture 
(convolutions) to fix an issue with MLPs.
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Discriminative vs Generative Models

Discriminitive models learn conditional probabilities 𝑃 𝑌 𝑋 = 𝑥

 Given some features, what is the probability of a label?

Generative models learn joint probabilities 𝑃(𝑋, 𝑌)
 models how a signal was generated































































































Demo here: https://turbomaze.github.io/word2vecjson/











Say in the middle of training, the model sees:
 𝑷(“𝒉𝒂𝒑𝒑𝒊𝒍𝒚”|”They Danced”) = High 
 𝑷(“𝒈𝒍𝒆𝒆𝒇𝒖𝒍𝒍𝒚”|”They Danced”) = Low 

Then the model sees a lot of “danced gleefully”





Limitations of the N-gram model

What issues do we run into using feed-forward N-gram models?
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Limitations of the N-gram model

• What issues do we run into using feed-forward N-gram models?
• As the size of N increases, the number of weights needed for the linear layer 

becomes far too large. 

• Using a fixed N creates problems with the flexibility of our model. 
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