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Final Project Logistics

DL Day (Poster Session) will take place on Thursday, Dec 11"
If you’re capstoning, you don’t need to fill out a form (for me)

Groups of 3-4 students, assigned to a mentor



Project Options

Core to all: You need to train a neural network (i.e., using an LLMfor
something new does not count if no training occurs)

1. Re-implement a paper, extend to different dataset, run new
experiments, etc.

2. Try something new (i.e., ask a research question)

3. Alenabled: Use LLM coding tools to create a DL project. (higher
expectations in terms of production and scope of project)



Project Options

Core to all: You need to train a neural network (i.e., using an LLMfor
something new does not count if no training occurs)

1. Re-implement a paper, extend to different dataset, run new
experiments, etc.

2. Try something new (i.e., ask a research question)

3. Alenabled: Use LLM coding tools to create a DL project. (higher
expectations in terms of production and scope of project)

Written details will come soon!
Step 1: what interests you?



Recap

Convolutions provide spatial
reasoning capabilities by
breaking symmetries between
inputs (not all pixels are
connected to all hidden units).

This means that the spatial
layout of the original image
matters for convolutional neural
networks

More Complicated Networks

ResNet:

Lots of layers, tons of learnable parameters
Avoids Vanishing Gradient problem

X
A4
weight layer
. F(x relu
Residual Block ——————» =) . h"l x
. identity

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

arXiv preprint arXiv:1512.03385, 2015.




Recap

Convoluti de spati More Complicated Networks
onvolutions provide spatial £

reasoning capabilities by ResNet:
breaking symmetries between

inputs (not all pixels are Lots of layers, tons of learnable parameters

connected to all hidden units). Avoids Vanishing Gradient problem
This means that the spatial x
layout of the original image i
i |
matters for convolutional neural Residual Block F(x) il x
networks weight layer identity

Fora new data type (images), we
introduced a new network architecture
(COﬂVOlUtiOﬂS) to fix an issue with MLPs. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

arXiv preprint arXiv:1512.03385, 2015.



New data type

- Audio

-DNA

. Ssequences

- Stock market

- Weather
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New data type: sequences

- Audio - Stock market

- Weather
- DNA
QL i
A\
E T, ,r_'\ ”“};ﬁj’p
»
i 12 73

What is the data property here
that we could leverage?

~



Natural Language

“language that has developed naturally in use”



Natural Language

“language that has developed naturally in use”

Compare to constructed or formal language
-code: for 1 in range(50):
-math: 52 + 94 = 147

-logic:A ~ B -> C (if Aand B, then C)



Natural Language

In this class: sequence of words

“They went to the grocery store and bought bread,
peanut butter, and jam.”



Natural Language: Prediction tasks?

Input: X Output: Y

| do not want sour No quiero crema

cream in my ‘ Function: f - agrea en mi

burrito burrito




Natural Language: Prediction tasks?

I Example of prediction?

Input: X Output: Y

| do not want sour No quiero crema

cream in my ‘ Function: f - agrea en mi

burrito burrito




Natural Language: Prediction tasks?

| Example of classification?

Input: X Output: Y
“Good review?”
“The story telling was
erratic and, at times, 0
slow”

ma)p Function:f mmp

“Loved the diverse cast of
this movie”



Natural Language: Prediction tasks?

Example of prediction?

“They went to the grocery store and bought... bread?
milk?

rock?

Generating artificial sentences: Here each word is a discrete unit;
predicting the next part of the sequence means predicting words



Language models

Definition: Probability distribution over strings in a language.
Exponentially-many strings means each string has very low probability

Relative probabilities are meaningful:

P(“they went to the store”) >> P(“butter dancing rock”)

10



Language models logic: leverage sentence
structure

P(any sequence) is determined by P(the words in the sequence).



Language models logic: leverage sentence
structure

P(any sequence) is determined by P(the words in the sequence).

Said differently, we can represent a sequence as wq, wy, ...w,, and

P(wq, wy, ..wy) = P(wy) * P(Wy|wy) * P(W3|wg, wp) * -+ P(Wp|wy ... Wp_q)



Language models logic: leverage sentence
structure

P(any sequence) is determined by P(the words in the sequence).

Said differently, we can represent a sequence as wq, W, ...w,,, and

P(wq, wy, ..wy) = P(wy) * P(Wy|wy) * P(W3|wg, wp) * -+ P(Wp|wy ... Wp_q)
P(“they went to the store”) = P(“they”)*P(“went”|“they”)*P(“to”|*“they went *)* ..

“The probability of a sentence is the product of the probabilities of each word given the previous words”
This is an application of the chain rule for probabilities

11



Language models: weird & cool!

Model trained on the King James Bible, Structure and Interpretation of
Computer Programs, and some of Eric S. Raymond's writings:

*The righteous shall inherit the land, and leave it for an
inheritance unto the children of Gad according to the number
of steps that is linear in b.

*And this I pray, that your love may abound yet more and
more like a controlled use of shared memory.

(King James Programming)
https://kingjamesprogramming.tumblr.com/




Discriminative vs Generative Models



Discriminative vs Generative Models

Discriminitive models learn conditional probabilities P(Y|X = x)



Discriminative vs Generative Models

Discriminitive models learn conditional probabilities P(Y|X = x)
Given some features, what is the probability of a label?



Discriminative vs Generative Models
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Given some features, what is the probability of a label?

Generative models learn joint probabilities P(X,Y)



Discriminative vs Generative Models

Discriminitive models learn conditional probabilities P(Y|X = x)
Given some features, what is the probability of a label?

Generative models learn joint probabilities P(X,Y)
models how a signhal was generated



Language models: the math

At each step, we look at a probability distribution for what the next
word might be.

They went to the grocery store and bought ..

P(next_word | They went to the grocery store and bought )

04

0.35
03

0.25
0.2

0.15
0.1

0.05
0

bat cake swim

rock pDie slow



But first, how do we represent

Language models: the math sentence?

At each step, we look at a probability distribution for what the next
word might be.

They went to the grocery store and bought ..

P(next_word | They went to the grocery store and bought )

04
0.35

03
0.25
0.2
0.15
0.1
0.05 .
0
bat cake swim rock pie slow

13



Natural language: tokenization

“They went to the grocery store and bought bread,
peanut butter, and jam.

[ﬂ'theyJ.’, ﬂ'went.”, ﬂ'toJ.’, ﬂ'thel.’,
“grocery”, “store”, “and”,
“bought”, “bread”, “peanut”,
ﬂ'butter‘.’.’, ﬂ'and.”, ﬂ'jam.”]

14



Natural language: tokenization

“They went to the grocery store and bought bread,
peanut butter, and jam.”

- Consistent casing

- Strip punctuation

- One word is one token
- Split on spaces

[ﬂ'they.’), ﬂ'went.”, “to.’), “the)),
“grocery”, “store”, “and”,
“bought”, “bread”, “peanut”,

ﬂ'butter\.’.’, “and.’.’, f(j’am.’.’]

15



Aside: Tokenization itself can be challenging...

* A lot easier in English than other languages (e.g. Chinese)
* Chinese is character-based; words & phrases have different character lengths
* No spaces



Language models: the math

At each step, we look at a probability distribution for what the next
word might be.

They went to the grocery store and bought ..

P(next word | They went to the grocery store and bought )

04

0.35
03

0.25
0.2

0.15
01

0.05
0

bat cake swim

rock oi= slow



How do we know which

Language models: the math orababiltes for?

At each step, we look at a probability distribution for what the next
word might be.

They went to the grocery store and bought ..

04
0.35
03
0.25
0.2
0.15
01
0.05

P(next word | They went to the grocery store and bought )

bat cake

swim rock oi= slow

17




Vocabularies: Defining a finite set of words

Vocabularies: the set of all words “known” to the model

Why?

- We need a finite set of words in order to define a discrete distribution over it.



Vocabularies: Defining a finite set of words

Vocabularies: the set of all words “known” to the model

Why?
- We need a finite set of words in order to define a discrete distribution over it.
How?

- Choose a hyperparameter for how many words the model should
know

- Keep only the with most frequent words — replace everything else
with “UNK”



Vocabularies: how

- Original sentence:

- “They galloped to the Ratty for dinner, and ate exactly

seventy-three waffle fries and chocolate peamilk.”

19



Vocabularies: how

- Original sentence:

- “They galloped to the Ratty for dinner, and ate exactly
seventy-three waffle fries and chocolate peamilk.”
- Tokenized:

- [ﬂ'they.ﬂ, ﬂ'galloped.ﬂ, ﬂ'toJJ, ﬂ'theJJ, “Patty,,, C(_FOPJJ,
“dinner”, “and”, “ate”, “exactly”, “seventy-three”,
“waffle”, “fries”, “and”, “chocolate”, “peamilk™]

20



Vocabularies: how

- Original sentence:

- “They galloped to the Ratty for dinner, and ate exactly
seventy-three waffle fries and chocolate peamilk.”
- Tokenized:

- [Cfthey.”, ﬂ'galloped.”, ‘fto.”, ‘fthe.”, ﬂ’r.atty).!, C‘_For‘.”,
“dinner”, “and”, “ate”, “exactly”, “seventy-three”,
“waffle”, “fries”, “and”, “chocolate”, “peamilk™]
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Vocabularies: how

- Original sentence:

- “They galloped to the Ratty for dinner, and ate exactly

seventy-three waffle fries and chocolate peamilk.”

- Tokenized:

- [ﬂ'they.”, ﬂ'galloped.’,, ‘fto.”, ‘fthe.”, ﬂ’r.atty.”, C‘_For‘.”,
“dinner”, “and”, “ate”, “exactly”, “seventy-three”,
“waffle”, “fries”, “and”, “chocolate”, “peamilk™]

- UNKed:
- [ﬂ'they,.l, “UNK,,_’ “’toJl, “'theJl, “UNK,,_’ ﬂ'_For‘J.’, “‘dinner.J.’,
“and”, “ate”, “exactly”, “UNK”, “waffle”, “fries”,
“and”, “chocolate”, “UNK”]

22



Language models: the math

At each step, we look at a probability distribution for what the next
word might be.

They went to the grocery store and bought ..

P(next_word | They went to the grocery store and bought )

04

0.35
03

0.25
0.2

0.15
01

0.05
0

bat cake swim

rock Die slow



How to calculate the

Language mOdeIS: the math ngggzigx:orwordsinour

At each step, we look at a probability distribution for what the next
word might be.

They went to the grocery store and bought ..

P(next_word | They went to the grocery store and bought )

04

0.35
03

0.25
0.2

0.15
01

0.05
0

bat cake

swim rock Die slow

23



LM implementation: counting

°* Goal: predict next word given a preceding sequence

Count(wordq,words,,..wordy—1,wordy)

P(word,,| word,,word,, ...word =
( nl b 2’ n-1) Count(word,,words,..word,_1)

24



LM implementation: counting

" Goal: predict next word given a preceding sequence

Count(word, word,,.word,_,,word,)

- P(word,,| word,,word,, ..word,,_,) =
( nl 1 2 n—1) Count(word,,word,,..word,_1)

- Example task: predict the next word
-he danced

25



LM implementation: counting

- Goal: predict next word given a preceding sequence

Count(word,,word,,..word,,_,,word,,)

- P(word,,| word.,word,, ...word,,_{) =
( nl L 2 n-1) Count(word,,word,,..word,_)

- Example task: predict the next word
-he danced

- Strategy: iterate through all words in vocabulary, and calculate

Count(he danced <word>)
for each word
Count(he danced)

26



LM implementation: counting

- Our training sentences were:

- “She danced happily”

- “They sang beautifully”

- “He danced energetically”
- “He sang happily”

- “She danced gracefully”

-“He danced _ _ _”

-“He danced happily”

Count(he danced < word >)

Count(he danced)

27
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- Our training sentences were:

- “She danced happily”

- “They sang beautifully”

- “He danced energetically”
- “He sang happily”

- “She danced gracefully”

-“He danced _ _ _”

Count(he danced < word >)

-“He danced happily” [Thasoprobability

Count(he danced)

27



LM implementation: counting

- Our training sentences were:

- “She danced happily”

- “They sang beautifully”

- “He danced energetically”
- “He sang happily”

- “She danced gracefully”

-“He danced _ _ _”

Count(he danced < word >)

-“He danced happily” [Thasoprobability

Count(he danced)

Why doesn’t this work?

27



LM implementation: counting

- Our training sentences were:

- “She danced happily”

- “They sang beautifully”

- “He danced energetically”
- “He sang happily”

- “She danced gracefully”

-“He danced _ _ _”

Count(he danced < word >)

Count(he danced)

Why doesn’t this work?

This strategy depends on having instances
of sentence prefixes.

-“He danced happily” [Thasoprobability

27




LM implementation: N-gram counting

Improvement: model — only look at N words at a time



LM implementation: N-gram counting

Improvement: N-gram model — only look at N words at a time
(in this case, bigrams look at 2 words at a time)

-“She danced happily”
-“They sang beautifully”
-“He danced energetically”
-“He sang happily”

-“She danced gracefully”

29



LM implementation: N-gram counting

Improvement: N-gram model — only look at N words at a time
(in this case, bigrams look at 2 words at a time)

-“danced happily”
-“sang beautifully”
-“danced energetically”
-“sang happily”
-“danced gracefully”

“He danced happily” now has 1/3 probability!

But what if the answer was “He danced beautifully”?

30



LM implementation

Problem: it’s impossible for the training set to have every possible valid
sequence of words!

Let’s try to learn a better numerical representation



LM implementation

Problem: it’s impossible for the training set to have every possible valid
sequence of words!

Let’s try to learn a better numerical representation

What is the simplest thing you can think of?

31



LM implementation: Simple approach

-“She danced happily”
-“They sang beautifully”
-“He danced energetically”
-“He sang happily” 4
-“She danced gracefully”

vocab_sz <

they
danced

sang

happily

“They danced happily”

o O O BB O

o O B O O

R O O O O

32



LM implementation: Simple approach

-“She danced happily”
-“They sang beautifully”
-“He danced energetically”
-“He sang happily” 4
-“She danced gracefully”

vocab_sz <

Any potential issues with this?

they

danced

sang

happily

“They danced happily”

o O O BB O

o O B O O

R O O O O

32



LM implementation

Problem: it’s impossible for the training set to have every possible valid
sequence of words!

Can we learn a better numerical representation which associates
related words with one another?



Embedding matrix

they

danced

vocab_sz < sang

happily

= O O O DN
o +H O BB O

\_ gleefully

O R N KB R

R P O O W

R O B N O

O NN W +~»H &

34



Embedding matrix

they

vocab_sz <

happily

= O O O DN
o +H O BB O
O R N B B
R P O O W
R O B N O
O NN W +~»H &

\_ gleefully

35



Embedding matrix

embedding sz

— N
(2 01 3 0 4
0110 2 1
vocabsz¢ g 0 2 0 1 3
01110 2
_ 4 0 01 10

-2d matrix: vocab sz
X embedding sz

36



Embedding matrix

vocab_sz {

embedding sz

-2d matrix: vocab_sz
X embedding sz

- each word corresponds
to an index, or word ID
— hence the vocab_sz
dimension

37



How to build this embedding matrix?

Embedding matrix

embedding sz -2d matrix: vocab_sz

N :
—~ ~ X embedding sz
( -each word corresponds
2 0 1 3 0 4 to an index, or word ID —
hence the vocab_ sz
0 1 1 0 2 1 dimension
vocab_sz < O 0 2 0 1 3 - embedding_sz isa
hyperparameter
O 1 1 1 0 2
. 4 0 0 1 1 O

38



LM implementation: deep learning

Deep learning helps solve this!

We can learn an embedding matrix that associates related words with
one another for solving a prediction task.



Using the Embedding Matrix in a Network

If you want to input a [batch of] words into a neural net, this is how:

they, danced, happily
1

embedding
_ sz
embedding

I
i - s a
L g%(w 4] embedding matrix {:Embedding of each | _ Rest Of
S S word in batch model .

Input: Critical bit: the entries of this matrix can be learned

word The network learns what word embeddings are most effective For performing its task 40



Using the Embedding Matrix in a Network

Let’s look at the 0" word in this batch: its ID in the vocab is 2.

they, danced, happily
1

embedding
B
embedding
|
= index o .
el N RSl M embedding matrix WEmbedding of each — Rest of
S S word in batch model...

41



Using the Embedding Matrix in a Network

So we look at row 2 of the embedding matrix.

they, danced, happily

1 embedding

embedding

(2633140

index

eSS

gEmbedding of each RESt Of
word in batch mOdel---

batch
SZ
vocab
batch

42



Using the Embedding Matrix in a Network

We can then pull out this embedding so we can use it in the rest of the
model!

they, danced, happily

1 embedding

2 2633146
embedding
| . =
bl 1Wndex ?g 26331460 Lr; y\Embedding of each | __ Rest °f
3 S S| word in batch model...

43



Using the Embedding Matrix in a Network

In tensorflow, we can use embedding
sz

tf.nn.embedding lookup

MEmbedding of each — Rest O-F
word in batch mode1_,.

batch

which takes in an embedding
matrix and a list of indices,
and returns the embedding
corresponding to each index.

44



What does the embedding matrix represent?

e Each row in the matrix can be A °

. . Example 2-D
viewed as a vector in vector space vector space:

Vocab size: 3
Embed size: 2



What does the embedding matrix represent?

e Each row in the matrix can be A °
viewed as a vector in vector space Eé‘?é?,'?‘fpi;[é;
* “Embedding”: We’'re embedding a
non-Euclidian entity [a word] into
Euclidian space >
1 3

Vocab size: 3
Embed size: 2



What does the embedding matrix represent?

e Each row in the matrix can be A

. . Example 2-D
viewed as a vector in vector space vector space:

* “Embedding”: We’'re embedding a
non-Euclidian entity [a word] into
Euclidian space

* Each row represents the
“embedding” for a single word 1 3

Vocab size: 3
Embed size: 2



What does the embedding matrix represent?

* Each row in the matrix can be A o

viewed as a vector in vector space 5;‘&"3?2%2;2;
* “Embedding”: We're embedding a

non-Euclidian entity [a word] into

Euclidian space >
* Each row represents the

“embedding” for a single word

_ 2 2 Vocab size: 3 1 3

* This has pretty remarkable Embed size: 2

properties!



Using the Embedding Matrix in a Network

embedding sz

index lookups

_

embedding matrix

seq_len
vocab sz

Input: word
indices

seq_len

embedding_sz

Embedding of each
word in batch

Critical bit: the entries of this matrix can be learned!
The network learns what word embeddings are most effective for performing its task

Rest of
model...



Vector arithmetic in the embedding matrix

Demo here: https://turbomaze.github.io/word2vecjson/

morning

ni

breakfast

dinner

breakfast
o
dinner
>

49



More ‘semantic directions’ in embedding space

-
=
0 T woman
; 'Y
: @)
king ~.
-

b, e
/

Male-Female

E(queen) - E(king) =
E(woman) - E(man)

Semantic: relating to meaning in language



More ‘semantic directions’ in embedding space

man

8] \\‘* woman
@) O swam

“*. walking

‘/\queen_> /O\’

swimming

king

Male-Female Verb tense
E(queen) - E(king) = E(walked) - E(walking) =
E(woman) - E(man) E(swam) - E(swimming)

Semantic: relating to meaning in language



More ‘semantic directions’ in embedding space

Any guestions?

Italy \Madrid
Germany ——m = = — ROmS
_— walked Berlin
L ] ‘ Turkey \
. Sel B — ® Ankara
: *. O S—— Russia ————e 7
king . . Y e OttawaMoscow
A walking ,
“ /O\> . e ———— Tokyo
/ swimming VZiZ:Zm Be}il;ri!:;
Male-Female Verb tense Country-Capital
E(queen) - E(king) = E(walked) - E(walking) = E(Spain) - E(Madrid)
E(woman) - E(man) E(swam) - E(swimming) E(Vietnam) - E(Hanoi)

Semantic: relating to meaning in language

52



Using the Embedding Matrix in a Network

embedding sz

index lookups

_

embedding matrix

seq_len
vocab sz

Input: word
indices

seq_len

embedding_sz

Embedding of each
word in batch

Critical bit: the entries of this matrix can be learned!
The network learns what word embeddings are most effective for performing its task

Rest of
model...



Using the Embedding Matrix in a Network

Say in the middle of training, the model sees: Then the model sees a lot of “danced gleefully”
P(“happily”’|’"They Danced”) = High
P(“gleefully”’|’"They Danced”) = Low

: embedding sz
embedding_sz
o index lookups 2 b3 Rest of
o SRSl embedding matrix - ¢ | Embeddingofeach | _ esto
@ ) .
g > word in batch model...
b
Inp.ut:.word Critical bit: the entries of this matrix can be learned!
indices

The network learns what word embeddings are most effective for performing its task



Quantifying “similarity”

A-B i=1A;iB;
AlllIBIl
MAlB [z, a2 [ze, 5

cosine similarity = cos(6) =

happily

gleefully

/ "9 cos(0°) =1
' cos(90°) = -0.448
> cos(180°) = -0.598

56



Limitations of the N-gram model

What issues do we run into using feed-forward N-gram models?



Size of Feed Forward bigram Model

Let's look at bigram model and count the number of
weights.

inputs

prediction

“Th e ”

“dog”

“dog”

“barked”

“barked”

“loudly”

“Th e ”

113 c at”

113

cat

”

“meowed”

“meowed”

“s Oﬁly ”




Size of Feed Forward bigram Model

To preform embedding lookup on our entire batch, we just need one
embedding matrix of size: (vocab sz, embedding sz)

inputs

“The ”

“dog”

“barked”

“The »

(13 C at”

“meowed”

\i

A 4

Embedding
Lookup

embedding sz

| Embedding of each

word in batch

batch_sz



Size of Feed Forward bigram Model

What size do we need the linear layer to be in order to map:
(batch_sz, embedding_sz) x (???, ???) — (batch_sz, vocab_sz)

2??
embedding_sz vocab_sz

batch sz

batch sz



Size of Feed Forward bigram Model

What size do we need the linear layer to be in order to map:
(batch_sz, embedding sz) x (???, ???) — (batch_sz, vocab_sz)

vocab_sz

embedding_sz vocab_sz

batch_sz
embedding_sz

batch sz



Size of Feed Forward N-gram Model

So what happens in the N-gram case?

inputs
“Th e ”n 13 at”
“dog ” “the”
“barked” “cars”
“The” “all” "
6 C at” “th e ”n
“meowed” “furniture”

\

J

f

(N-1) words

Embedding
Lookup +
Concat

4

prediction

Y

Probability of
each next word
given previous

“th e”

“ca,rsﬂ

& ”

on

“th e”

[ “furnitur

”
[4

“in ”




Size of Feed Forward N-gram Model

Embedding lookup + Concatenation still requires only one
embedding matrix of size: (vocab sz, embedding sz)

inputs
“The” “at”
“dog” “the”
“barked” “cars”
“The” “all” "
“Cat” “the”
“meowed” “furniture”
\ Y J

(N-1) words

Embedding
Lookup +
Concat

(N-1) x embedding sz

\i

Concatenated embeddings of each
sequence of (N-1) words in the batch

batch sz



batch sz

Size of Feed Forward N-gram Model

But what happens to our feed forward layer?

222
(N-1) x embedding sz 2?3

vocab_sz

batch sz



Limitations of the N-gram model

* What issues do we run into using feed-forward N-gram models?

* Asthe size of N increases, the number of weights needed for the linear layer
becomes far too large.



Limitations of the N-gram model

* What issues do we run into using feed-forward N-gram models?

* Asthe size of N increases, the number of weights needed for the linear layer
becomes far too large.

* Using a fixed N creates problems with the flexibility of our model.



Lack of Flexibility with N-grams

We would like for our language model to be more aware of context when
deciding on how many words in the past to consider as “relevant”.

For example, we can see that at some parts of the sentence below, smaller
N-gram models should be sufficient to make predictions:

“The dog barked at one of the cats.”

(“The”’ “dog ” — ubarked”

15



Lack of Flexibility with N-grams

We would like for our language model to be more aware of context when
deciding on how many words in the past to consider as “relevant”.

But when we look at other portions, common phrases and sequences of
words may make it impossible to have any idea what should come next.

“The dog barked at one of the cats.”

( é at”, (14 on e ”’ (14 Of,, “th e” —
227

16



Lack of Flexibility with N-grams

We would like for our language model to be more aware of context when
deciding on how many words in the past to consider as “relevant”.

But when we look at other portions, common phrases and sequences of
words may make it impossible to have any idea what should come next.

“The dog barked at one of the cats.”

We want our model to recognize these patterns and dynamically adapt
how it makes a prediction based on context.

17



Any questions?
2?2
©% no
& -
=

Limitations of the N-gram model

”Q

What problems do we run into using Feed Forward N-gram models?

1. As the size of N increases, the number of weights needed for the
linear layer becomes far too large.

2. Using a fixed N creates problems with the flexibility of our model.

We need a solution that is both computationally cheap and more
dynamic in terms of its memory of previously seen words.

18



New Approach

Let’s revisit the bigram model and see several iterations of prediction

using a bigram model:

“dog”

A

Bigram
Model

“Th e ”

“was”

“barking”

A

Bigram
Model

Bigram
Model

”n

“dog

“w as ”
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New Approach

Ideally, we would like to be able to keep “memory” of what

words occurred in the past.

“dog”
A

Any ideas?

“was”

“barking”

Bigram
Model

4

1

Bigram
Model

Bigram
Model

“Th e ”

”

“dog

1 ”

was

20




New Approach

What if we sequentially passed information from our previous

bigram block into our next block?

“dog”
A

Bigram
Model

+

“Th e ”

“was,?

Bigram
Model

”

“dog

“barking”

4

Bigram
Model

1 ”

was
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New Approach

If we follow the information flow, we see that when predicting

“barking”, we have some way of knowing that “dog” was
previously observed:

“dog”
A

Bigram
Model

“was”

“Th e ”

Bigram
Model

“barking”

A

”n

“dog

Bigram
Model

——————————

(13 ”n

was
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New Approach

In fact, we even have a way of knowing that “The” was

observed!

“dog”

|

“Th e ”

was

“barking”

“dog

”

was
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New Approach

We can represent this relationship using
only one bigram block and connection that
feeds from the output of the model back
into the input.

We call this connection a recurrent
connection.

We call the previous representation the
“unrolled” representation.

prediction

Bigram
Model

input




Recurrent Neural Network (RNN)

Recurrent Neural Networks are networks in the form of a directed
cyclic graph.

They pass previous state information from previous computations to
the next.

They can be used to process sequence data with relatively low model
complexity when compared to feed forward models.

The block of computation that feeds its own output into its input is
called the RNN cell.

Let’s see how we can build one!



. state for (“the”)
RNN Cell Architecture

RNN at time t

At each step of our RNN, we
will get an input word, and a
state vector from the previous
cell.

Previous State s_

Embedding of word x.

!

“dog

» 27



state for (“the”)

RNN Cell Architecture

RNN at time t

At each step of our RNN, we
will get an input word, and a
state vector from the previous
cell.

We then concatenate the
embedding and state vectors.

Embedding of word x Previous State s_

” 28

“dog



RNN Cell Architecture

RNN at time t
At each step of our RNN, we
will get an input word, and a Current State s,
state vector from the previous *
cell.

FC

We then concatenate the s
embedding and state vectors.
We use a fully connected layer
to compute the next state Embedding of word x, Previous State s_

”

“dog



RNN Cell Architecture

“wasﬂ

T RNN at time t

At each step of our RNN, we
will get an input word, and a
state vector from the previous
cell.

We then concatenate the
embedding and state vectors.

We use a fully connected layer
to compute the next state

Output o,

T

FC_

Current State S,

A

FC,

Embedding of word x

Previous State s_,

We use another connected
layer to get the output.

“dog

”




RNN Cell Architecture

T RNN at time t

We can represent the
RNN in with the
following equations:

St = p((et,st-l)m + b;)

O = cT(SI:I/VO + bo)

Output o,

T

FC_

Current State S,

A

FC,

Embedding of word x

Previous State s_,

T
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RNN Cell Architecture

T RNN at time t

We can represent the
RNN in with the
following equations:

St = p((et,st-l)m + b;)

0y = o(seW, + by,)

Any questions?

N?>

Output o,

T

FC_

Current State S,

A

FC,

Embedding of word x

Previous State s_,

€950
c .3
(3

TN

T
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RNN Cell Architecture

We can represent the
RNN in with the This brings up an immediate question: what is s ?

following equations:
Typically, we initialize sy to be a vector of zeros

St = p((et, St_1)VVr + b,) (i.e. “initially, there is no memory of any previous
words”)

oy = o(seW, + b,)

33



Training RNNs

We can calculate the cross entropy loss just as before since for any
sequence of input words (X, X,,..., xt), we know the true next
word X, ,

0'1 of of: \
| RNN J/ RNN | | RNN Loss(o0., X
o Cell Cell **° Cell (00, Xy\)
X X X



Training RNNSs

But what happens when we differentiate the loss and backpropagate?

N

O

o)
S -0SS (0¢s Xeyn)
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Training RNNs

Not only do our gradients for o_depend on X, but also on all of the
previous inputs.
We call this backpropagation through time.

0[1 of (1: \
| RNN | RNN | RNN % loss(o.. X
Se Cell Cell ¢ o+ 4 Cell SW ( t) t+1)
X X )(t
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Tra i n i n g R N N S But at what point do we stop and calculate the loss/update?

With this architecture, we can run the RNN cell for as many steps as we
want, constantly accumulating memory in the state vector.

oll OIZ 0.0, 000
< __| RNN | RNN RNN
e Cell Cell Cell >

X X X

1 2 10,000
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Training RNNs

Solution: We define a new hyperparameter called window sz.
We now chop our corpus into sequences of words of size window_sz

The new shape of our data should be:
(batch sz, window sz, embedding sz)

Each example in our batch is a “window” of window sz many words.
Since each word is represented as an embedding sz, thatis the last
dimension of the data.



Training RNNs

Now that every example is a window or words, we can run the RNN till

the end of that window, and compute the loss for that specific window
and update our weights

o]1 of owindow_s z-1
< RNN | RNN L RNN
0 Cell Cell Cell

X X

1 2 window_sz-1



Any questions?

Does RNN fix the limitations of the N-gram 2?2

model?
1.  Number of of weights not dependent on N prediction
2. State gives flexibility to choose context |
from near or far
“The dog was barking at one of the cats.” SN |
“dog” “was” “barking”
RNN RNN RNN
cell | 7 cell | 7 cell
3 input

“The”

“dog”

“was”
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RNNs in Tensorflow

RNNs can be built from scratch using Python for loops:

prev_state = Zero vector

for 1 from @ to window sz:
state_and _input = concat(inputs[i], prev_state)
current_state = fc _state(state and input)
outputs[i] = fc_output(current_state)
prev_state = current_state

return outputs



RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)



RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

N\

The size of our output vectors



RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

b

The activation function to be used in the FC
layers inside of the RNN Cell



RNNs in Tensorflow

Any intuition why we would want
return_sequences to be TRUE?

RNNSs can be built from scratch using Python for loops.

There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

RNN
Cell

RNN
Cell

I

owindow_sz—l

|

RNN
Cell

Jnindow_sz-l

p,

If True: calling the RNN on an input sequence
returns the whole sequence of outputs + final
state output

If False: calling the RNN on an input sequence
returns just the final state output (Default)
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RNNs in Tensorflow

RNNs can be built from scratch using Python for loops.
There’s also a handy built-in Keras recurrent layer:

tf.keras.layers.SimpleRNN(units, activation, return_sequences)

Usage:
RNN = SimpleRNN(10) # RNN with 10-dimensional output vectors
Final output = RNN(inputs) # inputs: a [batch sz, seq length, embedding sz]| tensor
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